
18 The International Arab Journal of Information Technology, Vol. 1, No. 0, July 2003

Security Solutions for Jini-Based Applications

Ghita Mostéfaoui
Department of Informatics, University of Fribourg, Switzerland

Abstract: Since its first release, Jini became a promising technology to build fault tolerant distributed systems. The
actual Jini architecture however lacks a strong security model. Based on a concrete example, this paper aims at
reviewing the main security architectures that have been proposed by the research community and presents an
evaluation of them. This work may serve as a basis for securing Jini-based systems by selecting the set of solutions
provided by each model, depending on the security needs introduced by each specific application.

Keywords: Distributed systems, Jini, security architectures.

Received January 28, 2003; accepted May 24,2003

1. Introduction
The Jini networking technology [5, 12, 30] developed
by Sun Microsystems, is an innovative technology
for building reliable, fault-tolerant distributed
applications. It allows to easily form networks to
share services without previous planning, installation
or administration effort.

This work is part of a collaboration project
between the SOFTENG (Software Engineering
Group) at the University of Fribourg and the LIP6
(Laboratoire d’Informatique Paris 6) at the University
Pierre et Marie Curie Paris VI. We are interested in
designing and developing a software framework for
context-based security in distributed systems. The
resulting framework is intended to be a generic
prototype used by distributed applications in order to
integrate dynamic security solutions [15, 16]. Our
framework is developed using the Java programming
language and the Jini technology. However, due to
the ad hoc nature of Jini, security is of main concern.
Until now, only few efforts partly deal with the Jini
security model.

This paper aims at reviewing some of the main
security architectures for Jini and provides an
evaluation of them. For clarity reasons, we base our
actual study on a concrete and simple example:
sending a protected document to a network printer.
We begin by identifying the main threats in the actual
Jini architecture. Then, we propose a set of
requirements for a secure Jini-based system. Section
4 is dedicated to presenting the standard security
concepts in the Java language. They are not directly
related to Jini but some of these concepts may be
useful for future integration with the Jini model. An
example of a centralized model for securing Jini-
based systems is presented in section 5. Section 6
presents an example of a decentralized model.
Section 7 discusses a security framework based on
the use of self-signed certificates for services and
user authentication. An authentication and
authorization architecture for Jini services

achieving client transparency is discussed in section 8.
Section 9 discusses the efforts made by Sun to add
security to Jini. It includes a recent security model
proposed by the Jini Project team. Section 10 is an
attempt to evaluate the above security models based on
the printer example in order to retain a set of basic
propositions for our future implementation of the
context-based security framework. Finally, section 11
concludes this paper.

2. Problem Statement
Our study is based on a simple example: A Jini-system
in which a user wants to print a confidential document
using a Jini-enabled printer available on the network.
However, Jini lacks a strong security model. Our
research purpose is to build a security model for the
example described earlier. The first step, which is the
aim of this paper, is to identify the main security threats
in the actual Jini infrastructure and to review the main
solutions already proposed by the research community.
These models may provide solutions for some specific
security threats in our system. We shall use our printer
service as an illustrative example to discuss each of
these models, even if they were originally intended to a
more general Jini-based system.

3. Conventional Jini -Based Printer Service

Behavior
The rest of the discussion is based on a concrete
scenario; a printer service. In this framework, a set of
clients with different roles interact with the Jini service
in order to print documents. For simplicity reasons we
will assume that only one client is actually interacting
with the printer service. The following is a typical
scenario (Figure 1).

At some previous time, the printer service has
instantiated a proxy and registered it in the lookup
service.

1. The client wishing to use a Jini printer service

Security Solutions for Jini-Based Applications 19

 performs a lookup (in this example, searching for
printer services) by contacting the lookup service.
A list of available services is returned to the
application.

2. The user selects the desired service. A serialized
proxy object is transported to the client virtual
machine and the corresponding byte code is
downloaded.

3. The user calls some method on the service proxy.
In this example, it sends the document and asks
the proxy to print that document.

4. The proxy sends the request to the service.
5. The printer service prints the received document

and sends back a confirmation to the client (in the
form of a pop-up window or e-mail message).

Figure 1. A Jini-based printer system.

3.1. Security Threats
In the actual Jini infrastructure and based on the
above example, we can identify the following threats:

• Interception: It refers to the situation that an
unauthorized party is listening to a communication
between the client and the service. For example, if
a user sends its document to the printer service,
nothing prevents an unauthorized user from
stealing this information. This issue is of main
concern, especially in critical applications where
the documents have to be kept confidential.

• Interruption: Actually, there is no way to prevent
any user from shutting down the lookup service or
any other service (the printer service in our
example).

• Modification: It involves unauthorized changing of
data or modifying a service behavior.

• Malicious lookup services: Nothing prevents a
particular user from launching a ’bogus’ lookup
service that contains proxies representing services
that implement the printer service interface and
sends the received client document to an
unauthorized user instead of printing it.

• Malicious services: Even if the lookup service

 fully trusted, it is still possible to have malicious
printer services registered with this secure lookup
service.

• Malicious proxy code: Running proxies in the client
virtual machine may need special permissions. The
Java security model already provides the basic
mechanisms for running the downloaded code inside
a ”sandbox”.

• Services visibility: It is not possible to control who is
able to discover particular Jini services from a
particular lookup.

• Services access control: In the actual Jini model, a
security mechanism has to be explicitly added to Jini
in order for a service to allow some of its operations
and to deny others depending on the client identity
(see section 4.3 for a possible solution). In our
example, the printer service implements a set of
operations: the print method which is invoked by the
clients to print a document; the modify method that
allows a user to modify the default parameters of the
printer (start-up, shut-down,…etc) in addition to other
operations. We want to restrict some methods such as
modify to be invoked only by the administrator of the
system. It is thus important to control access to
services operations depending on the client identity.
This is a non-exhaustive list. It is based on our printer

service example. We believe, though, that for other
specific applications, only a subset of these requirements
may be sufficient or that new considerations may be
introduced. It is also important to keep in mind that
some requirements may conflict.

The actual work does not cover security aspects of
distributed events, leases and transactions. Identifying
security threats in these cases is a complex task and is
left to a future research project. However, a potential
security issue could be to manage services certificate
expiration depending on their lease time and to prevent
deletion of events at runtime.

3.2. Security Requirements
In the following, the discussed security threats are
mapped into low level security mechanisms:

• Message encryption: Exchanged messages between
services and clients and between services and the
lookup service must be encrypted to protect them
from eavesdropping. Message encryption provides a
solution for both, interception and modification
threats.

