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Abstract: We present an algorithm for a priori Arabic optical Font Recognition (AFR). First, words in the training 
set of documents for each font are segmented into symbols that are rescaled. Next, templates are constructed, 
where every new training symbol that is not similar to existing templates is a new template. Templates are sharable 
between fonts. To classify the font of a word, its symbols are matched to the templates and the fonts of the best 
matching templates are retained. The most frequent font is the word font. 
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1. Introduction 
OCR systems of machine-printed documents can be 
divided into three groups: Mono-font, Multi-font, and 
Omni-font. Mono-font OCR systems deal with 
documents written with one specific font; their 
accuracy is very high but they need a specific module 
for each font. Omni-font OCR systems allow the 
recognition of characters of any font, and for this 
reason their accuracy is typically lower. Finally, 
Multi-font OCR systems handle a subset of the 
existing fonts. Their accuracy is related to the number 
and the similarity of the fonts under consideration. 
Character recognition accuracy can be improved 
using an Optical Font Recognizer (OFR) to detect the 
font type and subsequently convert the multi-font 
problem into mono-font character recognition 
problem. 

Optical font recognition can be addressed through 
two complementary approaches: the a priori 
approach, in which characters of the analyzed text are 
not yet known, and the a posteriori approach, where 
the content of the given text is used to recognize the 
font. To our knowledge, there has been no study of 
the Arabic Font Recognition (AFR) problem. 
Available studies deal with Latin fonts, which have 
different characteristics than Arabic fonts. Therefore, 
in this paper, we present a novel solution to the a 
priori AFR problem.  
 Often, the font style is not the same for a whole 
document; it is a word feature, rather than a 
document feature, and its detection can be used to 
discriminate between different regions of the 
document, such as title, figure caption, or normal 
text. Hence, in our approach, we try to find the font 
per word. The detection of the font style of a word 
can also be used to improve character recognition: we 
know that Mono-font OCR systems achieve better 
results that Multi-font ones, so the recognition of 
document can be done using first an OFR, and then a  

 
Mono-font OCR. 
 In [4], font recognition is developed to enhance the 
recognition accuracy of a text recognition system. Font 
information is extracted from two sources: one is the 
global page properties and the other is the graph 
matching result of recognized short words such as a, it, 
and of. 
 In [3], a multi-font OCR system to be used for 
document processing is presented. The system performs, 
at the same time, both character recognition and font-
style detection of the digits belonging to a subset of the 
existing fonts. The detection of the font-style of the 
document words can guide a rough automatic 
classification of documents, and can also be used to 
improve character recognition. The system uses the 
tangent distance as a classification function in a nearest 
neighbor approach. The nearest neighbor approach is 
always able to recognize the digit, but the performance 
in font detection is not optimal. To improve the 
performance, they used a discriminate model, the TD-
Neuron that is used to discriminate between two similar 
classes. 
 In [5], a texture analysis based approach is used for 
font recognition. Existing methods are typically based 
on local features that often require connected 
components analysis. In this work, the document is 
taken as an image containing some special textures, and 
font recognition as texture identification. The method is 
content independent and involves no local feature 
analysis. The well-established 2-D Gabor filtering 
technique is applied to extract such features and a 
weighted Euclidean distance classifier is used in the 
recognition task. The reported average recognition 
accuracy of 24 fonts consisting of over 6,000 samples is 
98.6%. 
 In [6], a study of image degradations effects on the 
performance of a font recognition system is presented. 
The evaluation that has been carried out shows that the 
system is robust against natural degradations such as 
those introduced by scanning and photocopying, but its 
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performance decreases with very degraded document 
images. In order to avoid this weakness, a 
degradation modeling strategy has been adapted, 
allowing an automatic adaptation of the system to 
these degradations. The adaptation is derived from 
statistical analysis of features behavior against 
degradations and is performed by specific 
transformations applied to the system knowledge 
base. 
 In [7], a statistical approach based on global 
typographical features is proposed for font 
recognition. It aims at the identification of the 
typeface, weight, slope, and size of the text from an 
image block without any knowledge of the content of 
that text. The recognition is based on a multivariate 
Bayesian classifier and operates on a given set of 
known fonts. The effectiveness of the adopted 
approach has been experimented on a set of 280 
fonts. Font recognition accuracies of about 97% are 
reached on high-quality images. Rates higher that 
99.9% were obtained for weight and slope detection. 
Experiments have also shown the system robustness 
document language and text content and its 
sensitivity to text length. 
 All previous OFR studies deal with Latin fonts 
and there has been no similar studies on Arabic fonts, 
which have different characteristics than Latin fonts. 
The most impeding characteristic of Arabic OCR 
systems is the cursive nature of Arabic script, which 
makes basic symbols not ready for direct OCR or 
OFR. Instead, there should be a segmentation stage to 
extract some kind of basic symbols. In this paper, we 
present a novel contribution to the a priori Arabic 
Font Recognition (AFR) approach where we try to 
find the font per word. 

