
180 The International Arab Journal of Information Technology, Vol. 20, No. 2, March 2023

Mining Android Bytecodes through the Eyes of

Gabor Filters for Detecting Malware

Shahid Alam

Department of Computer Engineering, Adana Alparslan

Turkes Science and Technology University, Turkey

salam@atu.edu.tr

Alper Kamil Demir

Department of Computer Engineering, Adana Alparslan

Turkes Science and Technology University, Turkey

akdemir@atu.edu.tr

Abstract: One of the basic characteristics of a Gabor filter is that it provides useful information about specific frequencies in

a localized region. Such information can be used in locating snippets of code, i.e., localized code, in a program when

transformed into an image for finding embedded malicious patterns. Keeping this phenomenon, we propose a novel technique

using a sliding Window over Gabor filters for mining the Dalvik Executable (DEX) bytecodes of an Android application (APK)

to find malicious patterns. We extract the structural and behavioral functionality and localized information of an APK through

Gabor filtered images of the 2D grayscale image of the DEX bytecodes. A Window is slid over these features and a weight is

assigned based on its frequency of use. The selected Windows whose weights are greater than a given threshold, are used for

training a classifier to detect malware APKs. Our technique does not require any disassembly or execution of the malware

program and hence is much safer and more accurate. To further improve feature selection, we apply a greedy optimization

algorithm to find the best performing feature subset. The proposed technique, when tested using real malware and benign

APKs, obtained a detection rate of 98.9% with 10-fold cross-validation.

Keywords: Android bytecode, malware analysis and detection, sliding window, gabor filters, gabor features, machine

learning.

Received February 14, 2021; accepted September 26, 2022

https://doi.org/10.34028/iajit/20/2/4

1. Introduction

Android Operating System (OS) became an almost

indispensable choice for mobile devices since its first

release in 2008 [34]. Like any other OS, Android is

also susceptible to malware attacks. Just after 2 years

in 2010, the first Android malware appeared in the

scene. According to McAfee Mobile Threat Report, the

total number of mobile malware programs increased by

24 million from 2018 to 2019 [24]. It is reported that

230,000 new malware samples are produced every day

in 2019 [12]. The statistics show that there are a

growing number of threats against Android OS. In

2019, companies spent an average of 2.4 million U.S

Dollars in their defense against malware [12]. As a

result, there are urgent needs to develop techniques and

methods to diminish the malware attacks on Android

OS. The main objective and purpose of this research is

to identify malware using visual analytics for

extracting important features that helps in classifying

malware.

Visual data exploration was first introduced by

Tuckey [30]. In 2001 and 2003 decomposition of an

image was introduced to compute texture features [21,

29]. Consequently, visual analytics is also leveraged

for malware detection in 2004 for the first time as far

as we know [33]. It is easier for Malware writers to

reuse the code and produce different variants of the

original malware program. Although these variants

generate different signatures, there exist visual

similarities among them. When they are visualized, the

images exhibit the textual and structural similarities

among malware variants.

Texture segmentation with Gabor filter is an old

method in the literature [5]. Many types of research

have been conducted to segment textures [3] or multi-

textures [23] with Gabor filter. The research on using

Gabor filters for texture classification shows that

Gabor filters give localized frequency information. We

believe that this is a very useful outcome to detect and

analyze malware converted into images. This enables

us to find embedded malicious code within a snippet of

(localized) code in malware. As a result, the Gabor

filter can guide us to find such information.

The main motivations of the research carried out in

this paper are manifold.

1. Structural, and behavioral functionalities of an

Android application need to be analyzed to detect if

it is malicious or benign. The file classes.dex,

Dalvik Executable (DEX) bytecodes of an Android

APK, contains all the classes and APIs, and hence

the structural and behavioral functionality of an

Android application. Therefore, we first extract this

information from the DEX bytecodes of an Android

application and convert it to a grayscale image.

2. We apply Gabor filters to the grayscale image to

generate filtered images. These filtered images of

mailto:salam@atu.edu.tr
https://doi.org/10.34028/iajit/20/2/4

Mining Android Bytecodes Through the Eyes of Gabor Filters for Detecting Malware 181

different samples from a given malware family

appear like those belonging to the same family but

distinct from a benign sample, as shown in Figure 1.

AnserverBot1 and AnserverBot2 malware programs

(two variants of the AnserverBot malware program)

are transformed into Gabor filtered images. The

Figure shows that these two malware samples have

similar texture features. However, the benign

sample, CommissionPlus has different texture

features.

3. For finding similarities and to improve the feature

selection process, we use a Window that slides over

a 2D Gabor filtered image to help select important

features for malware detection.

Figure 1. Similarity and differences in gabor filtered image of two

malware and one benign android APKs.

Particularly, we present a static malware detection

method based on the visual analytics approach. The

major contributions of this work are:

 We propose a novel technique using a sliding

Window over Gabor filtered images to detect

malicious patterns in an Android APK.

 We perform static analysis on the grayscale image

of the DEX bytecodes of an APK. Therefore, our

analysis does not require any disassembly (which is

never 100% correct) or execution (which is not safe)

of the malware program. DEX bytecodes are

extracted by decompressing the APK, and there is

no disassembly required.