• Lookup service authentication: The lookup service
has to be authenticated by clients and services before
any of its proxy code is executed.

• Services authentication: As for the LUS (Lookup
Service), the clients must authenticate all other
services before their code is executed. As the only
interconnection of the service and the client is the
service’s proxy, it is straightforward to authenticate
the proxy instead.

• Proxies authentication and integrity : Proxies
identities have to be authenticated. To control if they

20 The International Arab Journal of Information Technology, Vol. 1, No. 0, July 2003

come from the right service. Proxies need also to
be verified if they have been modified on route.

• Access control mechanisms for local resources:
Some mechanisms are required to protect local
resources such as hard disks, user information and
machine file system from dangerous operations.

• Clients authentication: Clients may be
authenticated in order to control their access rights
to a given service.

• Services visibility: Some services should be
invisible to un-privileged users. A mechanism to
control services visibility is thus required.

• Access control mechanisms for services
operations: Services may be able to control what
kind of operations are allowed, based on the client
identity. This solution may correct both problems,
interruption and service access control.
In the remaining sections, we discuss six main

approaches for securing Jini-based systems. We
begin by the standard Java security model (Java
sandbox, security APIs and policy files), which is not
especially intended for the Jini infrastructure, but
may solve some of the problems discussed before.
The second approach is the result of a project
elaborated at Darmstadt University of Technology
and is based on a centralized security infrastructure
[10]. The third approach relies on a decentralized
security model and was elaborated at Helsinky
University [6]. The next model makes use of self-
signed certificates to secure Jini-based systems and
has been introduced by Andersson and Karlsson in
[2]. Another architecture has been initiated as a
project at the International Computer Science
Institute in Berkeley. It aims to secure the Lookup
service, Jini services and to ensure message
confidentiality. Finally, we present Sun
Microsystems contributions. The first contribution is
the Remote Method Invocation Extension. It was an
attempt to add security aspects to RMI, and was
intended to serve as a basis for adding security to
Jini. The second contribution is the Davis Project.

4. The Java Security Model
Security features are missing in Jini. Sun refers to the
underlying security features of the Java programming
language (JDK 1.2), which initially ensures that an
un-trusted and possibly malicious application cannot
gain access to system resources (the Java sandbox).
The standard security model, however, does not
provide all the necessary security requirements such
as authentication of participating parties,
communication protocols, confidentiality and
integrity of data.

To satisfy these requirements, Sun released a set
of optional packages: JSSE (Java Secure Socket
Extension), JCE (Java Cryptography Extension) and
JAAS (Java Authentication and Authorization
Service) which are now integrated into the actual
Java 2 Software Development Kit (J2SDK) v 1.4.0.
However, even if these packages are now part of the

Java SDK, they are not yet part of the Jini Technology
Starter Kit v 1.2. Therefore, their contribution for
securing Jini-based systems has to be explicitly
included.

At time of writing, the Jini Team at Sun
Microsystems is working on a security model for Jini,
known as the Davis Project [21]. Since this project is
still under development, instead of presenting it as a
standard part of the Java security model, we will discuss
its main features in section 9.2.

4.1. The Java Sandbox

The Java security model restricts running downloaded
code to its own sandbox. Thus, the Java virtual machine
allows for executing un-trusted applications in a safe
environment. The Java sandbox is a set of three
interrelated components: the class loader, the byte code
verifier and the security manager.

1. The class loader: It is the first line of defense in the
Java security model [22, 34]. The class loader is
responsible for importing the code from the remote
machine, defining Java namespaces in order to isolate
trusted class libraries (Java APIs) from un-trusted
ones, and verifying that the code has the appropriate
permissions in order to access or define classes. The
last functionality is achieved by cooperating with the
security manager. A JVM (Java Virtual Machine)
may run multiple class loaders; each class loader has
its own namespace.

2. The byte code verifier: It is built into the virtual
machine and cannot be accessed by Java
programmers or Java users [13]. A Java program is
compiled down to platform-independent Java byte
code contained in class files. Before the byte code is
run into the virtual machine, a set of tests are applied
to it by the verifier to ensure that the incoming byte
code stream conforms to the specifications of the
virtual machine [35]. The byte code verifier checks
for: stack overflow, type correctness, class format
correctness, illegal casts, pointer forging and
protected class access.

3. The security manager: It is the most important
component of the Java sandbox and serves as a
guardian for its boundaries. The security manager is a
Java object; a subclass of the
java.lang.SecurityManager class that is consulted by
the Java code before any potentially dangerous
operation is executed. The main role of the security
manager is to control access to protected resources
such as files and personal data, to control all socket
operations and to prevent the installation of new class
loaders [22]. Developers may customize the security
manager to a specific security level depending on
their applications. Figure 2 illustrates the
collaboration of the three Java sandbox components
in a concrete case: the Printer service proxy
downloaded from the lookup service in order to be
executed in the client virtual machine. The proxy
code is first checked by the byte code verifier, then, it
is loaded into a namespace by the class loader in

Security Solutions for Jini-Based Applications 21

order to prevent access to resources the proxy does
not have the right to see. All the operations
initiated by the printer service proxy are controlled
by the security manager.

Figure 2. The Java sandbox components.

4.2. Java Security APIs
Sun has released optional packages to support
additional security features for the standard Java
security model, such as encryption, authentication
and authorization. Since version 1.4.0, these
packages are a core part of the Java 2 Software
Development Kit (J2SDK).

1. JCE: The Java Cryptography Extension [23] is a
set of security packages from Sun. It supports data
encryption, key generation and key exchange. The
JCE framework allows new cryptography libraries
and algorithms to be added seamlessly.

2. JSSE: The Java Secure Socket Extension [24] is a
standard package that provides a Java
implementation for the Secure Socket Layer (SSL)
and

3. JAAS: The Java Authentication and Authorization
Service [25] enforces the Java security model by
enabling user-based, group-based and role -based
authentication and access control.

Figures 3, 4 and 5 show where each of the security
APIs described above may contribute.

Figure 4. The JSSE API ensures secure data exchange -at the socket
level- between clients and services. It provides also ways to
authenticate servers (services providers) and clients.

Figure 5. The JAAS API manages user authentication and access
control.