 The basic idea in our method to recognize fonts is to 
segment words into symbols that act as representatives 
of these fonts. These symbols are not necessarily 
characters and are connected with short parts. The 
information about font characteristics that such parts 
bear is too low that they can be cleared out. Clearing 
these parts divides the word into segments or symbols 
that are usually smaller than characters. At this stage of 
font recognition we don’t care to successfully segment 
the word into characters. Figure 1 shows one line of 
Arabic text followed by the same line segmented into 
symbols and written in three different fonts, from top to 
bottom: Simplified Arabic, Traditional Arabic, and 
Tahoma. Clearing some irrelevant connecting parts 
produces the symbols shown in the figure. The 
remaining parts are the required symbols to distinguish 
between the fonts of the three lines. 
  Our approach is summarized in the following steps. 
First, a training set of documents is assembled for each 
font. Second, symbols in the training set are found and 
rescaled. Third, templates are constructed. Every new 
training symbol that is not similar to existing templates 
is a new template. Templates are sharable between fonts. 
To classify the font of a word, its symbols are matched 
to the templates and the fonts of the best matching 
templates are retained. The most frequent font is the 
word font. 
 In our AFR system, a font is identified by four 
attributes: typeface (Simplified Arabic, Traditional 
Arabic, and Tahoma), size expressed in typographic 
points, slant (Roman, Italic), and weight (regular, bold). 
 The rest of the paper is organized as follows. Font 
learning and recognition stages are described in Sections 
2 and 3, respectively. Experimental results are reported 
in Section 4. Finally, the paper is concluded in Section 5. 

 

 (a) 

 
  (b)  

                     (c) 

 

Figure 1. One line of Arabic text followed by the same line segmented into symbols and written in three different 
fonts, from top to bottom: (a) Simplified Arabic, (b) Traditional Arabic, and (c) Tahoma. 
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2. Learning 
In our approach of font recognition, some image 
preprocessing is required in both the learning and 
testing stages. First, an image is skew-corrected using 
the algorithm of [1]. Next, horizontal and vertical 
solid lines are removed. Third, pepper noise is 
removed. The image is segmented into lines using 
horizontal white cuts, where each line consists of a 
sequence of words. Then, every line is segmented 
into words using vertical white cuts.  
 Every word is segmented into symbols as follows. 
We find all horizontal and vertical runs of 1’s, 
assuming that pixels belonging to a word are 
assigned the value 1. The average, runave of these 
runs is calculated. Then, the word is scanned from 
right to left, where we sum the pixels along every 
column. If this sum is less than runave, then that 
column is cleared, i.e. all its pixels are changed to 
zero. The idea behind this step is that columns having 
a number of white pixels less than runave most 
probably belong to parts that connect adjacent 
characters in a word. We consider that the 
information about font characteristics that such parts 
bear is too low that they can be cleared out. Clearing 
these columns divides the word into segments that 
are not necessarily characters. At this stage of font 
recognition we don’t care to successfully segment the 
word into characters. 
 All symbols in the training set are extracted. 
Symbols that don’t satisfy certain size constraints are 
filtered out. For example, if the height or width of the 
symbol is less than some specified thresholds or is 
greater than some other thresholds, then the symbol 
is discarded, see Section 4 for values of these 
thresholds.  
 After all symbols in the training images are 
extracted, they are vertically normalized. In the 
context of document understanding, the 
normalization operation almost means to normalize 
in two directions: x and y. Actually, this can be 
problematic since information is lost due to this kind 
of two-dimensional normalization. However, 
performing a one-dimensional normalization 
preserves the height/width ratio. In Arabic, a word 
consists of characters some of which can be 
connected. The direction of writing follows 
horizontally from right to left. There is no limit to the 
number of characters that can be connected. Thus, for 
a specific font the word height has a limited 
variability while the word width is so variable that it 
is more informative to normalize in the vertical 
direction such that the height/width ratio is preserved, 
which results in normalized words that retain the 
relative geometrical attributes of the original un-
normalized words. For more details on vertical 
normalization, see [2]. 
 Let S represent the set of vertically normalized 
symbols. Every symbol s ∈ S consists of the 2-tuple 
(Is, fs) where Is is the normalized symbol image, 
and fs is the symbol font. In our system, a font , f, is 

