The International Arab Journal of Information Technology, Vol.1, No.O, July 2003 33

Arabic Font Recognition Based on Templates

Ibrahim Abuhaiba
Department of Electrical and Computer Engineering, Islamic University of Gaza, Palestine

Abstract: We present an algorithmfor a priori Arabic optical Font Recognition (AFR). First, wordsinthetraining
set of documents for each font are segmented into symbols that are rescaled. Next, templates are constructed,
wher e every new training symbol that isnot similar to existing templatesisa new template. Templatesare sharable
between fonts. To classify the font of a word, its symbols are matched to the templates and the fonts of the best
matching templates are retained. The most frequent font is the word font.

Keywords: Optical character recognition, optical font recognition, vertical normalization, template matching.

Received January 29, 2003; accepted May 4, 2003

1. Introduction

OCR systems of machine-printed documents can be
divided into three groups. Mono-font, Multi-font, and
Omni-font. Mono-font OCR systems ded with
documents written with one specific font; ther
accuracy is very high but they need a specific module
for each font. Omni-font OCR systems dlow the
recognition of characters of any font, and for this
reason their accuracy is typicaly lower. Findly,
Multi-font OCR systems handle a subset of the
existing fonts. Their accuracy is related to the number
and the similarity of the fonts under consideration.
Character recognition accuracy can be improved
usng an Optical Font Recognizer (OFR) to detect the
font type and subsequently convert the multi-font
problem into mono-font character recognition
problem.

Optical font recognition can be addressed through
two complementary approaches. the a priori
approach, in which characters of the analyzed text are
not yet known, and the a posteriori approach, where
the content of the given text is used to recognize the
font. To our knowledge, there has been no study of
the Arabic Font Recognition (AFR) problem.
Available studies deal with Latin fonts, which have
different characteristics than Arabic fonts. Therefore,
in this paper, we present a novel solution to the a
priori AFR problem.

Often, the font style is not the same for a whole
document; it is a word feature, rather than a
document feature, and its detection can be used to
discriminate between different regions of the
document, such as title, figure caption, or normal
text. Hence, in our approach, we try to find the font
per word. The detection of the font style of aword
can also be used to improve character recognition: we
know that Mono-font OCR systems achieve better
results that Multi-font ones, so the recognition of
document can be done using first an OFR, and then a

Mono-font OCR.

In [4], font recognition is developed to enhance the
recognition accuracy of a text recognition system. Font
information is extracted from two sources. one is the
globa page properties and the other is the graph
matching result of recognized short words such as g, it,
and of.

In [3], a multi-font OCR system to be used for
document processing is presented. The system performs,
a the same time, both character recognition and font-
style detection of the digits belonging to a subset of the
existing fonts. The detection of the font-style of the
document words can guide a rough automatic
classfication of documents, and can also be used to
improve character recognition. The system uses the
tangent distance as a classification function in a nearest
neighbor approach. The nearest neighbor approach is
adways able to recognize the digit, but the performance
in font detection is not optima. To improve the
performance, they used a discriminate mode, the TD-
Neuron that is used to discriminate between two similar
classes.

In [5], a texture analysis based approach is used for
font recognition. Existing methods are typically based
on loca features that often require connected
components analysis. In this work, the document is
taken as an image containing some special textures, and
font recognition as texture identification. The method is
content independent and involves no local feature
andyss. The wdl-established 2-D Gabor filtering
technique is applied to extract such features and a
weighted Euclidean distance classifier is used in the
recognition task. The reported average recognition
accuracy of 24 fonts consisting of over 6,000 samples is
98.6%.

In [6], a study of image degradations effects on the
performance of a font recognition system is presented.
The evaluation that has been carried out shows that the
system is robust against natural degradations such as
those introduced by scanning and photocopying, but its

K7 The International Arab Journal of Information Technology, Vol.1, No.O, July 2003

performance decreases with very degraded document
images. In order to avoid this weakness, a
degradation modeling dstrategy has been adapted,
alowing an automatic adaptation of the system to
these degradations. The adaptation is derived from
satistical analyss of features behavior against
degradations and is peformed by specific
transformations applied to the system knowledge
base.