 We further improve feature selection by applying

two other classic techniques. Firstly, by taking out

the features (Windows) from malware that are

common in malware and benign samples. Secondly,

we apply a greedy optimization algorithm, called

recursive feature elimination, which aims to find the

best performing feature subset. This approach

improved the accuracy by more than 5%.

 We evaluate our proposed methods by using two

different cross-validation techniques so that

systematic and precise testing results are obtained;

the overfitting problem is restricted; and the

detection of new malware is achieved. Moreover,

the evaluations are carried out by using different

classifiers. Finally, our proposed method is

compared with four other similar techniques. Our

proposed technique, when tested with real malware

and benign Android applications using 10-fold cross

validation, obtained a detection rate of 98.9%.

The remainder of this paper is organized as follows.

We discuss related works in section 2. We present a

detailed overview of our approach, its design, and

implementation in section 3. Section 4 presents the

evaluation and comparison of our approach with four

other such works. Section 5 finally concludes the paper

and presents some future works.

2. Related Works

In this section we discuss the most relevant literature,

similar to our work. Due to the popularity of Windows

OS on Desktop and Android OS on smartphones, there

are more malware programs written for these than

other operating systems [1, 25]. Here, we describe

some of the recent works that deal with malware

detection on these two operating systems.

2.1. Android OS

Kumar et al. [11], a machine learning-based method is

proposed to detect Android malware. Visual

representation of APK file is transformed into

Grayscale, Red, Green, and Blue (RGB), Cyan,

Magenta, Yellow, and Key (CMYK), and Hue-

Saturation-Lightness (HSL). At first, the Global Image

Descriptor (GIST) feature extraction method [21],

extract a particular set of features through Gabor

filters, is applied to malware and benign image dataset.

Then, different machine learning algorithms are used

for classification. The highest accuracy achieved was

91%.

Chen et al. [2], the authors propose the XGBoost

machine learning method to classify Android malware.

In the beginning, the DEX file is extracted from

Android malware. Then, the DEX file is converted into

a binary sequence vector, and transformed into an 8-bit

binary array. Each 8-bit binary number is considered as

a byte corresponding to a 256-order grayscale. After

that, it is converted into a pixel matrix. The GIST

feature extraction is applied to the grayscale image.

Neither the source nor the types of the samples used in

the evaluation is mentioned in the paper. Therefore, we

do not compare the technique proposed in [2] with

ours.

Darus et al. [4], the authors applied the GIST

features to visualized images of Android APKs, to

classify malware. DEX bytecodes of an Android APK

182 The International Arab Journal of Information Technology, Vol. 20, No. 2, March 2023

is first translated to 8-bit grayscale image. The GIST

features are extracted from the grayscale image for

classification. They used different classifiers to

evaluate their technique. They achieved an accuracy of

84.14%.

Naeem et al. [18], a cross-platform (Windows and

Android operating systems) malware variant

classification system is proposed. Here we only discuss

their part that deals with Android applications. First,

they decompile an Android Application (APK) to Java

source code. The Java source code is then translated to

grayscale image and GIST features are extracted.

These features are then used for classifying Android

APKs. The experiments carried out in the paper

achieved promising results, obtaining an accuracy of

96.3% with Android applications.

Fang et al. [6], Android malware classification is

investigated by the multiple kernel learning method to

classify Android malware. At first, the DEX file is

extracted from Android malware. Then, it is converted

into an RGB image and plain text jointly. Textual

features, such as variables, methods, and classes, are

extracted from the DEX data section. Gabor features

are extracted using the GIST descriptor from the RGB

image of the DEX bytecode. Feature selection is

performed by applying different kernels, such as linear

and Gaussian. Finally, Support Vector Machine (SVM)

is used for classification. The results indicate a

precision and Detection Rate (DR) of 96%.

2.2. Windows OS

The work in [20] compares GIST based static texture

analysis with dynamic analysis. It is found that static

texture analysis can provide a comparable

classification accuracy of 98% to that of dynamic

techniques. Nataraj et al. [19] present grayscale

malware images to classify using GIST feature

extraction. The results show 98% accuracy.

Makandar and Patrot [14], at first, sub-band filtering

was applied to the grayscale malware image. After

that, the Gabor filter is applied to get second-order

gradient features as static pattern recognition. Finally,

the SVM classifier is applied for malware class

recognition. 89.68% accuracy is obtained through

experiments. Malware class identification is also

studied in [13]. The Gabor wavelet is used for feature

extraction. Along with Gabor, GIST and discrete

wavelet transform and other features are considered.

Finally, from an image processing-based perspective,

SVM multi-class classifier is leveraged for malware

classification. They got 98.88% accuracy.

Zhou and Jiang [34], visualized malware as a

grayscale image. Then, the Gabor filter is used for

extracting texture features. They used extremely

randomized trees classifiers, and the results are

compared with K-Nearest Neighbor (KNN), and

Random Forest classifiers. The experimental results

revealed 96.19% accuracy and a 97.51% recall rate.

Grayscale visualization technique is also studied in

[10] for malware detection. Intensity-based and texture

(Wavelet and Gabor) based features are used with the

SVM classifier. Accuracy of 95% is achieved.