characterized by the 6- tuple (h, a, p, z, s, w), where h is 
the symbol height before normalization, a is the symbol 
area before normalization, p, z, s, w are the typeface, 
size, slant, and weight, respectively. Then, the set of 
global templates, T, is constructed as follows. Initially, T 
is empty. Every template t ∈ T is a 2-tuple (It, F), where 
It is the vertically normalized template binary image, 
and F is the set of fonts that this template represents. 
Given a new training symbol s = (Is, fs) = (Is, (hs, as, 
ps, zs, ss, ws)) ∈ S, the similarity, s(s, t) between this 
symbol and every template t ∈ T is calculated, where T 
is the current set of templates. If the most similar 
template, t* = (It*, F*), yielded a similarity not less than 
a certain threshold, SMIN, then the symbol font fs is 
added to the list F* of t* such that there is no font f = 
(ht, at, pt, zt, st, wt) ∈ F* that has |ht – hs| = 
HeightTolerance, |at – as| = AreaTolerance, pt = ps, zt = 
zs, st = ss, and wt = ws. Otherwise, the new symbol, s  
= (Is, fs), is added as a new template, t = (It = Is, F = { 
fs}), to the set of templates, T. 

 The symbols that are used early in the training phase 
don’t see the templates constructed from later symbols, 
i.e., they aren’t matched against each other. Thus, there 
can be a possibility that a symbol is matched to some 
template with certain similarity; then, later, a new 
template is generated which if matched against that 
symbol yields better similarity. Thus, after finding the 
templates, the sets of fonts, F’s that templates represent 
are emptied and another scan is performed over the 
training set to match every symbol against the best 
template. The font of the symbol is added to the set of 
fonts that the best template represents. In this last phase, 
no new templates are generated. 
 The way we calculate the similarity between symbols 
follows. Let s = (Is, f) be a vertically normalized 
symbol and t = (It, F) be a template. The template image, 
It, is already normalized since this is a task of the 
learning algorithm. Thus, both the symbol and the 
template have the same height. Let wmin and wmax  be 
equal to the minimum and maximum of the widths of the 
symbol image, Is, and the template image, It, 
respectively. Let area be equal to wmax î  normalized 
height. Initially, the similarity, s(s, t) = 1.0 – (wmax – 
wmin )� �  normalized height / area. If this similarity is 
less than a specified threshold, SMIN, then there is no 
match between the symbol and the template. If the width 
of the symbol is less than or equal to that of the template 
then the Hamming distance, dH, between the symbol 
image, Is, and every consecutive wmin columns of the 
template image, It, is calculated. Or, if the width of 
template image is less than that of the symbol then the 
Hamming distance, dH, between the template image, It, 
and every consecutive wmin columns of the symbol 
image, Is, is calculated. The minimum distance, dHmin, 
is retained. A value equal to dHmin / area is subtracted 
from the remaining similarity to obtain the final 
similarity. If this similarity is not less than SMIN then 
the symbol is accepted, otherwise it is considered 
unmatched. 

In our approach, it is worth mentioning that when a 
new template is created its image is set to that of a single 
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symbol. This means that extra symbols matched to 
the template are not used to modify the template’s 
image. This is in contrast with some clustering 
algorithms that create clusters of symbols and 
calculates the cluster’s centroid to form templates. 
We found out that our algorithm works very well 
without that averaging step. Algorithm 1, in the 
following text, is a formal description of the font 
learning algorithm. 