In [7], a datigtical approach based on globa
typographical features is proposed for font
recognition. It ams at the identification of the
typeface, weight, dope, and size of the text from an
image block without any knowledge of the content of
that text. The recognition is based on a multivariate
Bayesian classifier and operates on a given set of
known fonts. The effectiveness of the adopted
approach has been experimented on a set of 280
fonts. Font recognition accuracies of about 97% are
reached on high-quality images. Rates higher that
99.9% were obtained for weight and slope detection.
Experiments have also shown the system robustness
document language and text content and its
sengtivity to text length.

All previous OFR studies deal with Latin fonts
and there has been no similar studies on Arabic fonts,
which have different characteristics than Latin fonts.
The most impeding characteristic of Arabic OCR
systems is the cursive nature of Arabic script, which
makes basic symbols not ready for direct OCR or
OFR. Instead, there should be a segmentation stage to
extract some kind of basic symbols. In this paper, we
present a novel contribution to the a priori Arabic
Font Recognition (AFR) approach where we try to
find the font per word.

The basic ideain our method to recognize fonts is to
segment words into symbols that act as representatives
of these fonts. These symbols are not necessarily
characters and are connected with short parts. The
information about font characteristics that such parts
bear is too low that they can be cleared out. Clearing
these parts divides the word into segments or symbols
that are usually smaller than characters. At this stage of
font recognition we don’t care to successfully segment
the word into characters. Figure 1 shows one line of
Arabic text followed by the same line segmented into
symbols and written in three different fonts, from top to
bottom: Simplified Arabic, Traditiond Arabic, and
Tahoma. Clearing some irrelevant connecting parts
produces the symbols shown in the figure. The
remaining parts are the required symbols to distinguish
between the fonts of the three lines.

Our approach is summarized in the following steps.
First, atraining set of documents is assembled for each
font. Second, symbols in the training set are found and
rescaled. Third, templates are constructed. Every new
training symbol that is not Smilar to existing templates
isanew template. Templates are sharable between fonts.
To classify the font of a word, its symbols are matched
to the templates and the fonts of the best matching
templates are retained. The most frequent font is the
word font.

In our AFR system, a font is identified by four
dtributes. typeface (Simplified Arabic, Traditiond
Arabic, and Tahoma), size expressed in typographic
points, dant (Roman, Itdic), and weight (regular, bold).

The rest of the paper is organized as follows. Font
learning and recognition stages are described in Sections
2 and 3, respectively. Experimenta results are reported
in Section 4. Findly, the paper is concluded in Section 5.

< s AZaasll apay) dalaall 0¥ s 3ey Cilbiueesl sic e CpoSdall amy (Blkay
(s ;’3?3 "533\9 dhsaa B dam)&‘ Adla.all 33Y g 8 B laiaeall se Lle 0 Ssall (yamy (31l

@
8 o\l Aot ovally @36 oy it 25,1 Bt 55Y)y 8 2y lipmadd die Jo o Sl Gl

o =Vt a e alt ablon @ity o ,:i; ‘;95\, did) 3 &\ loxall 35Y 9 8 28 hgaad b Dis (Ss; Y ,§£5.\ crAn by

(b)
ais,Vl @dleall 85Vy 608 wlipuosdl dic (e ooSaoll Lam (sl
a,yi))gll q9l2.a” O)US a)iﬁ; l:!l,gi,guto'ku Y- |S!IC ‘:;,!)SS'IOH Y17 .§|b:!

(©

Figure 1. Oneline of Arabic text followed by the same line segmented into symbols and written in three different
fonts, from top to bottom: (a) Smplified Arabic, (b) Traditional Arabic, and (c) Tahoma.