4.3. Java Policy Files
Policy files do not implement a new security model by
themselves, but are rather static configuration files used
by Java applications in order to specify what
permissions (access to a system resource) are given to
Java code depending on its source (location), the signer
of the code, or both. Version 1.4 of the J2SDK includes
new protection mechanisms by allowing a new policy
implementation. This implementation supports principal-
based grant entries, which means that the code is also
considered to be run by a specified user (principal) [26].
Policy files have a concise syntax. In order to eliminate
the need to know this syntax, Sun provides a graphical
policytool utility that comes with the JDK for creating
and editing policy files. They may also be edited by
hand using any text editor.

The syntax of a java policy file is the following:
Figure 3. The JCE API provides tools to encrypt data and to
ensure message integrity between the client and the lookup
service, as well as between the client and the printer service.

22 The International Arab Journal of Information Technology, Vol. 1, No. 0, July 2003

grant signedBy "signer_names", codeBase "URL",
principal principal_class_name "principal_name",
principal principal_class_name "principal_name",
…{
permission permission_class_name "target_name",
"action",
signedBy "signer_names";
permission permission_class_name "target_name",
"action",
signedBy "signer_names";
…
};

Here is a sample policy file:

grant signedBy "Mike", codebase
"http://www.unifr.ch", principal
javax.security.auth.x500.x500Principal "cn=Olivia"{
permission java.io.FilePermission "/home/Java",
"read,write";
};

This allows code signed by “Mike”, downloaded
from “http://www.unifr.ch”, and executed by
“cn=Olivia”, permission to read and write into the
directory “/home/Java”. Java allows users to
implement their own permissions. However, it comes
with a set of built-in permission types. A
java.io.FilePermission represents access to files and
directories. Its corresponding actions are read, write,
execute and delete. A java.net.SocketPermission
represents access to a network via sockets.

Given a host specification, this permission allows
the following actions: accept, connect, listen and
reprint. We refer the interested reader to [27] for an
in depth discussion about Java built-in permissions.

5. A Centralized Jini Security Model
The authors Hasselmeyer, Kehr and Voss in [10]
propose an extension to the Jini architecture, which
enables secure lookup of services and trust
establishment between parties involved in a Jini
federation, namely services and clients. It relies on an
off-line central certification and authentication
authority. In order to ease the administration of
access rights, the notion of “groups” is introduced.
This notion allows restricting the visibility of services
registered at the lookup service.
Two main components are added to the initial Jini
infrastructure (Figure 6):

• Certification Authority (CA): It provides
certificates for authentication of all participants
(services and clients). For security reasons, the CA
is implemented as a stand-alone application. In a
real-world environment, it should run in a
physically secured place on a machine with no
connection to the internet (i.e. outside the secure
intranet).

• Capability Manager (CM): The capability manager is
implemented as a separate Jini service. It administers
a list of names and the associated access rights
(capabilities) for each user. All the information has to
be given to the CM by an administrator. The CM
plays the role of a delegate of the manager that is
responsible for handing out capabilities. Capabilities
are transferred as Java signed objects
(java.security.SignedObject). Capabilities provided to
services and clients are used for access control in the
lookup service (for a service during a registration
phase, and for a client when looking up for a specific
service).

Figure 6. The overall architecture of Hasselmeyer's centralized
security model.

5.1. Implementation
This new architecture requires some modifications in the
source code of the lookup service implementation and
the classes that handle the discovery protocols.

First modification (Secure Lookup Service
Discovery): Looking up services or joining a federation
requires interaction with the LUS, which might be
malicious. Therefore, the lookup service has to be
authenticated to its clients before any of its proxy code is
executed. This concerns the lookup service
implementation. Sun’s implementation of the lookup
service is called Reggie (package com.sun.jini.Reggie).
It consists of two parts: the actual directory service
RegistrarImpl which is the class of Reggie’s server
implementation, and a proxy object RegistrarProxy used
by clients to access the Reggie’s server. These two parts
communicate via Java RMI mechanism. The idea is to
protect the RMI message exchange by tunneling RMI
traffic through the SSL (Secure Socket Layer) protocol
[32]. An SSL socket is then used instead of the standard
socket. The SSL protocol ensures privacy, identity
authentication and message integrity between the
client/service and the lookup service.

Second modification (adding groups and
capabilities): It consists of modifying the lookup service
functionality (ServiceRegistrar in package
net.jini.core.lookup), by adding new lookup and register
methods, which take the user’s capability and a group
name as additional parameters. We see in the next

Security Solutions for Jini-Based Applications 23

section how these capabilities and groups are used in
order to manage visibility of services.

5.2. Example Scenario

In the following, we use the same example presented
in section 2. The actual scenario consists of a printer
service which wants to register itself in the group
“protected services” (Figure 7) and a client, which
performs a lookup in this group.

Pre-configuration: We assume that all certificates
and capabilities have already been set up and that the
capability manager is registered at the LUS in the
special group “capability”.

Service Registration
1. Lookup service discovery: The service sends a

unicast discovery request message and gets an
extended response from the lookup service. This
response contains the signature for the lookup
service proxy and the signer’s certificate. Before
using the proxy object, the printer service checks
the certificate and the signature.

2. Secure communication/authentication: (not shown
in Figure 7) The lookup service proxy establishes
a secure communication session between the
printer service and the lookup service with mutual
authentication. The connections between the
lookup service and its clients (services/users)
should be encrypted to prevent unauthorized
parties from observing the in-traffic service
descriptions.

3. Capability manager lookup: Before registering
itself in the LUS, the printer service must look for
the capability manager (CM) in order to obtain
capabilities. The printer service calls the LUS
proxy’s lookup method with the parameter
”capability” to find an instance of the capability
manager.

4. Obtaining capabilities: The printer service asks
one of the CMs for its capabilities. The CM
consults its database and creates an adequate
capability object containing the permissions of this
service. The capability is delivered inside a signed
object using the CM’s private key to guarantee its
authenticity.

5. Registering at the LUS: The printer service calls
the LUS proxy’s register method with additional
parameters: the desired group “protected services”
and its signed capability. The capability is only
accepted if the contained name equals the
distinguished name presented during the
authentication phase. Upon success, the LUS adds
the service description to this group.

6. Client side service lookup and use: steps 1 to 4 are
the same as above. The next steps are described
below and illustrated in Figure 8.

Service lookup
1. The client calls the LUS proxy’s lookup method

with the group “protected services” and its signed
capability as additional parameters. The LUS

verifies the capability and checks if the permission for
the specified group is implied. Upon success, it
returns all services of this group which match the
given service template (printer services).