Naeem et al. [17], the authors present a lightweight

malware classification system using GIST based

features and hybrid local features. According to

conducted experiments, 97.4% accuracy is achieved by

the SVM classifier. GIST descriptors are applied to

malware classification problem in [32]. After feature

reduction by determining a minimal set of GIST

features, deep learning techniques of Tensor Flow is

applied for classification. Experimental results showed

accuracy of between 90% and 100% in different

experimental setups. Kumar et al. [11], present a

malware classification work based on the grayscale

visualization method. GIST, Histogram of Oriented

Gradient, and Local Binary Pattern feature descriptors

are used for the SVM classifier. The highest accuracy

achieved is 98.73%.

Fang et al. [6], the authors exhibit another malware

classification work where they use GIST along with

entropy filter to compute texture features. 89%

accuracy is achieved with the KNN classifier. A

method for transforming a malware into a binary

grayscale image to characterize malware variant is

proposed in [16]. After transforming the malware into

a grayscale image, the local and global malicious

patterns feature descriptor is used to extract local and

global image interest points. Then, feature selection

methods are applied for key feature extraction. Finally,

KNN, SVM, and Naive Bayes classifiers are applied

for classification. An accuracy of up to 98.40% is

achieved.

3. Overview of the System

Android applications are distributed in a packed

(compressed) form called Android application

packages (APKs). An APK contains files and

directories, such as a manifest file, resources,

classes.dex etc. The system proposed in this paper

takes APK files as input and extracts DEX bytecodes

from each APK; These bytecodes are converted to

grayscale image and then Gabor features are extracted

from these images; After preprocessing and feature

selection, the selected Gabor features are used by a

classifier for training to detect a sample either as

malware or benign. Figure 2 provides an overview of

the proposed system. The complete system is

implemented as 2000+lines of Python code. The

feature selection component is the most time-

consuming part of the system. Therefore, to optimize

we parallelized this part by using recently introduced

Python’s multiprocessing package. In the following

sections, we explain and discuss in detail each of the

components shown in Figure 2.

Mining Android Bytecodes Through the Eyes of Gabor Filters for Detecting Malware 183

Figure 2. Overview of the system.

3.1. DEX Bytecode Extraction

Android programs are normally written in Java;

compiled to Java bytecode; converted to Dalvik

instructions and stored as Dalvik Executable Format

(DEX) [27] bytecodes in a file classes.dex. These DEX

bytecodes (i.e., classes.dex) are then combined with

other resources and compressed to form an APK. The

file classes.dex contains all the classes and APIs, and

the structural and behavioral functionality of the

application. Therefore, to analyse an APK, we

decompress the APK file and extract classes.dex (DEX

bytecodes) file.

3.2. DEX Bytecode to Grayscale Image

We store the extracted DEX bytecodes in a vector

space of 8-bit unsigned integers. If the size of these

bytecodes is more than 4 bytes (our experimentation

reveals that ≤ 4 is of no importance), then we convert

the bytecodes to a 2D grayscale image. Each pixel

value (row, col) in this 2D grayscale image represents

a DEX bytecode normalized in the range of 0–255.

This value represents luminous (light) intensity [26]

with 0 being the weakest and 255 the highest. As

shown earlier in Figure 1, this intensity maps to the

code in the application. For detecting malware, it is

very useful to find more information about a snippet of

(localized) code to search for malicious code

embedded in an application. Applying Gabor filters

[28] to this image facilitates us in finding such

information. Gabor filters extract localized features

from the image, i.e., snippets of code (patterns), to help

find similarity with malicious code.

3.3. Gabor Feature Extraction

We apply Gabor filters to extract localized features

(pattern of code) from an Android application’s

grayscale image. For this a set of filters is created as

follows.

A 2D Gabor filter in the spatial domain is defined

by the following function:

𝐺(𝑥, 𝑦; 𝜆, 𝜃, ∅, 𝜎, 𝛾) = 𝑒𝑥𝑝 (−
𝑥′2

+𝛾2𝑦′2

2𝜎2
) 𝑐𝑜𝑠 (2𝛱

𝑥′

𝜆
+ 𝜙)

Where, 𝑥′ = 𝑥 𝑐𝑜𝑠 𝜃 + 𝑦 𝑠𝑖𝑛 𝜃 𝑎𝑛𝑑 𝑦′ = − 𝑥 sin 𝜃 +

𝑦 cos 𝜃 and (x, y) is the position/location of the pixel

whose Gabor weight (co-efficient) is computed by the

filter.

A convolution kernel is a square matrix that is slid

across the image and multiplied with the input image

to produce different filtered images. Three different

convolution Gabor kernels of sizes 2, 25, and 30 were

generated using Equation (1). These three kernel sizes

gave us a better variance between the different Gabor

filters. We observe that there was no effect of the size

beyond 30 on the output (filtered) image. These

kernels were then multiplied by the original image to

produce different Gabor filtered images. In this way,

we created 24 Gabor filtered images using different

values of the above five parameters (λ, θ, ϕ, σ, and γ)

and the three kernels. Table 1 shows the set of Gabor

filters used to produce 24 filtered images of the

original grayscale image of an APK’s DEX bytecodes.

These Gabor parameter values were computed

empirically through a series of regression tests.

These filtered images are the coarse Gabor features

of an APK. The extracted Gabor features after

preprocessing and selection, are used by a classifier for

training to detect a sample either as malware or benign.

In the next section, we explain the preprocessing and

feature selection performed on these extracted Gabor

features.