The International Arab Journal of Information Technology, Vol.1, No.O, July 2003 35

2. Learning

In our approach of font recognition, some image
preprocessing is required in both the learning and
testing stages. First, an image is skew-corrected using
the agorithm of [1]. Next, horizontal and vertica
solid lines are removed. Third, pepper noise is
removed. The image is segmented into lines using
horizontal white cuts, where each line consists of a
sequence of words. Then, every line is segmented
into words using vertical white cuts.

Every word is segmented into symbols as follows.
We find al horizontd and verticd runs of 1's,
assuming that pixels belonging to a word ae
assigned the value 1. The average, runave of these
runs is caculated. Then, the word is scanned from
right to left, where we sum the pixels along every
column. If this sum is less than runave, then that
column is cleared, i.e. dl its pixels are changed to
zero. The idea behind this step is that columns having
a number of white pixels less than runave most
probably belong to parts that connect adjacent
characters in a word. We consider that the
information about font characteristics that such parts
bear is too low that they can be cleared out. Clearing
these columns divides the word into segments that
are not necessarily characters. At this stage of font
recognition we don't care to successfully segment the
word into characters.

All symbols in the training set are extracted.
Symbols that don't satisfy certain size congtraints are
filtered out. For example, if the height or width of the
symbol is less than some specified thresholds or is
greater than some other thresholds, then the symbol
is discarded, see Section 4 for values of these
thresholds.

After adl symbols in the training images are
extracted, they are verticdly normalized. In the
context of document understanding, the
normaization operation amost means to normalize
in two directions. x and y. Actudly, this can be
problematic since information is lost due to this kind
of twodimensond normdization. However,
peforming a one-dimensond normaization
preserves the height/width ratio. In Arabic, a word
consists of characters some of which can be
connected. The direction of writing follows
horizontaly from right to Ieft. There is no limit to the
number of characters that can be connected. Thus, for
a specific font the word height has a limited
variability while the word width is so variable that it
is more informative to normaize in the vertical
direction such that the height/width ratio is preserved,
which results in normalized words that retain the
relative geometrical attributes of the origind un-
normaized words. For more details on vertica
normalization, see[2].

Let S represent the set of vertically normalized
symbols. Every symbol s | S consists of the 2-tuple
(Is, fs) where Is is the normalized symbol image,
and fsis the symbol font. In our system, afont , f, is

characterized by the 6 tuple (h, a, p, z, s, w), where h is
the symbol height before normdization, a is the symbol
area before normalization, p, z, s, w are the typeface,
size, dant, and weight, respectively. Then, the set of
globa templates, T, is constructed as follows. Initidly, T
is empty. Every templatet | T isa2-tuple (It, F), where
It is the vertically normdized template binary image,
and F is the set of fonts that this template represents.
Given a new training symbol s = (Is, fs) = (Is, (hs, as,
ps, zs, ss, ws)) | S, the smilarity, (s, t) between this
symbol and every templatet | T is calculated, where T
is the current set of templates. If the most similar
template, t* = (It*, F*), yielded a smilarity not less than
a certain threshold, SMIN, then the symbol font fs is
added to the list F* of t* such that there is no font f =
(ht, at, pt, zt, &, wt) | F* that has |ht — hs| =
HeightTolerance, |at — as| = AreaTolerance, pt = ps, zt =
zs, st = ss, and wt = ws. Otherwise, the new symboal, s
= (Is, fs), isadded as anew template, t = (It =Is, F = {
fs}), to the set of templates, T.

The symbols that are used early in the training phase
don’t see the templates constructed from later symbols,
i.e., they aren't matched against each other. Thus, there
can be a posshility that a symbol is matched to some
template with certain similarity; then, later, a new
template is generated which if matched against that
symbol yields better smilarity. Thus, after finding the
templates, the sets of fonts, P s that templates represent
are emptied and another scan is performed over the
training set to match every symbol against the best
template. The font of the symbol is added to the set of
fonts that the best template represents. In this last phase,
no new templates are generated.