2. Service use: The client selects one service from the
result and uses the service proxy for further
interaction.

Figure 7. Service registration in Hasselmeyer's centralized security
model.

Figure 8. Client side service lookup and use.

5.3. Advantages

This solution presents the following advantages:
• It ensures communication privacy and data integrity

by the mean of the SSL protocol.
• It ensures lookup service authentication.
• It ensures services authentication.
• It provides proxies integrity by the mean of data

encryption between the lookup service and its clients
 (Jini users/services).

24 The International Arab Journal of Information Technology, Vol. 1, No. 0, July 2003

• It ensures clients (Jini users) authentication.
• It introduces the notion of “groups” in order to

control services visibility to clients.
• It provides mechanisms to protect local resources

of the client machine.
• It offers a fine-grained authorization scheme based

on capabilities.

5.4. Limitations
This solution presents the following limitations:

• In order to be able to verify the identity of the
communication partner, the certificate of the other
end has to be signed by a commonly known
certification authority (implemented especially for
the purpose of this architecture) meaning that all
communication partners need an a priori
knowledge of the certification authority’s public
key. This is not a usable way to check the
certificate’s validity in Ad Hoc networks, since it
introduces a partia l loss of ”spontaneity” of
client/service interactions, which is one of the
main advantages of Jini.

• Before interacting with this extended Jini
infrastructure, a pre-configuration phase must be
accomplished (setting up certificates and
capabilities and registering the capability manager
at the LUS in the special group “capability”). The
system has to be unavailable for other services and
clients during this time. There is no indication how
to prevent services and clients from interacting
with the LUS during this phase.

• The proposed solution is bound to a specific
communication protocol SSL, thereby hampering
the protocol independence of Jini.

• There is no mechanism to control access to the
operations of a given service.

• It requires modification of the Jini source code.

6. A Decentralized Jini Security Model

Based on SPKI
Respecting the had hoc nature of Jini, the model
proposed by Eronen in his master thesis [6], as well
as in other papers [7, 9], presents a fully
decentralized security architecture for Jini based on
trust management [3, 8]. It uses Simple Public Key
Infrastructure (SPKI) certificates for authorization
[20], and provides access control for Jini clients,
service proxies and services. This implementation
relies on the Java 2 security model and the Java
Socket Security Extension (JSSE).

6.1. Implementation

In this approach, clients and services are identified by
public keys. These keys do not have any centralized
certification infrastructure. Anyone can start a service
and create a new key pair for it.

• Proxies verification: One of the key assumptions in
this design is that if a service signs a proxy, this does
not guarantee that either the proxy or the service itself
is not malicious, but only that the signer service trusts
the signed proxy. Furthermore, no authority certifies
that the service itself is “well behaved”.

• Clients authorization: In order to grant authorization
to use a service, the actual infrastructure uses SPKI
(Simple Public Key Infrastructure) chains. When
actually accessing a service, the chain is completed to
a loop.

• Certificate Chaining: The printer service maintains an
Access Control List (ACL) which contains a set of
valid clients allowed to access. For instance:

 (acl (subject UNIFR)(tag access))
 (acl (subject administrator)(tag access modify))

The service’s ACL says that only UNIFR1 users are
allowed to access and that only the administrator is
allowed to access and modify the printer service. Now,
let us consider a client ”Mike”, who has a set of
certificates:
• a certificate saying that he is a student at the DIUF2
• a second certificate saying that DIUF students are

UNIFR students.
Mike wants to use the printer service. Here is how the

authorization phase is performed:

1. Mike sends first his signed request to the printer
service.

2. The service checks its ACL and rejects Mike’s
request by sending back its ACL to Mike.

3. Using the certificates he already owns, Mike performs
a certificate chain discovery starting from an ACL
entry and ending with his public key. This sequence is
of the form: Mike’s public key - DIUF’s public key -
UNIFR’s public key - access Printer Service

4. A second request is then sent to the printer service
with the chain.

5. The service then authorizes Mike (his public key) to
perform the requested operation (see Figure 9).

Figure 9. A simple SPKI chain.

1 University of Fribourg
2 Department of Informatics of the University of Fribourg

Security Solutions for Jini-Based Applications 25

6.2. Example Scenario

The following scenario consists of a user requesting a
printer service to print a document (Figure 10).

Figure 10. Accessing a Jini service with Eronen's
decentralized security model.

Service Registration: the service registration steps are
not shown in Figure 10.

1. Lookup Service Discovery: The printer service
sends a unicast discovery request message and
gets a conventional response from the lookup
service.

2. Registering at the LUS: The printer service signs
the proxy using its private key and registers the
proxy to the lookup service.

Client side service lookup and use: the discovery step
is the same as above.

1. Service lookup: The application calls the lookup
method of the LUS proxy to perform an
appropriate lookup of the desired service (printer
services in our example). A list of services is
returned to the application. No special security
features are assumed here.

2. Obtaining the service proxy: The application (the
user) selects one of the listed services. A serialized
proxy object is transferred to the client and the
corresponding byte code is downloaded.

3. Service proxy verification: The client security
manager (Jini security module) asks the proxy for
the printer service’s public key and checks that
this proxy indeed represents that service. An
additional proxy authentication step is performed
in order to verify that the name of the printer
service shown to the user is correct.

4. Service method invocation: The application calls a
given method on the proxy object. In this example,
it asks the proxy to print a document.

5. Proxy authorization (application access control):
The proxy asks the client security manager for
authorization. The security manager checks that
the proxy is really trying to access the service it
represents and that the application is allowed to
perform this operation on behalf of the user.

6. Service use: The proxy opens a secure connection to
the server by implementing any protocol it chooses.
The actual architecture uses RMI over TLS
(Transport Layer Security) [32]. The proxy sends the
certificates and the service request to the server. The
server security manager checks the certificate chain
using the public key of the proxy and its certificates.
Upon success, the service performs the requested
operation.

6.3. Advantages

This solution presents the following advantages:
• It ensures communication privacy using the TLS

protocol.
• It ensures services authentication by the mean of

digital signatures.
• It ensures proxies authentication by verifying that it

was signed by the service back-end key.
• It provides clients authentication by the mean of SPKI

certificates.
• It ensures protection of local resources of the client

machine.
• In this architecture, no central certification authority

is required. It relies on a simple trust policy model
using SPKI certificates.

• It allows delegation. For instance, a student at the
DIUF does not need to have an explicit authorization
to use a service. This authorization is deduced from
the ones he already owns from DIUF and UNIFR (see
section 6.1).