 
Algorithm 1  

Step 1: Preprocessing 

a. Correct the skew of the input image.  
b. Remove horizontal and vertical solid lines.  
c. Remove pepper noise.  
d. Segment the image into lines using horizontal 

white cuts, where each line consists of a sequence 
of words.  

e. Every line is segmented into words using vertical 
white cuts. At the end of Step 1 a set of words, W, 
is obtained. 

 
Step 2: Segmenting words into symbols 

Assuming that pixels belonging to a word are 
assigned the value 1, for every word w ∈W do 

a. Find all horizontal and vertical runs of 1’s. 
Calculate the average, runave of these runs. 

b. Scan the word from right to left to sum the pixels 
along every column. For any column, if this sum is 
less than runave, then that column is cleared. 

c. Segment the word into symbols using vertical 
white cuts. Each symbol is defined by its minimum 
bounding rectangle.  

d. Vertically, normalize the symbols that pass some 
tests. Here, only the image, Is, of every symbol is 
normalized, i.e., other values don’t change. At the 
end of Step 2,  a set of symbols, S, is obtained, 
where each symbol s ∈ S is a 2 tuple (Is, fs) and  
fs = (hs, as, ps, zs, ss, ws), where hs, as, ps, zs, 
ss, and ws are as defined before.  

 
Step  3: Global template construction 

a. Let the set of templates be T =φ , the empty set. 
b. For every training symbol s = (Is, fs = (hs, as, 

ps, zs, ss, ws)) ∈ S do { 
For every template t = (It, F) ∈ T do { 

  Find the similarity, s(s, t) 

  } 

From the earlier computed similarities, let the 
most similar template be tbest = (It*, F*) with 
similarity sbest; 

If sbest ≥  SMIN  then{ 

If there is no font f = (ht, at, pt, zt, st, wt) 
∈ F* such that |ht – hs| =  
HeightTolerance, |at – as| = 
AreaTolerance, pt = ps, zt = zs, st = ss, 

and wt = ws, then update tbest by letting F* 

= F* U  fs 

 } 

  else { 

Create a new template t = (It = Is, F = { 
fs}),; 

 Let T = T U  t 

 } 
} 

Step 4: Template tuning 

a. For every template t = (It, F) ∈ T let F = φ , the 
empty set; 

b. For every training symbol s = (Is, fs = (hs, as, ps, 
zs, ss, ws)) ∈ S do { 

For every template t = (It, F) ∈ T do { 

Find the similarity, s(s, t) 

 } 
Let the template tbest = (It*, F*) be the one that 
has the best similarity sbest among all 
similarities computed in the previous loop; 

If sbest ≥  SMIN  then{ 

If there is no font f = (ht, at, pt, zt, st, wt) ∈ 
F* such that |ht – hs| =  HeightTolerance, 
|at – as| = AreaTolerance, pt = ps, zt = zs, 
st = ss, and wt = ws, then update tbest by 

letting F* = F* U  fs 

  } 

 } 
 

3. Recognition 

The same preprocessing operations used in the learning 
stage are also used in the recognition stage. To identify 
the font of a new word, it is segmented into symbols. 
Symbols passing some tests are matched against 
templates. The template that yields the best similarity is 
recorded. If the final similarity is not less than a certain 
threshold, SMIN, then the symbol is considered 
accepted. For every accepted symbol, s = (Is, fs), where 
fs is unknown, the set of fonts associated with the 
template that best matched the symbol, such that the 
absolute differences between the heights of the symbol 
and the font and areas of the symbol and the font are not 
greater than  certain thresholds, is retained. Thus, for 
every symbol, there will be a set of candidate fonts each 
represented by the 4 tuple (p, z, s, w), i.e., h and a are 
dropped. Now, for the set of accepted symbols in the 
word, we count how many times each font appears. The 
font that achieves the maximum count is the output font 
for the whole word. If no symbols of the word are 
accepted, then the word font is unknown. Algorithm 2, 
in the following text, is a formal description of the font 
recognition algorithm. 
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Algorithm 2 

Steps 1 & 2: Preprocessing and segmenting a word 
into symbols 
These are the same as Steps 1 & 2 of Algorithm 2, 
where, at the end, a set of vertically normalized 
symbols, S, is obtained. 
 