3.4. Preprocessing and Feature Selection

Before preprocessing, we first formally define the

Gabor features extracted in section 3.3 as follows. Let

GFk = {F1, F2, F3, ..., Fn} denotes the extracted Gabor

features for the kth APK; Fn is the filtered image n; n is

the total number of Gabor filtered images for the kth

APK, and is same for all the APKs; i.e., each APK has

n filtered images {F1, F2, F3, ..., Fn}; in our case n=24.

A filtered image is a 2D array of Gabor weights

(computed by Gabor function in Equation (1)) for each

pixel in the original grayscale image of an APK. These

weights map to the coding intensity in the original

DEX bytecodes of the APK. We are looking for

finding similarities, i.e., part (Window) of a malicious

code that is found in malware APKs. Therefore, we use

the concept of a Window that slides over these Gabor

(1)

184 The International Arab Journal of Information Technology, Vol. 20, No. 2, March 2023

weights to find such similarities. Keeping this concept

of a sliding Window, we define a filtered image as f=

{W1, W2, W3, ..., Wn}, where p is the number of

Windows in the filtered image, W={W1, W2, W3, ...,

Ws}, w is the Gabor weight and s is the size of the

Window W. s is the same for all the Windows. Each of

these Windows represents a specific Gabor feature.

Table 1. The set of Gabor filters used to produce 24 filtered images

of the original grayscale image. For each of the 24 Gabor filters

value of ∅ = 0 and 𝛾 = 0.05.

 kernel size 𝜽 𝝈 𝝀

1 2 0 9 0.7

2 2 0 9 1.5

3 2 0 17 0.7

4 2 0 17 1.5

5 2 2 9 0.7

6 2 2 9 1.5

7 2 2 17 0.7

8 2 2 17 1.5

9 25 0 9 0.7

10 25 0 9 1.5

11 25 0 17 0.7

12 25 0 17 1.5

13 25 2 9 0.7

14 25 2 9 1.5

15 25 2 17 0.7

16 25 2 17 1.5

17 30 0 9 0.7

18 30 0 9 1.5

19 30 0 17 0.7

20 30 0 17 1.5

21 30 2 9 0.7

22 30 2 9 1.5

23 30 2 17 0.7

24 30 2 17 1.5

We remove a Window W from f, if the number of

w’s (Gabor weights) with a value 0 (i.e., no intensity)

in W ≥ 70%. It means, the intensity of code is very less

in this Window and will not contain any useful code

for comparison.

To select important Windows (Gabor features) out

of this set of Windows that help us classify malware,

we compute the frequencies Window Frequency (WF)

and Document Frequency (DF) of a Window Wj in a

filtered image Fi as follows:

𝑊𝐹𝑗 =
𝑓𝑗

𝑝
 𝑎𝑛𝑑 𝐷𝐹𝑗 = 1 +

𝑀𝑖

𝑁

Where, fj is the number of times (frequency) Wj

appears in a filtered image Fi; and Mi is the number of

all the filtered images Fi in the N APKs with Wj in it.

After computing the WFj and DFj we assign a weight

to window Wj as follows:

Weightj = WFj × DFj

We only keep Wj, if Weightj>0.3. This minimum value

of Weightj is computed empirically. We carried out a

small experiment with different values of Weightj. We

found a value>0.3 as the optimal value, i.e., a Wj with

the final weight of >0.3 does not make any difference

in the detection rate.

Similarly, we select specific Windows, satisfying

Equation (2), from each filtered image of an APK. Let

a filtered image, after preprocessing and selection, sf =

{W1,W2,W3, ...,Wq}, where q is the number of features

(Windows) selected satisfying Equation (2) from the

feature f. Then, SGFk = {sf1, sf2, sf3, ..., sfn} is the set of

selected features of the kth APK. We build (extract and

select) these set of features separately for each set of

benign and malware APKs in the dataset.

Common Features out–To further improve feature

selection and classification accuracy, we take the

features from malware out that are also present in

benign. We define the set of features of all the benign

and malware APKs in the dataset as BF= SGF1, SGF2,

SGF3, ..., SGFa} and MFold={SGF1, SGF2, SGF3, ...,

SGFb} respectively. We build the new MF as follows.

MF = {m | m ∈ MFold ∧ m ∉ BF}

After taking the common features out, we build the set

of final selected features for the complete dataset as

follows.

SF = {r | r ∈ MF V r ∈ BF}

3.5. Classifications

Before performing classification, we further improve

our model and apply Recursive Feature Elimination

(RFE) to improve the accuracy of the classification.

We used a greedy optimization algorithm which aims

to find the set of best-performing features at each

iteration. Our RFE technique iteratively

1. Trains the classifier.

2. Computes the rank for all the features.

3. Removes the feature having the smallest rank.

It repeats this process until the desired set (number) of

features is eventually reached. To pick which classifier

to use with RFE, we carried out a small experiment

with 50 samples, out of which 25 were benign and 25

malware programs. These 50 samples were picked

randomly from the dataset used in this paper. We build

the set of features using Equation (3) for these 50

samples and the distribution is shown in Figure 3. For

these 50 samples, 2455 features were selected. The

number of selected features varies with the size of the

dataset. The distribution of these selected features

shown in Figure 3 reveals that the selection is almost

balanced. It means, the dataset is balanced, same (25)

number of samples in each class, and the feature

distribution is also balanced, i.e., almost the same

(~1250) number of features were selected (observed)

for each class.