• Authorizations are specified in flexible user-defined
tags using ACLs.

• There is no modification of the Jini source code.

6.4. Limitations
This solution presents the following limitations:
• This model does not ensure lookup service

authenticity.
• There is no mechanism to control services visibility.
• There is no mechanism to control access to the

operations of a given service.
• The use of SPKI certificates introduces some latency

problems, since the chain discovery consumes time.
This of course depends on the complexity of the Jini
system.

7. A Decentralized Jini Security Model Based
on Self-Signed Certificates

To avoid the requirement of having a central CA
(Certification Authority), Andersson and Karlsson in [2]
suggest the use of self-signed certificates to authenticate
both services and clients. In order to check the
certificates validity, however, the receiver must calculate
the fingerprint3 and check if it matches the fingerprint

3 A fingerprint is a sequence of characters computed from the

contents of the certificate. It uniquely identifies the certificate as
being genuine. For example: 85:67:3B:72:D8:4A:CE:83:F4:
10:44:C4:E0:C8:BE:43

26 The International Arab Journal of Information Technology, Vol. 1, No. 0, July 2003

received earlier (printed on the back side of a
business card). A key exchange algorithm used to
encrypt/decrypt data is implemented as a Jini service
to make it easily available to other services. Its proxy
(the key proxy) is automatically downloaded as a part
of other services proxies. This work has been done at
Ericsson Research Communication Security Lab in
Kista, Sweden.

7.1. Implementation

The authors provide their own implementation of the
algorithms used to encrypt/decrypt data. Thus, the
security model is entirely built using the Java
standard library and does not need extra Java
libraries, such as JCE or JAAS.

7.2. Example Scenario
We use the same example as in the previous sections.
Namely, a user requesting a printer service to print a
document.

Pre-configuration: At previous time, the clients and
services providers have exchanged their business
cards. On the back of each card, the fingerprint of
their certificate is printed.

Service Registration
1. Lookup service discovery: The printer service

sends a unicast discovery request message and
gets a conventional response from the lookup
service.

2. Signing the proxy code: The printer service
bundles the proxy code into a jar file for faster
transfer. This jar file is then digitally signed using
the jarsigner utility that comes with the JDK. The
jar file contains the proxy code and the service
certificate.

3. Registering at the LUS: The printer service
registers its proxy to the Jini lookup service.

• Client side service lookup and use: The
registration phase is the same as above.
The remaining steps are detailed below and

illustrated in Figure 11.
1. Service lookup: The client performs a lookup to

find printer services. A list of them is returned to
the client.

2. Obtaining the service proxy: The client downloads
the printer service proxy (along with the service’s
certificate). The key-exchange proxy is
automatically fetched with the printer proxy (see
item 4).

3. Service proxy authentication: The client checks
the certificate fingerprint used to sign the proxy
code. The authentication passes when the services
certificate fingerprint received with the proxy and
the one already available at the client side (printed
in the backside of the service provider business
card) are equal. These fingerprints are
authenticated by the mean of a C-Pen; a digital
assistant that reads and processes printed text.

4. Secure communication between services and clients:
In order to ensure privacy and integrity of the
communications, exchanged data are encrypted using
the Diffie-Hellman algorithm. As its name suggests,
the key-exchange proxy (already present in the client
VM) is responsible for creating the keys used for
encryption and decryption. The key-exchange proxy
acts on behalf of the client, so the client has to be
authenticated. The same technique described earlier is
used; comparing the client’s certificate fingerprint
received by the server and the one already present at
the server side.

5. Service method invocation: The client application
calls some method on the proxy object (print the
document).

Figure 11. Accessing a Jini service with self-signed certificates
(Andersoon's model).

7.3. Advantages
This solution presents the following advantages:
• Data privacy and integrity between clients and

services is ensured (using the Diffie -Hellman
algorithm).

• This model provides services authentication
mechanisms that relies on certificate fingerprint
check.

• Proxies are also authenticated by verifying their
signature.

• This model provides also clients authentication in the
same way as services.

• It provides ways to protect local resources of the
client machine.

• Encryption functionalities are implemented as a Jini
service, which eases further changes and updates.

• This model does not rely on a central certification
authority which is more adequate for ad hoc networks
such as Jini networks.

• There is no modification of the Jini source code.

7.4. Limitations

This solution presents the following limitations:
• The lookup service is not authenticated.
• No services visibility mechanism is provided.
• Access control to the operations of a given service.
• Even if this model does not rely on a central

certification authority, the management of trust is

Security Solutions for Jini-Based Applications 27

based on an a priori exchange of certificates
fingerprint printed on the back of business cards.
This limits a bit the spontaneity of Jini.

8. An Authentication and Authorization
Architecture for Jini Services

The main part of this architecture [17, 18] has been
developed at ICSI (International Computer Science
Institute) in Berkeley, California. The authors focus
on the following three security goals: providing
services authentication and authorization
mechanisms, message confidentiality and client
authentication. The main concern was to develop a
security architecture transparent to clients, which
means that the existing Jini clients code do not need
to be modified. This is achieved by packing all the
security functionalities into the service proxy and
the service back-end. A simple policy file at the
client side is needed to make sure that the received
proxies are signed by trusted parties before executing
them in the client virtual machine.

8.1. Implementation
This security model for Jini is developed using the
cryptographic functionalities provided by the JCE
1.2.1 API, the authentication and authorization
mechanisms offered by the JAAS 1.0 API, and
JavaCard 2.0 [28], an API that enables to run java on
devices with limited memory. The main parts of this
architecture are:

• SubjectAuthenticatorService: Implemented as a
Jini service, the SubjectAuthenticatorService is the
central entity of the whole security infrastructure.
Its role is to manage communications between the
LoginPolicyDB, the RemoteCallbackHandler and
the UserDB in order to handle the authentication
process [17].

• RemoteCallbackHandler : It is instantiated in the
client virtual machine and initiates a login
interface to authenticate the user.

• LoginPolicyDB: is a Jini service. Its task is to
return what login policy should be used to log on a
user. The returned login policy depends on the
input parameters such as the identity of the client
host and a string representation of the service to be
used.

• UserDB: It is implemented as a Jini service and its
role is to authenticate the user by verifying the
data (username/password) he provides via the
RemoteCallbackHandler.

8.2. Example Scenario

Based on the printer service example used until now,
we present in the following the usual scenario using
the security model presented in [17, 18] in a slightly
simplified manner. This scenario is illustrated in
(Figure 12).