Step 3: Symbol acceptance 

a. For every symbol s = (Is, fs = (hs, as, ps, zs, ss, 
ws)) ∈ S, define Qs to be its set of candidate 
fonts. Initially, Qs is empty. 

b. Find the best matching template, t* = (I*, F*) with 
similarity s*. If s* < SMIN then the symbol font is 
unknown, otherwise, add every font f = (ht, at, pt, 
zt, st, wt) ∈ F* such that |ht – hs| =  
HeightTolerance, |at – as| = AreaTolerance to the 
list of fonts, Qs. If no such font is found, then the 
symbol font is unknown. 

 
Step 4: Word font selection 

a. For every word, w, consisting of a sequence of 
symbols s1, s2, …, sm, with corresponding 
sequence of sets of fonts Q1, Q2, …, Qm, 
concatenate these sets to form a list of fonts L. 

b. The most frequent font appearing in L is selected 
as the recognized font of the word. If L is empty 
then the word font is unknown. 

 
4. Results 
In the fonts used in the experimentation, we have 
three typefaces: Simplified Arabic, Traditional 
Arabic, and Tahoma. The slant is either Roman or 
italic. The weight is either regular or bold. The size is 
12, 13, or 14 points. Thus, a total of 36 fonts were 
investigated. Table 1 summarizes the fonts used in 
our AFR system. Two files with different content 
were compiled to represent the learning and testing 
data sets. These files were printed using a laser jet 
printer once for every font in Table 1. The total 
number of printed pages is 380 and 390 A4 pages for 
the learning and testing data sets, respectively. 

Table1. Arabic fonts used in our AFR system. 

 
 The minimum similarity, SMIN, used in the 
learning and testing phases was set to 0.90. In Steps 1 
and 2 of Algorithms 1 and 2, a symbol that does not 
satisfy any of the following constraints is filtered out: 
the symbol width and height are at least 3 pixels 
each, the maximum width and maximum height are 
600 and 200 pixels, respectively. These values were 

empirically determined and proved adequate to eliminate 
flecks and some non-textual content. 
 The learning phase produced 41,662 global templates. 
Some of these templates are shown in Figure 2.  Notice 
that the template height is constant; i.e., only the 
template width varies, which is due to vertical 
normalization. 
 

 
Figure 2. 24 sample template images extracted from the three Arabic 
fonts under study. 
 
 Table 2 shows font recognition results. The overall 
error, rejection, and success rates are 15.0%, 7.6%, and 
77.4%, respectively. The high error rate is mainly due to 
errors in size recognition. Also, a high typeface error 
rate is noticed in some fonts. The rejection rate is high in 
some fonts, which can be reduced by learning more 
sample pages. The success rate can be increased by 
doing more learning and incorporating more 
discriminative features other than templates. 
 The algorithm was implemented and run on a 
Pentium III 866MHz PC with 128 MB RAM. The 
average time required to recognize the word font is 
approximately one second. The time can be reduced by 
using some programming optimization techniques and 
more powerful computers. 
 
5. Conclusion 
To our knowledge, there has been no study of the Arabic 
Font Recognition (AFR) problem. Available studies deal 
with Latin fonts, which have different characteristics 
than Arabic fonts. Therefore, in this paper, we presented 
a novel solution to the a priori AFR problem.  
 Often, the font style is not the same for a whole 
document; it is a word feature, rather than a document 
feature, and its detection can be used to discriminate 
between different regions of the document, such as title, 
figure caption, or normal text. Hence, in our approach, 
we find the font per word. The detection of the font style 
of a word can also be used to improve character 
recognition. 
 The overall font recognition rate was low, which can 
be increased by doing more learning and incorporating 
more discriminative features other than templates. The 
recognition time was high, however, it can be reduced 
by using some programming optimization techniques 
and more powerful computers. 
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Typeface Size Slant Weight 

Simplified 
Arabic 

12, 13, 14 Roman, Italic Regular, Bold 

Traditional 
Arabic 

12, 13, 14 Roman, Italic Regular, Bold 

Tahoma 12, 13, 14 Roman, Italic Regular, Bold 
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Table 2. Results of Arabic Font Recognition. In Slant column: R = Roman, I = Italic. In Weight column: R = Regular, B = Bold. Et = 
typeface error, Ez = size error, Es = slant error, Ew = weight error, ET = total error, Rej = rejection rate, Succ = success rate. 
 