We can see from Figure 3 the benign and malware

features can be separated by almost a straight line, and

a linear classifier is best for such a distribution. In

general, a Support Vector Machine (SVM) classifier is

used with RFE. Therefore, we used a linear SVM

classifier with 10-fold cross-validation to pick the best

set, out of these features. The selected best features

after applying RFE were used to build the model for

(2)

(3)

Mining Android Bytecodes Through the Eyes of Gabor Filters for Detecting Malware 185

classification. We used three different classifiers

(NaiveBayes, AdaBoost, and linear SVM) for training

and testing to evaluate the accuracy of our model. The

use of RFE improved the proposed model’s

classification accuracy by more than 5%.

Figure 3. Distribution of the features built from 25 benign and 25

malware samples using equation 3. To save space and make the

graph clearer, the weights are normalized.

4. Experimental Evaluation

We carried out an empirical study to analyze the

correctness and efficiency of our approach. We

performed two experiments, each using a different

validation technique. In the first experiment, we used

80-20 train and test split validation and in the second

experiment, we used k-fold cross-validation. Intel Core

(TM) i-7-4510U CPU @ 2.00 GHz with 8 GB of RAM

running Windows 8.1, was used to run all the

experiments. In this section, we present the evaluation

metrics, dataset, Window size computation, the

empirical study (the two experiments), obtained

results, and analysis.

4.1. Metrics

To evaluate the performance and accuracy of our

model we use and define the following metrics.

Detection Rate (DR), also called the true positive rate,

is the percentage of samples correctly recognized as

malware out of the total malware dataset. False

Positive Rate (FPR) is the percentage of samples

incorrectly recognized as malware out of the total

benign dataset. Accuracy is the fraction of samples,

including malware and benign, that is correctly

detected as either malware or benign. Receiver

Operating Characteristic (ROC) curve is a graphical

plot used to depict the performance of a binary

classifier. Area Under the ROC Curve (AUC) [7] is the

probability that a detector/classifier will correctly

classify a sample.

4.2. Dataset

Our dataset for the experiments consists of 1402

Android applications. Out of these, 701 are real

Android malware programs collected from two

different resources [22, 34], and the other 701 are

benign programs containing applications downloaded

from Google Play, Android system programs, and

shared libraries. Table 2 shows distribution of the 701

malware samples. Partitioning of the dataset for

different experiments, including Window size

computation, 80-20 validation and k-fold cross-

validation is shown in Table 3. The dataset contains

samples from a variety of malware families. Most of

the Android byte code malware families are

piggybacked applications (Geinimi, jSMSHider,

ADRD, Pjapps and all of the DroidKungFu families,

DroidDreamLight, DroidDream). KMin and YZHC

classes are standalone malware applications.

4.3. Window Size Computation

As mentioned in section 3.4, for selecting important

features we use a Window that slides over the

extracted Gabor filtered images and helps us classify

malware. This Window contains the Gabor weight of

pixels in the Gabor filtered image. In this section, we

discuss the method used to select the size of this

Window.

Table 2. Distribution of 701 Android malware samples.

Class/family Number of samples

ADRD 19

AnserverBot 155

BaseBridge 24

DroidDream 13

DroidDreamLight 42

DroidKungFu1 23

DroidKungFu2 27

DroidKungFu3 214

DroidKungFu4 63

Geinimi 43

jSMSHider 12

KMin 9

Pjapps 35

YZHC 22

To compute the Window size for our dataset, we

randomly picked 200 samples (100 benign and 100

malware) from the training dataset. To optimize the

results and pick the best Window size automatically we

used a linear SVM classifier. During this testing, we

perform 10 iterations, each time with a different 20

samples in the testing set and the rest of the 180

samples in the training set. Size of the Gabor filtered

images for our dataset ranges from ~1K – ~3M bytes.

Therefore, we repeated these 10 iterations 15 times,

each time with a different Window size, ranging from

100–1500 with a step of 100. Our priority is the DR,

therefore at the end of this experiment a Window size

of 1000 was picked based on the best DR results. In the

rest of the experiments, we used a Window size of

1000.

186 The International Arab Journal of Information Technology, Vol. 20, No. 2, March 2023

Table 3. Partitioning of the dataset (total 1402 samples ⇒ 701

benign and 701 malware) for different experiments.

Experiment

Total number of

samples

(benign/malware)

Training

samples

Testing

samples

Window size
computation

2001 (100/100) 180 20

80-20

validation
1402 (701/701) 1122 280

K-fold cross-

validation
1402 (701/701) 1122 2802

*1The 200 samples were randomly picked from the training dataset.
*2In this experiment we perform 10 (K = {5, 10}) iterations, each time with
a different 280 samples in the testing set and the remaining 1122 samples in

the training set.

4.4. Cross-Validation

We carried out two experiments, 80-20 train and test

split validation, and stratified k-fold cross-validation.

For the first experiment, we chose the classic 80-20

train and test split validation. We divided the dataset

randomly into two subsets. One (80%) for training and

other (20%) for testing. The result of this validation

with three different classifiers are shown in Table 4.

Our dataset contains different types of malware. It is

possible, with this type of validation, that one subset

may not contain certain types of malware. This may

result in overfitting. To avoid these and other problems

we carried out the second experiment.