Pre-configuration: At previous time, the clients and
services providers have exchanged their certificates. The
trusted certificates (signed by a well-known certification
authority) are added to a Java keystore.

Service Registration (not shown in Figure 12)

1. Lookup service discovery: The printer service sends a
unicast discovery request message and gets a
conventional response from the lookup service.

2. Signing the proxy code: The printer service generates
a key pair. The private key is used to sign the proxy
and remains at the service back-end. The public key is
transferred to the service proxy.

3. Registering at the LUS: The printer service registers
its signed proxy to the Jini lookup service.

Client side service lookup and use: The lookup
discovery step is the same as above.

1. Service lookup: The application calls the LUS proxy’s
lookup method to perform an appropriate lookup of
the desired service (printer services in our example).
A list of services is returned to the application.

2. Obtaining the service proxy: The client application
selects one of the listed services. A serialized proxy
object is transferred to the client and the
corresponding byte code is downloaded.

3. Secure communication between the service and its
proxy: To ensure communication confidentiality
between the proxy and its back-end, messages are
encrypted using the Diffie -Hellman algorithm. So
both the proxy and the service back-end must agree
on a symmetric secret key. In the client JVM, the
proxy generates its own key pair. Using its own
private key and the back-end public key, it generates
a symmetric secret key [4]. The proxy sends its own
public key to the service back-end, so that the back-
end can generate the secret key and stores it in a
session database.

4. Service proxy authentication: Using the public key of
the printer service back-end, the client authenticates
the signed proxy.

5. Service method invocation: The client application
calls some method on the service proxy. In our
example, it asks the proxy to print a document.

6. Client authentication: When the printer service
receives a request via its proxy, it contacts the
SubjectAuthenticatorService. The
SubjectAuthenticatorService then requests a login
policy from the login policy database:
LoginPolicyDB. This login policy specifies how to
authenticate the user. The
SubjectAuthenticatorService sends the login policy to
the RemoteCallbackHandler (instantiated by the
proxy at the client side). The RemoteCallbackHandler
initiates an authentication scheme depending on the
login policy. The client is then prompted for a
username and a password. More sophisticated
authentication schemes may be implemented. The
information provided by the client to the
RemoteCallbackHandler is then sent back to the
SubjectAuthenticatorService. The latter contacts the

28 The International Arab Journal of Information Technology, Vol. 1, No. 0, July 2003

user database: UserDB. The UserDB checks if the
data supplied by the user is correct and returns the
data needed to build a Subject. A subject is then
built by the SubjectAuthenticatorService and is
returned to the service. The Service returns a token
to the proxy, to be used by the client.

7. Service use: The proxy opens a secure connection
with the service (see point 3) and invokes the
desired method print(). In this security
architecture, access control to the operations of a
given service is implemented. The printer service
back-end has its own policy file that specifies the
permissions granted to users for invoking an
operation. Each code that needs authorization is
encapsulated into a run method of an extension of
a PrivilegedAction class. In order to perform an
action that need authorization, the service runs the
Subject.doAs() method for the client. This method
checks if the appropriate permissions have been
granted to the given client. If not, an exception is
thrown (see section 5.4.3 in [18] for more details).

Figure 12. Components of the security architecture (Schosh's
model).

8.3. Advantages
This solution presents the following advantages:

• This security architecture provides communication
encryption using the Diffie -Hellman algorithm.

• It ensures services authentication.
• It ensures proxies authentication.
• It ensures clients authentication.
• It ensures control of local resources of the client’s

machine.
• Actually, this security infrastructure is the only

one that affords access control to services
operations.

• It achieves clients transparency; which means that
existing clients do not need to change their code to
fit within the security infrastructure.

• It provides flexible login policies that allow
anonymous and single sign-on [18].

• All security components are implemented as Jini
services which eases further modifications in the
security infrastructure.

• There is no modification of the Jini API code.

8.4. Limitations

This solution presents the following limitations:

• In this architecture, certificates of communicating
parties have to be signed by commonly known
certification authorities meaning that all
communication partners need an a priori knowledge
of the public keys of the certification authorities. This
certificates distribution scheme is, however, more
flexible than the one presented in section 5 since it
relies on CAs whose public keys are already known
by the Java environment; the JDK comes with a set of
ten CAs public keys.

• It does not secure the lookup service.
• This security architecture does not provide any

mechanism to control services visibility.
• This security architecture relies on a central CA

(certification authority) which limits a bit the
spontaneity of Jini. Certificates are stored in a Java
keystore then fetched from it when needed.

9. Sun Solutions for Jini
In this section, we present the solutions proposed by Sun
Microsystems to secure Jini. The first attempt was the
Remote Method Invocation Extension. It was intended
to add security to RMI and to use these features to
secure Jini. This project was rejected. We will, however,
present its initial objectives and the reasons of its
rejection. The second attempt is the Davis Project. It is
intended to build a security model for Jini and is actually
in a development phase. We discuss its main features in
section 9.2.

9.1. Remote Method Invocation Security

Extension
This standard extension is identified by the Java
Specification Request JSR 76 [31]. Even if the original
specification was intended to add security to RMI, it is
the basis for adding security to all types of remote
services defined in terms of interfaces like Jini. It builds
on JAAS (Java Authentication and Authorization
Service) and defines a high level API, where the
implementation of cryptographic mechanisms and
protocols are not exposed, so code written to the API is
more portable.
The RMI Security Extension allows:

• mutual authentication between the server and the
client during remote calls

• communication integrity
• information confidentiality
• delegation

Security Solutions for Jini-Based Applications 29

• secure registry
• Unfortunately it was rejected for several reasons.

The first one is clearly the main one and is
mentioned on the JSR 76 website [31]. The three
next ones are discussed in [10] and their
pertinence would require further investigations.

• There is no separation between the security
information and the business logic. This means
that, in this specification, the security
functionalities have to be a core part of the
application code.

• Trust establishment is performed only when the
objects have been already instantiated, thus,
security holes may exist in the constructor of the
proxy.

• The specification is intended to add security to
RMI in general and does not address Jini issues in
particular. For instance, there is no way to control
Jini services visibility.

• Different security levels can only be enforced after
downloading the service proxies and depend on
their enforcement by each client.