The way we calculate the similarity between symbols
follows. Let s = (Is, f) be a verticaly normalized
symbol and t = (It, F) be atemplate. The template image,
It, is dready normalized since this is a task of the
learning dgorithm. Thus, both the symbol and the
template have the same height. Let wmin and wmax be
equa to the minimum and maximum of the widths of the
symbol image, Is, and the template image, |It,
respectively. Let area be equal to wmax T normalized
height. Initialy, the smilarity, §(s, t) = 1.0 — (wmax —
wmin) normalized height / area. If this smilarity is
less than a specified threshold, SMIN, then there is no
match between the symbol and the template. If the width
of the symbal is less than or equd to that of the template
then the Hamming distance, dH, between the symbol
image, |s, and every consecutive wmin columns of the
template image, It, is caculated. Or, if the width of
template image is less than that of the symbol then the
Hamming distance, dH, between the template image, It,
and every consecutive wmin columns of the symbol
image, Is, is caculated. The minimum distance, dHmin,
is retained. A value equal to dHmin / area is subtracted
from the remaning smilaity to obtan the find
smilarity. If this smilarity is not less than SMIN then
the symbol is accepted, otherwise it is considered
unmatched.

In our approach, it is worth mentioning that when a
new template is created itsimage is set to that of asingle

36 The International Arab Journal of Information Technology, Vol.1, No.O, July 2003

symbol. This means that extra symbols matched to
the template are not used to modify the template’s
image. This is in contrast with some clustering
algorithms that create clusters of symbols and
calculates the cluster's centroid to form templates.
We found out that our algorithm works very well
without that averaging step. Algorithm 1, in the
following text, is a forma description of the font
learning agorithm.

Algorithm 1
Sep 1. Preprocessing

a. Correct the skew of the input image.

b. Remove horizontal and vertical solid lines.

c. Remove pepper noise.

d. Segment the image into lines using horizontal
white cuts, where each line consists of a sequence
of words.

e. Everylineissegmented into words using vertical
white cuts. At the end of Step 1 a set of words, W,
is obtained.

Sep 2: Segmenting words into symbols

Assuming that pixels belonging to aword are
assigned the value 1, for everywordw | W do

a. Find all horizontal and vertical runs of 1's.
Calculate the average, runave of these runs.

b. Scan the word fromright to left to sumthe pixels
along every column. For any column, if thissumis
less than runave, then that column is cleared.

c. Segment the word into symbols using vertical
white cuts. Each symbol isdefined by its minimum
bounding rectangle.

d. Vertically, normalize the symbols that pass some
tests. Here, only theimage, Is, of every symbol is
normalized, i.e., other valuesdon’t change. At the
end of Sep 2, a set of symbols, S, is obtained,
where each symbol s| Sisa2tuple(ls, fs) and
fs= (hs, as, ps, zs, ss, ws), where hs, as, ps, zs,
ss, and ws are as defined before.

Sep 3: Global template construction

a. Let the set of templatesbe T -f , the empty set.
b. For every training symbol s = (Is, fs = (hs, as,
ps, zs,ss,ws)) | Sdo {
For every templatet = (It, F) | T do{

Find the similarity, s(s, t)
}

Fromthe earlier computed similarities, let the
most similar template be thest = (It*, F*) with
similarity sbest;

If sbest > SMIN then{

If thereisno font f = (ht, at, pt, zt, st, wt)
I F* such that |ht — hg =
HeightTolerance, |at - ag =
AreaTolerance, pt = ps, zt = zs, st = ss,

and wt = ws, then update tbest by letting F*
=p Uts

}
else {

Create a new templatet = (It = Is, F = {

fs}).;
LetT=TU ¢

}
}

Sep 4: Template tuning

a. For every templatet = (It, F) | TletF = f , the
empty set;
b. For every training symbol s= (Is, fs = (hs, as, ps,
zs,ss,ws)) | Sdo {
For every templatet = (It, F) | Tdo {