For the second experiment, we chose stratified k-

fold cross-validation because of the following reasons:

To include the complete dataset (not just 80% for

training and 20% for testing) in training and testing;

generalize the testing of the proposed predictive model

to an independent dataset; limit the problems of

overfitting and selection bias; and test the proposed

technique’s ability to predict new malware.

For this experiment, we divided the dataset

randomly into k folds of equal size. With each fold we

partitioned the dataset into two different

complementary subsets, performing training on one

subset and testing on the other subset. To make sure

that each fold has the same proportion of samples from

each class (benign and malware), we stratified the

dataset. This process of cross-validation was repeated k

times, with each of the k folds used exactly once for

validation. We repeated this complete process twice,

each time with a different k (5 and 10). The results of

these 5-fold and 10-fold cross-validations with three

different classifiers are shown in Table 4.

Table 4. Results of the proposed model using 80-20 train and test

split validation, 5-fold and 10-fold cross validations with three
different classifiers.

Classifier DR FPR Accuracy AUC

80-20 train and test split validation with RFE

NB 99.80% 0 99.90% 0.99

AdaBoost 90.97% 0 95.37% 0.96

L-SVM 82.91% 0 90.39% 0.91

5-fold cross-validation with RFE

NB 98.75% 0 99.36% 0.99

AdaBoost 92.21% 0 95.72% 0.95

L-SVM 86.88% 0 92.37% 0.92

10-fold cross-validation without RFE

NB 93.65% 0 94.35% 0.94

AdaBoost 86.54% 0 87.40% 0.89

L-SVM 82.20% 0 85.34% 0.86

10-fold cross-validation with RFE

NB 98.90% 0 99.43% 0.99

AdaBoost 92.33% 0 95.79% 0.95

L-SVM 88.49% 0 93.366% 0.93

NB=Naive Bayes, L-SVM=Linear SVM

As shown in Table 4, we almost got perfect results

with the NaiveBayes (NB) classifier. NB is the

simplest of all the Bayesian classifiers and assumes

(naively) that all the features (attributes) of the samples

are independent of each other given the context of the

class [15]. Because of this assumption, NB learns the

parameters for each feature separately, which greatly

simplifies learning. This makes NB perform well when

the number of features is very large. As in our case, the

number of features increases as we increase the

samples. For example, our model generated 2455

(shown in Figure 3), 7427 and 32027 features for 50,

200 and 1402 samples, respectively.

The classifier Decision Tree (DT) was used in the

AdaBoost as the base estimator. A tree in a DT can be

very complex and may not generalize well from the

training data, i.e., a small change in the training data

may result in a large change in the DT, and hence

effects the final predictions [8].

SVM measures the complexity of a hypothesis

based on the margin with which they separate the data

[9]. Therefore, SVM works well if the data is separable

with a wide margin. Our set of features is almost

separable (as shown in Figure 3) but the margin of

separation is not wide.

All the three classifiers used in this paper, perform

well when the number of features is large with sparse

instances. The set of features generated by the

proposed model in this paper complies with these two

properties, and hence our model gets an accuracy>90%

with all the three classifiers (with RFE).

5. Comparison with Other Works

Table 5 shows a comparison of our technique with four

other similar Android malware detection techniques

discussed in section 2. The reasons for including these

works are:

1. All of them are using Gabor filters to detect

malware.

Mining Android Bytecodes Through the Eyes of Gabor Filters for Detecting Malware 187

2. Have used machine learning to improve the

performance.

3. Have reported at least the DR and accuracy

obtained.

Table 5. Comparison of our technique with four other similar
Android malware detection techniques discussed in section 2.

Technique

Total number of

samples
(benign/malwre)

DR FPR Accuracy

Our technique1
1402

(701/701)
98.9% 0% 99.43%

Naeem et al.

[18]
6000 (2000/4000) 97.5% 3% 96.30%

Fang et al. [6]
3000

(0/3000)
96.0% NA 96.00%

Kumar et al.
[11]

246
(108/138)

93.0% 10% 91.00%

Darus et al. [4]
600

(300/300)
69.1% 6.7% 84.14%

*1The results of our technique reported here are obtained with NaiveBayes
classifier with RFE using 10-fold cross-validation.

Kumar et al. [11] and Fang et al. [6] used 10-fold

and 5-fold cross-validation, respectively. The other two

works [4, 18] did not mention about the validation

technique used during their experimentation. All the

techniques achieved an accuracy > 90%, except [4].

Fang et al. [6] used only malware samples for

evaluation and did not use any benign samples, hence

no FPR is reported in Table 5. Naeem et al. [18]

decompiles an APK to get the Java source code,

whereas we just decom press the APK to get the DEX

bytecodes, for translating to grayscale image. This

makes our technique much safer and accurate.

All the four techniques translate an APK (after

preprocessing-to extract either DEX bytecode or Java

source code) to a grayscale image for applying Gabor

filters. After translating, the GIST descriptor [21] is

applied to extract a particular set of Gabor features.

GIST descriptor also extracts features through Gabor

filters but with a particular set of Gabor parameters.

Whereas our technique does not use the GIST

descriptor but extract different set of Gabor features.

Therefore, the four techniques used almost similar

(except few variations) set of Gabor parameters to

extract features. This employ, that during training they

were not able to fine tune the Gabor parameters and

hence the selected features, as we did and were able to

achieve a much higher accuracy.