9.2. The Davis Project
The Davis Project [21] is a recent attempt from the
Jini Project team to create a security model for Jini.
The main security requirements for this project are to
ensure message integrity, provide message
confidentiality and allow mutual authentication
between the client and the server. It allows also the
implementation of a secure lookup service in the
same way as other secure services. This architecture
is not bound to a specific implementation. It is
intended to support plugging different protocols and
algorithms to be used by the network security
programming model. At time of writing, the
implementation of the Davis Project is not yet
complete. An overture release (v 0.05), however, is
available for download [29]. This release contains the
basic Davis security architecture. It does not define
new protocols or algorithms to support the security
requirements described above, but is actually based

upon JSSE (Java Secure Socket Extension). The actual
early access release contains the following
main components: A network security programming
model and API for remote calls and to support exporting
remote objects, extensions to the RMI activation
framework to support the network security programming
model and tools for generating message digests [29].

10. Evaluation
This section presents an evaluation of the four working
security models discussed earlier, namely, the
centralized model, the SPKI-based model, the self-
signed certificates-based model and the authentication
and authorization security architecture. This evaluation
is based on the security criteria we discussed in section
3.2 along with a set of design requirements relevant to
our context. These additional requirements are:
modification of the Jini source code and the certificates
distribution scheme. We deduce from Table 1 that
message encryption has been realized by all the security
models, even if the encryption protocols differ from a
model to another. Access to the client’s local resources
is controlled using the standard Java security
mechanisms and policy files. Clients, services and
proxies authentication is based on certificates and digital
signatures. Certificates distribution may be centralized
or decentralized. Lookup service authentication and
services visib ility are realized only in the first
architecture. These requirements, however, costs some
modifications of the Jini source code and re-
implementation of the Lookup service. Access control to
the individual operations of a given service has been
implemented in the authentication and authorization
security architecture (see section 8), by defining new
permissions specific to each service operation. Based on
the actual stand of our evaluation, we state that none of
the above models fits entirely with our context, we may,
therefore, combine a set of functionalities from each
model in order to build our security framework.

This list of functionalities can be considered as
preliminary design requirements, but in no case as final
implementation decisions:

Table 1. Evaluation of security models for Jini.

Security and design requirements Centralized
Model

SPKI-Based
Model

Self-Signed Certificates
Model

Authentication and
Authorization Model

Message encryption
Lookup service authentication
Services authentication
Proxies authentication
Access control for local resources
Clients authentication
Services visibility
Access control for services operations

No modification of the Jini API code
Certificates distribution scheme

x
x
x
x
x
x
x
-

-

Centralized

x
-
x
x
x
x
-
-

x

Decentralized

x
-
x
x
x
x
-
-

x

Decentralized

x
-
x
x
x
x
-
x

x

Centralized

30 The International Arab Journal of Information Technology, Vol. 1, No. 0, July 2003

• Our design may consider data encryption between

all the parties included in the communications.
Namely, between Jini users and services and
between the lookup service and its clients
(users/services). We tend for the use of an
asymmetric encryption algorithm that make use of a
pair of keys; one to encrypt data and is public and
the second to decrypt data and is kept secret. Even if
symmetric (en)decryption is much faster then an
asymmetric (en)decryption, the latter is more
reliable.

• The lookup service needs to be authenticated in
order to prevent the intrusion of malicious lookup
services. This will be done using certificates and
digital signatures.

• Jini services and Jini clients need to be
authenticated in the same manner as the Lookup
service.

• The proxies need to be authenticated as being sent
by the services they claim to belong. This will be
achieved by signing the proxy by its service back-
end. This authentication phase may be performed
twice, during the registration phase into the lookup
service and during the download process of the
proxy in the client VM.

• We will use the facilities available in the Java
security model (see section 4) in order to protect
local resources of the client VM.

• We would like to afford services visibility and
access control to services operations. The first
requirement, however, need further intensive
research on our part.

• One of the main design requirements in our
framework is to preserve the Jini code from internal
modifications.

• Our Jini-based system is deployed in a local area
network and a user role is not related to a fixed
identity, but rather to an authorization key
(anonymous authorizations). Therefore, We tend for
the use of SPKI (Simple Public Key Infrastructure)
which is a more flexible scheme for building
authorizations and distributing certificates.

• An additional design requirement would be to pack
all the security functionalities into an additional Jini
service (see section 8) in order to ease further
updates and changes.

• Since the security APIs such as JCE, JSSE and
JAAS are now standard and included in the JDK
v.1.4.0, there is no need to add additional packages.
We will then use the functionalities they provide in
order to implement our security requirements.

• We would like our framework to afford a
customizable security policy at runtime. This design
requirement avoids recompilation of the whole
framework.

11. Conclusion and Future Work
Jini is an elegant framework for building highly
dynamic distributed environments. The actual state of
the technology, however, does not provide additional
tools to avoid the security threats that exist in such
environments beyond the standard Java security model.
In this paper, we detailed the main architectures that
have been proposed to secure Jini. We based our study
on the printer example in order to ease the evaluation
of these security architectures. The evaluation phase
allowed us to establish a primary list of design
considerations for implementing our security
framework. Some other attempts have been made but
are more application-specific. In [1], El-Muhtadi and
al. present a security model based on the combination
of Tiny Sesame and Jini. Tiny Sesame is a component-
based Java implementation of a subset of Sesame [11],
which is itself an extension to Kerberos [14]; a
network authentication protocol created at the MIT.
This model is intended to be used with Jini-enabled
devices in a smart home environment. It relies on non-
standard Java APIs which forbids it from fitting
entirely with our purpose. The next step in our work is
to build our security framework based on the design
requirements identified in section 10 with a great
emphasis on the clarity of the software design. This
implies the potentially use of security patterns [19, 36],
a recent methodology in the software engineering
discipline. Another future direction is to identify
security requirements related to leases, distributed
events and transactions.

Acknowledgments
We would like to thank Thomas-Marcus Schoch and
Peer Hasselmeyer for their comments on the earlier
drafts of this paper.

References

[1] Al-Muhtadi J., Anand M., Mickunas M. D., and

Campbell R., “Secure Smart Homes using Jini
and UIUC SESAME,” in Proceedings of the 16th
Annual Computer Secrity Applications
Conference (ACSAC’00), New Orleans,
Louisiana, pp.77-85, 2000.

[2] Andersson F. and Karlsson M., “Secure Jini
Services in Ad Hoc Networks,” Master Thesis,
Royal Institute of Technology, Stockholm, 2000.

[3] Blaze M., Feigenbaum J. and Lacy J.,
“Decentralized Trust Management,” in
Proceedings of the IEEE Symposium on Security
and Privacy, pp. 164-173, 1996.