Find the similarity, s(s, t)

}
Let thetemplate tbest = (It*, F*) be the onethat

has the best similarity sbest among all
similarities computed in the previous loop;

If sbest * SMIN then{

If thereisno font f = (ht, at, pt, zt, st, wt) |

F* such that |ht — hs| = HeightTolerance,
|at — as| = AreaTolerance, pt = ps, zt = zs,
st = ss, and wt = ws, then update tbest by

letting F* = F* U ts

}

3. Recognition

The same preprocessing operations used in the learning
stage are adso used in the recognition stage. To identify
the font of a new word, it is segmented into symboals.
Symbols passing some tests are matched against
templates. The template that yields the best smilarity is
recorded. If the final smilarity is not less than a certain
threshold, SMIN, then the symbol is considered
accepted. For every accepted symbol, s= (Is, fs), where
fs is unknown, the set of fonts associated with the
template that best matched the symbol, such that the
absolute differences between the heights of the symbol
and the font and areas of the symbol and the font are not
greater than certain thresholds, is retained. Thus, for
every symbol, there will be a set of candidate fonts each
represented by the 4 tuple (p, z, s, w), i.e,, hand a are
dropped. Now, for the set of accepted symbols in the
word, we count how many times each font appears. The
font that achieves the maximum count is the output font
for the whole word. If no symbols of the word are
accepted, then the word font is unknown. Algorithm 2,
in the following text, is a formal description of the font
recognition agorithm.

Arabic Font Recognition Based on Templates

Algorithm 2

Seps 1 & 2: Preprocessing and segmenting a word
into symbols

These are the same as Steps 1 & 2 of Algorithm 2,
where, at the end, a set of vertically normalized
symbols, S, is obtained.

Sep 3: Symbol acceptance

a. For every symbol s= (Is, fs= (hs, as, ps, zs, ss,
ws)) | 'S define Qs to be its set of candidate
fonts. Initially, Qs is empty.

b. Find the best matching template, t* = (I*, F*) with
similarity s*. If s* < SMIN then the symbol fontis
unknown, otherwise, add every font f = (ht, at, pt,
z#t, s, wt) | F* such that |ht — hy =
HeightTolerance, |at—as| = AreaTolerancetothe
list of fonts, Qs. If no such font isfound, then the
symbol font is unknown.

Sep 4: Word font selection

a. For every word, w, consisting of a sequence of
symbols sl, s2, ..., sm, with corresponding
sequence of sets of fonts Q1, Q2, ..., Qm,
concatenate these sets to form a list of fonts L.

b. The most frequent font appearinginL is selected
as the recognized font of the word. If L is empty
then the word font is unknown.

4. Results

In the fonts used in the experimentation, we have
three typefacess Simplified Arabic, Traditiona
Arabic, and Tahoma. The dant is either Roman or
italic. The weight is either regular or bold. The sizeis
12, 13, or 14 points. Thus, a total of 36 fonts were
investigated. Table 1 summarizes the fonts used in
our AFR system. Two files with different content
were compiled to represent the learning and testing
data sets. These files were printed using a laser jet
printer once for every font in Table 1. The tota
number of printed pagesis 380 and 390 A4 pages for
the learning and testing data sets, respectively.

Tablel. Arabic fonts used in our AFR system.

Typeface Size Slant Weight
Simplified .

Arabic 12,13,14 Roman, Italic | Regular, Bold
Traditional ;

Arabic 12,13,14 Roman, Italic | Regular, Bold

Tahoma 12,13,14 Roman, Italic | Regular, Bold

The minimum dgmilarity, SMIN, used in the
learning and testing phases was set to 0.90. In Steps 1
and 2 of Algorithms 1 and 2, a symbol that does not
satisfy any of the following congtraints is filtered out:
the symbol width and height are a least 3 pixes
each, the maximum width and maximum height are
600 and 200 pixels, respectively. These values were

37

empiricaly determined and proved adequate to €liminate
flecks and some non-textual content.