Only two of the works [6, 18] have used a larger

number of malware samples than used in this paper for

evaluation. Naeem et al. [18] has not used any cross-

validation to evaluate their technique, and [6] has not

used any benign samples for validation. Whereas, to

achieve systematic and precise testing, and to reduce

any bias and unbalancing in the dataset, the evaluation

carried out in this paper includes different cross-

validation techniques with real malware and benign

samples. Moreover, to further reduce the bias and

unbalanced in the dataset, we use the same number of

malware and benign samples.

5.1. Limitations

Our proposed approach is based on static analysis of a

sample; therefore, it requires that the malicious code be

available for static analysis. If an Android application

requires to download malicious code upon initial

execution (dynamic code loading), then the sample will

not be correctly analyzed by the system. If an Android

application dynamically (while executing) link a third-

party library, which is not included in the application,

then the library will not be processed. Our technique

excels at detecting malware that has been previously

known but will only detect an unknown (zero day)

malware, if its structure is similar, up to a threshold, to

an existing malware sample in the training database.

Encryption and compression change the byte structure

of a program, and hence our technique may not be able

to classify such malware.

6. Conclusions

In this paper we have proposed a technique based on

static analysis of a grayscale image of the Android

APK. We apply different Gabor filters to this image for

extracting features. A Window is slid over these to

select important features for classifying the APK. To

evaluate the performance of our technique we apply

different cross-validations and compare it with four

other similar techniques. Our technique when

evaluated with real malware and benign samples using

10-fold cross-validation achieves an accuracy of

99.43%, outperforming the four other techniques.

One of the major challenges in securing IoTs

(Internet of things) is the development of cross-

architecture (x86, ARM, MIPS and PowerPC etc.,)

malware analysis and detection system. In future, we

will explore the possibility of using similar image

analysis technique (as used in this paper) for

classifying IoT cross-platform malware applications.

In this current work selected features are used for

binary classification. We would like to improve our

current feature selection method for multinomial

classification, i.e, not only classifying malware

programs as just malware but also classify them into

their respective families. As mentioned in section 3

we parallelized feature selection component of our

system. In future, to further optimize the system, we

will also parallelize other components of the system,

such as feature extraction etc.

References

[1] Abuthawabeh M. and Mahmoud K., “Enhanced

Android Malware Detection and Family

Classification, Using Conversation-Level

Network Traffic Features,” The International

Arab Journal of Information Technology, vol. 17,

no. 4A, pp. 607-614, 2020.

[2] Chen H., Du R., Liu Z., and Xu H., “Android

188 The International Arab Journal of Information Technology, Vol. 20, No. 2, March 2023

Malware Classification Using Xgboost Based on

Images Patterns,” in Proceedings of 4th

Information Technology and Mechatronics

Engineering Conference, Chongqing, pp. 1358-

1362, 2018.

[3] Clausi D. and Jernigan M., “Designing Gabor

Filters for Optimal Texture Separability,” Pattern

Recognition, vol. 33, no. 11, pp. 1835-1849,

2000.

[4] Darus F., Ahmad S., and Ariffin A., “Android

Malware Detection Using Machine Learning on

Image Patterns,” Cyber Resilience Conference,

Putrajaya, pp. 1-2, 2018.

[5] Daugman J., “Image Analysis and Compact

Coding by Oriented 2d Gabor Primitives,” in

Proceedings of Image Understanding and the

Man-Machine Interface, Los Angeles, pp. 19-30,

1987.

[6] Fang Y., Gao Y., Jing F., and Zhang L.,

“Android Malware Familial Classification Based

on Dex File Section Features,” IEEE Access, vol.

8, pp. 10614-10627, 2020.

[7] Fawcett T., “An Introduction to ROC Analysis.

Pattern Recogn, vol. 27, no. 8, pp. 861-874,

2006.

[8] James G., Witten D., Hastie T., and Tibshirani

R., An Introduction to Statistical Learning,

Springer, 2013.

[9] Joachims T., “Text Categorization with Support

Vector Machines: Learning with Many Relevant

Features,” in Proceedings of European

Conference on Machine Learning, pp. 137-142,

1998.

[10] Kancherla K. Mukkamala S., “Image

Visualization Based Malware Detection,” in

Proceedings of Symposium on Computational

Intelligence in Cyber Security, Singapore, pp. 40-

44, 2013.

[11] Kumar A., Sagar K., Kuppusamy K., and Aghila

G., Machine Learning Based Malware

Classification for Android Applications Using

Multimodal Image Representations,” in

Proceedings of 10th International Conference on

Intelligent Systems and Control, Coimbatore, pp.

1-6, 2016.

[12] List of Cyber Security Statistics for 2019.

https://purplesec.us/resources/cyber-security-

statistics/, Last Visited, 2020.

[13] Makandar A. and Patrot A., “Malware Class

Recognition Using Image Processing

Techniques,” in Proceedings of International

Conference on Data Management, Analytics and

Innovation, Pune, pp. 76-80, 2017.

[14] Makandar A. and Patrot A., “Malware Image

Analysis And Classification Using Support

Vector Machine,” International Journal of

Trends in Computer Science and Engineering,

vol. 4, no. 5, pp. 1-3, 2015.

[15] McCallum A. and Nigam K., “A Comparison of

Event Models for Naive Bayes Text

Classification,” AAAI-98 Workshop on Learning

for Text Categorization. vol. 752, pp. 41-48,

1998.