Font 

Typeface Size Slant Weight 

Words  

 

Et 

% 

Ez 

% 

Es 

% 

Ew 

% 

ET 

% 

Rej 

% 

Succ 

% 

Simplified Arabic 12 R R 6242 0.7 0.6 0.3 0.4 1.3 4.7 94.0 

Simplified Arabic 12 R B 5249 0.3 0.3 0.3 15.4 15.8 5.8 78.4 

Simplified Arabic 12 I R 3756 0.7 0.6 1.4 0.6 2.4 4.2 93.3 

Simplified Arabic 12 I B 3410 0.7 0.8 1.4 4.6 5.8 4.5 89.7 

Simplified Arabic 13 R R 6119 0.4 3.4 0.6 2.0 3.6 5.4 91.0 

Simplified Arabic 13 R B 5459 0.3 2.3 0.6 10.2 12.1 4.7 83.1 

Simplified Arabic 13 I R 3874 0.4 4.2 1.1 1.7 4.7 3.8 91.5 

Simplified Arabic 13 I B 3600 0.6 3.4 1.4 3.4 6.4 5.4 88.2 

Simplified Arabic 14 R R 6542 0.1 21.1 0.4 8.1 21.2 3.3 75.5 

Simplified Arabic 14 R B 5153 0.3 7.3 0.6 6.4 13.4 4.2 82.4 

Simplified Arabic 14 I R 3948 0.2 11.3 1.6 2.8 11.7 3.4 84.9 

Simplified Arabic 14 I B 3477 0.8 11.2 1.2 2.4 12.6 4.1 83.3 

Traditional Arabic 12 R R 7056 2.5 3.4 1.0 1.3 6.4 8.3 85.4 

Traditional Arabic 12 R B 6792 4.8 2.5 0.9 12.4 14.3 6.8 78.8 

Traditional Arabic 12 I R 4523 6.9 7.7 2.7 1.9 13.1 5.5 81.4 

Traditional Arabic 12 I B 4405 5.5 4.4 1.8 6.9 11.1 5.1 83.8 

Traditional Arabic 13 R R 7043 4.6 22.6 0.9 2.3 23.2 5.3 71.5 

Traditional Arabic 13 R B 6845 6.0 25.7 0.9 10.2 31.1 6.5 62.3 

Traditional Arabic 13 I R 4498 6.8 22.7 2.6 5.0 23.8 4.5 71.7 

Traditional Arabic 13 I B 4378 12.1 23.3 1.2 7.1 28.0 3.9 68.1 

Traditional Arabic 14 R R 7065 11.1 31.9 1.2 2.6 32.3 6.5 61.2 

Traditional Arabic 14 R B 6889 14.6 24.6 0.8 14.8 29.2 7.9 63.0 

Traditional Arabic 14 I R 4516 10.0 29.1 2.4 4.9 29.9 5.5 64.6 

Traditional Arabic 14 I B 4415 14.7 23.1 1.6 10.6 26.9 5.1 68.0 

Tahoma 12 R R 5790 7.5 29.2 3.2 5.3 32.4 22.8 44.9 

Tahoma 12 R B 6660 1.0 21.5 2.4 0.6 22.8 39.2 38.0 

Tahoma 12 I R 3955 7.7 19.4 6.9 5.2 26.2 22.9 50.8 

Tahoma 12 I B 3957 2.4 19.9 8.4 1.2 27.3 31.4 41.2 

Tahoma 13 R R 5651 1.2 4.1 0.6 0.8 4.5 3.2 92.4 

Tahoma 13 R B 6469 0.1 0.6 0.2 0.0 0.7 2.6 96.7 

Tahoma 13 I R 3957 2.6 3.9 1.9 1.7 4.7 3.3 92.0 

Tahoma 13 I B 3884 0.9 2.3 1.3 0.7 2.7 2.4 94.9 

Tahoma 14 R R 5815 1.2 4.7 0.6 1.1 5.1 4.2 90.8 

Tahoma 14 R B 6600 0.0 5.1 0.0 0.1 5.1 2.5 92.4 

Tahoma 14 I R 3962 2.7 5.8 2.4 2.4 6.2 3.3 90.4 

Tahoma 14 I B 3885 0.2 3.4 1.9 0.2 4.0 4.1 91.9 

All All All All 185,839 3.8 11.9 1.5 4.6 15.0 7.6 77.4 
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