[4] Diffie W. and Hellman M. E., “New Directions
in Cryptography,” in IEEE Transactions on
Information Theory, vol. 22, no. 6, pp. 644-654,
1976.

Security Solutions for Jini-Based Applications 31

[5] Edwards W. K., Core Jini, Prentice-Hall, 2nd
Edition, 2001.

[6] Eronen, P., “Security in The Jini Networking
Technology: A Decentralized Approach,” Master
Thesis, Department of Computer Science,
Helsinki University of Technology, 2001.

[7] Eronen P., Gehrmann C., and Nikander P.,
“Securing ad hoc Jini services,” in Proceedings
of the 5th Nordic Workshop on Secure IT Systems
(NordSec'2000), Reykjavik, Iceland, pp. 169-
177, 2001.

[8] Eronen P., Lehtinen J., Zitting J., and Nikander
P., “ Extending Jini with Decentralized Trust
Management,” in Proceedings of the 3th IEEE
Conference on Open Architectures and Network
Programming (OPENARCH'2000), TelAviv,
Israel, pp. 25-29, 2000.

[9] Eronen P. and Nikander P., “Decentralized Jini
Security,” in Proceedings of the Network and
Distributed System Security Symposium
(NDSS'2001), pp. 161-172, 2001.

[10] Hasselmeyer P., Kehr R., and Voss M., “Trade-
offs in a Secure Jini Service Architecture,” in
Trends Towards a Universal Service Market
(USM'2000), Lecture Notes in Computer Science
(LNCS), vol. 1890, Springer Verlag, 2000.

[11] Kaijser P., Parker T., and Pinkas D., “SESAME:
The Solution to Security for Open Distributed
Systems,” Journal of Computer Communications,
pp. 501-518, vol. 17, no. 4, 1994.

[12] Li S., Ashri R., Buurmeijer M., Hol R., Flenner
B., and Scheuring J., Professional Jini, Wrox
Press Inc., 1st edition, 2000.

[13] McGraw G. and Felten E., Securing Java,
Getting Down to Business with Mobile Code,
John Wiley and Sons, 2nd Edition, 1999.

[14] MIT’s Kerberos Homepage, http://web.mit.edu/
kerberos/www/, July 2002.

[15] Mostéfaoui G. , “Security in Pervasive
Environments, What's Next?,” in Proceedings of
the 2003 International Conference on Security
and Management (SAM'03), Las Vegas, Nevada,
USA, June 2003.

[16] Mostéfaoui G. and Brézillon P., “A Generic
Framework for Context-Based Distributed
Authorizations,” Fourth International and
Interdisciplinary Conference on Modeling and
Using Context (Context'03), in Lecture Notes in
Computer Science, Springer Verlag, 2003.

[17] Schoch T.,“An Authentication and Authorization
Architecture for Jini Services,” Diploma Thesis,
ETHZ, October 2000.

[18] Schoch T., Krone O., and Federrath H., “Making
Jini Secure,” in Proceedings of the Fourth
International Conference on Electronic
Commerce Research, pp. 276-286, 2001.

[19] Schumacher M. and Roedig U., “Security
Engineering with Patterns,” in the proceedings of
the 8th Conference on Pattern Languages of
Programs (PLoP'2001), 2001.

[20] Simple Public Key Infrastructure Working
Group, Simple Public Key Infrastructure,
http://www.ietf.org/html.charters/spki-charter.
html, July 2002.

[21] Sun Microsystems Inc., “The Davis Project,”
accepted, http://developer.jini.org/exchange/
projects/davis/index.html, July 2002.

[22] Sun Microsystems Inc., Secure Computing with
Java: Now and the Future, White Paper,
http://java.sun.com/marketing/collateral/security.
html, July 2002.

[23] Sun Microsystems Inc., The Java Cryptography
Extension, http://java.sun.com/products/jce/, July
2002.

[24] Sun Microsystems Inc., Java Secure Socket
Extension, http://java.sun.com/products/jsse/,
July 2002.

[25] Sun Microsystems Inc., The Java Authentication
and Authorization Service, http://java.sun.com/
products /jaas/, July 2002.

[26] Sun Microsystems Inc., “Default Policy
Implementation and Policy File Syntax,
http://java.sun.com/j2se/1.4/docs/guide/security/
PolicyFiles.html, July 2002.

[27] Sun Microsystems Inc., “Permissions in the
JavaTM 2 SDK, http://java.sun.com/j2se/1.4/
docs/guide/security/permissions.html, July 2002.

[28] Sun Microsystems Inc., Java Card (TM)
Technology, http://java.sun.com/products/java
card/, July 2002.

[29] Sun Microsystems Inc., The Davis Project:
Overture 0.05 Release, http://developer.jini.
org/exchange/projects/davis/overture.html, July
2002.

[30] Sun Microsystems Inc., Jini (TM) Architecture
Specification, Version 1.2, http://wwws.sun.com/
software/jini/specs/jini1.2html/jini-title.html, July
2002.

[31] The Java Community Process Program, JSR 76
RMI Security for J2SETM Community Draft
Ballot, http://jcp.org/jsr/results/76-7-1.jsp, July
2002.

[32] Transport Layer Security Working Group,
Transport Layer Security, http://www.ietf.org/
html.charters/tls-charter.html, July 2002.

[33] Transport Layer Security Working Group, SSL
3.0 Specification, http://www.netscape.com/eng/
ssl3, July 2002.

[34] Venners B., Security and the Class Loader
Architecture, http://www.javaworld.com/java
world/jw-09-1997/jw-09-hood.html, July 2002.

[35] Yellin F. , “Low Level Security in Java”, in
Proceedings of the 4th International World Wide
Web Conference (WWW4'1995), Boston, pp.
369-380, 1995.

[36] Yoder J. and Barcalow J., “Architectural patterns
for enabling application security,” in Proceedings
of the 4th Pattern Languages of Programming,
Monticello, IL.

32 The International Arab Journal of Information Technology, Vol. 1, No. 0, July 2003

Ghita Mostéfaoui received her engineer’s Diploma in
electronics from the University of Blida in Algeria in
1996. She then received a fellowship from EPFL(Ecole
Polytechnique Fédérale de Lausanne) Switzerland to
attend a pre-doctoral school in computer science. Since
1999, she is a research and teaching assistant in the
Software Engineering Group at the University of
Fribourg and enrolled in both Fribourg and the
University of Paris VI to prepare a PhD dissertation in
computer science. Her main research interests include
context-based security, context-aware computing and
software frameworks for distributed systems.