The learning phase produced 41,662 global templates.
Some of these templates are shown in Figure 2. Notice
that the template height is congtant; i.e, only the
template width varies, which is due to vertica
normalization.

AZINDANED D
LedCdliscP 2P

Figure 2. 24 sample template images extracted from the three Arabic
fonts under study.

Table 2 shows font recognition results. The overal
error, rejection, and success rates are 15.0%, 7.6%, and
77.4%, respectively. The high error rate is mainly due to
errors in size recognition. Also, a high typeface error
rate is noticed in some fonts. The rgection rate is high in
some fonts, which can be reduced by learning more
sample pages. The success rate can be increased by
doing more learning and incorporating more
discriminative features other than templates.

The dgorithm was implemented and run on a
Pentium 11 866MHz PC with 128 MB RAM. The
average time required to recognize the word font is
approximately one second. The time can be reduced by
usng some programming optimization techniques and
more powerful computers.

5. Conclusion

To our knowledge, there has been no study of the Arabic
Font Recognition (AFR) problem. Available studies dedl
with Latin fonts, which have different characteristics
than Arabic fonts. Therefore, in this paper, we presented
anove solution to the a priori AFR problem.

Often, the font style is not the same for a whole
document; it is a word feature, rather than a document
feature, and its detection can be used to discriminate
between different regions of the document, such as title,
figure caption, or norma text. Hence, in our approach,
we find the font per word. The detection of the font style
of a word can also be used to improve character
recognition.

The overal font recognition rate was low, which can
be increased by doing more learning and incorporating
more discriminative features other than templates. The
recognition time was high, however, it can be reduced
by usng some programming optimization techniques
and more powerful computers.

Acknowledgment

The author would like to thank the referees for ther
vauable comments.

The International Arab Journal of Information Technology, Vol.1, No.O, July 2003 38

Table 2. Results of Arabic Font Recognition. In Slant column: R = Roman, | = Itdlic. In Weight column: R = Regular, B = Bold. Et =
typeface error, Ez = size error, Es = dlant error, Ew = weight error, ET = total error, Rej = rejection rate, Succ = success rate.