[16] Naeem H., Guo B., Naeem M., Ullah F.,

Aldabbas H., and Javed M., “Identification of

Malicious Code Variants Based on Image

Visualization,” Computers and Electrical

Engineering, vol. 76, pp. 225-237, 2019.

[17] Naeem H., Guo B., and Naeem M., “A Light-

Weight Malware Static Visual Analysis for Iot

Infrastructure,” in Proceedings of International

Conference on Artificial Intelligence and Big

Data, Chengdu, pp. 240-244, 2018.

[18] Naeem H., Guo B., Ullah F., and Naeem M., “A

Cross-Platform Malware Variant Classification

Based on Image Representation,” KSII

Transactions on Internet and Information

Systems, vol. 13, no. 7, pp. 3756-3777, 2019.

[19] Nataraj L., Karthikeyan S., Jacob G., and

Manjunath B., “Malware Images: Visualization

and Automatic Classification,” in Proceedings of

the 8th International Symposium on Visualization

for Cyber Security, New York, pp. 1-7 2011.

[20] Nataraj L., Yegneswaran V., Porras P., and

Zhang J., “A Comparative Assessment of

Malware Classification Using Binary Texture

Analysis and Dynamic Analysis,” in Proceedings

of the 4th ACM Workshop on Security and

Artificial Intelligence, New York, pp. 21-30,

2011.

[21] Oliva A. and Torralba A., “Modeling the Shape

of the Scene: A Holistic Representation of the

Spatial Envelope,” International Journal of

Computer Vision, vol. 42, no. 3, pp. 145-175,

2001.

[22] Parkour M., “Mobile Malware Dump,”

http://contagiominidump.blogspot.com, Last

Visited, 2020.

[23] Randen T. and Husoy J., “Optimal Filter-Bank

Design for Multiple Texture Discrimination,” in

Proceedings of International Conference on

Image Processing, Santa Barbara, pp. 215-218,

1997.

[24] Samani R., “McAfee Mobile Threat Report,”

https://www.mcafee.com/content/dam/consumer/

en-us/docs/2020-Mobile-Threat-Report.pdf, Last

Visited, 2020.

[25] Sharma S., Challa R., and Kumar R., “An

Ensemble-Based Supervised Machine Learning

Framework for Android Ransomware Detection,”

The International Arab Journal of Information

Technology, vol. 18, no. 3A, pp. 422-429, 2021.

[26] Stimson A., Photometry and Radiometry for

Engineers, Wiley-Interscience, 1974.

[27] Team A., Android Dalvik Virtual Machine

Opcodes,

http://contagiominidump.blogspot.com/

Mining Android Bytecodes Through the Eyes of Gabor Filters for Detecting Malware 189

http://developer.android.com/reference/dalvik/byt

ecode/ Opcodes.html, Last Visited, 2020.

[28] Temes G. and Mitra S., Modern Filter Theory

and Design, Wiley-Interscience, 1973.

[29] Teuner A., Pichler O., and Hosticka B.,

“Unsupervised Texture Segmentation of Images

Using Tuned Matched Gabor Filters,” IEEE

Transactions on Image Processing, vol. 4, no. 6,

pp. 863-870, 1995.

[30] Tukey J., Exploratory Data Analysis, Pearson,

1977.

[31] Weldon T. and Higgins W., “Design of Multiple

Gabor Filters for Texture Segmentation,” in

Proceedings of IEEE International Conference

on Acoustics, Speech, and Signal Processing

Conference Proceedings, Atlanta, pp. 2243-2246,

1996.

[32] Yoo I., “Visualizing Windows Executable

Viruses Using Self-Organizing Maps,” in

Proceedings of the ACM Workshop on

Visualization and Data Mining for Computer

Security, New York, pp. 82-89, 2004.

[33] Zhou X., Pang J., and Liang G., “Image

Classification For Malware Detection Using

Extremely Randomized Trees,” in Proceedings of

11th IEEE International Conference on Anti-

counterfeiting, Security, and Identification,

Xiamen, pp. 54-59, 2017.

[34] Zhou Y. and Jiang X., “Dissecting Android

Malware: Characterization and Evolution,” in

Proceedings of IEEE Symposium on Security and

Privacy, San Francisco, pp. 95-109, 2012.

Shahid Alam is currently working

as an assistant professor in the

department of Computer

Engineering at Adana Alparslan

Turkes Science and Technology

University, Adana, Turkey. He

received his PhD in Computer

Science from University of Victoria, Canada in 2014.

His research interests include software engineering,

programming languages, computer security, and

malware analysis and detection. He has published

several journal and conference papers in these areas.

Currently he is looking into applying compiler, binary

analysis, and machine learning techniques to automate

and optimize malware analysis and detection.

Alper Kamil Demir is an Assoc.

Prof. at Computer Engineering

Department of Adana Alparslan

Turkes Science and Technology

University since 2013. Between

2009 and 2013, he worked at

Huawei Telecommunications Inc. as

a Senior Software and Research Engineer. Between

2001 and 2009 he worked at Kocaeli University,

Computer Engineering Department. He is interested in

Security and Forensics, Computer Networks,

Distributed Systems and Operating Systems in general.

Currently, his research is focused on Internet of

Things.

https://ieeexplore.ieee.org/xpl/conhome/8270727/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8270727/proceeding