Font Words Et Ez | Bs| Ew | ET | Rg | Succ
Typeface Size | Slant | Weight % % [% | % % % %
Simplified Arabic 12 R R 6242 07| 06 | 03| 04 | 1.3 | 47 | 940
Simplified Arabic 12 B 5249 03| 0303|154 | 158 | 58| 784
Simplified Arabic 12 I R 3756 07| 06 |14| 06 | 24 | 42| 933
Simplified Arabic 12 | B 3410 07| 08 14| 46 | 58 | 45| 897
Simplified Arabic 13 R R 6119 04| 34|106| 20| 36 | 54| 910
Simplified Arabic 13 R B 5459 03| 23 |06|102|121| 47 | 831
Simplified Arabic 13 | R 3874 04 | 42 (11| 1.7 | 47 | 3.8 | 915
Simplified Arabic 13 I B 3600 06 | 34 |14| 34| 64 | 54| 82
Simplified Arabic 14 R R 6542 01 (211(04| 81 |212| 33| 755
Simplified Arabic 14 R B 5153 03| 73 |06| 64 |134| 42 | 824
Simplified Arabic 14 | R 3948 02 | 113|16| 28 | 117 | 34 | 849
Simplified Arabic 14 | B 3477 08 |112|12| 24 | 126 | 41 | 833
Traditional Arabic 12 R R 7056 251 34 |10| 13 | 64 | 83 | 854
Traditional Arabic | 12 R B 6792 48 | 25 (09| 124|143 | 6.8 | 788
Traditional Arabic 12 | R 4523 69| 77|27 19 (131 | 55 | 814
Traditional Arabic 12 | B 4405 55| 44 (18| 69 [111| 51 | 838
Traditional Arabic | 13 R R 7043 46 | 226 (09| 23 | 232 | 53 | 715
Traditional Arabic | 13 R B 6845 6.0 | 257|09| 102 | 311 | 65 | 623
Traditional Arabic 13 | R 4498 6.8 | 227|126 50 238 45 | 717
Traditional Arabic | 13 I B 4378 |121|233| 12| 71 (280 | 39| 681
Traditional Arabic 14 R R 7065 111 319 12| 26 | 323 | 6.5 | 612
Traditional Arabic | 14 R B 6889 | 146 | 246| 08| 148|292 | 79 | 630
Traditional Arabic 14 | R 4516 100 291 (24| 49 | 299 | 55 | 646
Traditional Arabic 14 | B 4415 147 231(16|106 | 269 | 51 | 680
Tahoma 12 R R 5790 75| 292|32| 53 324|228 449
Tahoma 12 R B 6660 1.0 | 205(24| 06 | 228 | 392 | 380
Tahoma 12 I R 3955 77 | 1941 69| 52 | 262|229 | 508
Tahoma 12 | B 3957 24 1199|184 12 | 273|314 | 412
Tahoma 13 R R 5651 12| 41|06| 08| 45| 3.2 | 924
Tahoma 13 R B 6469 01| 06|02| 00| 07 | 26 | 9.7
Tahoma 13 I R 3957 26 | 39 |19| 17 | 47 | 33| 920
Tahoma 13 I B 3884 09| 23 |13| 07 | 27 | 24| 949
Tahoma 14 R R 5815 12| 47 |06| 11 | 51 | 42 | 908
Tahoma 14 R B 6600 00| 5100|0151 | 25| 924
Tahoma 14 I R 3962 27 | 58|24 24 | 62 | 33| 904
Tahoma 14 I B 3885 02| 34|19| 02| 40 | 41| 919
All All All All 185839 | 38 [119 (15| 46 | 150 | 76 | 774

The International Arab Journal of Information Technology, Vol.1, No.O0, July 2003 39

References

(1

(2

(3]

(4]

(9]

(6]

(7]

Abuhaiba 1., “Skew Correction of Textua
Documents,” accepted in King Saud University
Journal, Computer and Information Sciences
Division.

Abuhaiba |., “Discrete Script or Cursive
Language Identification from Document
Images,” accepted in Journal of King Saud
University, Engineering Sciences Division.
Manna S. L., Colla A. M., and Sperduti A.,
“Optica Font Recognition for Multi-Font OCR
and Document Processing,” 10th International
Workshop on Database & Expert Systems
Applications, Florence, Itay, pp. 549-553, 1999.
Shi H. and Pavlidis T., “Font Recognition and
Contextual Processing for More Accurate Text
Recognition,” 4th International Conference on
Document Analysis and Recognition:
(ICDAR' 97), Germany, pp. 39-44, 1997.

ZhuY., Tan T., and Wang Y ., “Font Recognition
Based on Globad Texture Anayss,” Fifth
International Conference on Document Analysis
and Recognition: (ICDAR' 99), Bangaore, India,
pp. 349-352, 1999.

Zramdini A. and Ingold R, “A Sudy of
Document Image Degradation Effects on Font

Recognition,” (ICDAR'95), Montreal, Canada,
pp. 740-743, 1995.
Zramdini A. and Ingold R. “Opticd Font

Recognition Using Typographical Features,”
IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 20, no. 8, pp. 877-882,
1998.

Ibrahim Abuhaiba is an assistant professor at the
Department of Electrica and Computer Engineering,
Idamic University of Gaza, Padestine. He obtained his
Master of Philosophy and Doctorate of Philosophy
from Britain in the fidd of document understanding
and pattern recognition. His research interests include
computer vison, image processing, document anaysis
and undergtanding, pattern recognition, artificid
intelligence, and many other fields. Dr. Abuhaiba
presented important theorems and more than twenty-
five algorithms in text recognition. He published many
origind contributions in the fiedld of document
understanding in well-reputed internationa journas
and conferences.

