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Abstract: One of the basic characteristics of a Gabor filter is that it provides useful information about specific frequencies in 

a localized region. Such information can be used in locating snippets of code, i.e., localized code, in a program when 

transformed into an image for finding embedded malicious patterns. Keeping this phenomenon, we propose a novel technique 

using a sliding Window over Gabor filters for mining the Dalvik Executable (DEX) bytecodes of an Android application (APK) 

to find malicious patterns. We extract the structural and behavioral functionality and localized information of an APK through 

Gabor filtered images of the 2D grayscale image of the DEX bytecodes. A Window is slid over these features and a weight is 

assigned based on its frequency of use. The selected Windows whose weights are greater than a given threshold, are used for 

training a classifier to detect malware APKs. Our technique does not require any disassembly or execution of the malware 

program and hence is much safer and more accurate. To further improve feature selection, we apply a greedy optimization 

algorithm to find the best performing feature subset. The proposed technique, when tested using real malware and benign 

APKs, obtained a detection rate of 98.9% with 10-fold cross-validation. 
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1. Introduction 

Android Operating System (OS) became an almost 

indispensable choice for mobile devices since its first 

release in 2008 [34]. Like any other OS, Android is 

also susceptible to malware attacks. Just after 2 years 

in 2010, the first Android malware appeared in the 

scene. According to McAfee Mobile Threat Report, the 

total number of mobile malware programs increased by 

24 million from 2018 to 2019 [24]. It is reported that 

230,000 new malware samples are produced every day 

in 2019 [12]. The statistics show that there are a 

growing number of threats against Android OS. In 

2019, companies spent an average of 2.4 million U.S 

Dollars in their defense against malware [12]. As a 

result, there are urgent needs to develop techniques and 

methods to diminish the malware attacks on Android 

OS. The main objective and purpose of this research is 

to identify malware using visual analytics for 

extracting important features that helps in classifying 

malware. 

Visual data exploration was first introduced by 

Tuckey [30]. In 2001 and 2003 decomposition of an 

image was introduced to compute texture features [21, 

29]. Consequently, visual analytics is also leveraged 

for malware detection in 2004 for the first time as far 

as we know [33]. It is easier for Malware writers to 

reuse the code and produce different variants of the 

original malware program. Although these variants 

generate different signatures, there exist visual 

similarities among them. When they are visualized, the 

images exhibit the textual and structural similarities 

among malware variants.  

Texture segmentation with Gabor filter is an old 

method in the literature [5]. Many types of research 

have been conducted to segment textures [3] or multi-

textures [23] with Gabor filter. The research on using 

Gabor filters for texture classification shows that 

Gabor filters give localized frequency information. We 

believe that this is a very useful outcome to detect and 

analyze malware converted into images. This enables 

us to find embedded malicious code within a snippet of 

(localized) code in malware. As a result, the Gabor 

filter can guide us to find such information. 

The main motivations of the research carried out in 

this paper are manifold.  

1. Structural, and behavioral functionalities of an 

Android application need to be analyzed to detect if 

it is malicious or benign. The file classes.dex, 

Dalvik Executable (DEX) bytecodes of an Android 

APK, contains all the classes and APIs, and hence 

the structural and behavioral functionality of an 

Android application. Therefore, we first extract this 

information from the DEX bytecodes of an Android 

application and convert it to a grayscale image.  

2. We apply Gabor filters to the grayscale image to 

generate filtered images. These filtered images of 
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different samples from a given malware family 

appear like those belonging to the same family but 

distinct from a benign sample, as shown in Figure 1. 

AnserverBot1 and AnserverBot2 malware programs 

(two variants of the AnserverBot malware program) 

are transformed into Gabor filtered images. The 

Figure shows that these two malware samples have 

similar texture features. However, the benign 

sample, CommissionPlus has different texture 

features. 

3. For finding similarities and to improve the feature 

selection process, we use a Window that slides over 

a 2D Gabor filtered image to help select important 

features for malware detection. 

 

Figure 1. Similarity and differences in gabor filtered image of two 

malware and one benign android APKs. 

Particularly, we present a static malware detection 

method based on the visual analytics approach. The 

major contributions of this work are: 

 We propose a novel technique using a sliding 

Window over Gabor filtered images to detect 

malicious patterns in an Android APK.  

 We perform static analysis on the grayscale image 

of the DEX bytecodes of an APK. Therefore, our 

analysis does not require any disassembly (which is 

never 100% correct) or execution (which is not safe) 

of the malware program. DEX bytecodes are 

extracted by decompressing the APK, and there is 

no disassembly required. 

 We further improve feature selection by applying 

two other classic techniques. Firstly, by taking out 

the features (Windows) from malware that are 

common in malware and benign samples. Secondly, 

we apply a greedy optimization algorithm, called 

recursive feature elimination, which aims to find the 

best performing feature subset. This approach 

improved the accuracy by more than 5%. 

 We evaluate our proposed methods by using two 

different cross-validation techniques so that 

systematic and precise testing results are obtained; 

the overfitting problem is restricted; and the 

detection of new malware is achieved. Moreover, 

the evaluations are carried out by using different 

classifiers. Finally, our proposed method is 

compared with four other similar techniques. Our 

proposed technique, when tested with real malware 

and benign Android applications using 10-fold cross 

validation, obtained a detection rate of 98.9%. 

The remainder of this paper is organized as follows. 

We discuss related works in section 2. We present a 

detailed overview of our approach, its design, and 

implementation in section 3. Section 4 presents the 

evaluation and comparison of our approach with four 

other such works. Section 5 finally concludes the paper 

and presents some future works. 

2. Related Works 

In this section we discuss the most relevant literature, 

similar to our work. Due to the popularity of Windows 

OS on Desktop and Android OS on smartphones, there 

are more malware programs written for these than 

other operating systems [1, 25]. Here, we describe 

some of the recent works that deal with malware 

detection on these two operating systems. 

2.1. Android OS 

Kumar et al. [11], a machine learning-based method is 

proposed to detect Android malware. Visual 

representation of APK file is transformed into 

Grayscale, Red, Green, and Blue (RGB), Cyan, 

Magenta, Yellow, and Key (CMYK), and Hue-

Saturation-Lightness (HSL). At first, the Global Image 

Descriptor (GIST) feature extraction method [21], 

extract a particular set of features through Gabor 

filters, is applied to malware and benign image dataset. 

Then, different machine learning algorithms are used 

for classification. The highest accuracy achieved was 

91%. 

Chen et al. [2], the authors propose the XGBoost 

machine learning method to classify Android malware. 

In the beginning, the DEX file is extracted from 

Android malware. Then, the DEX file is converted into 

a binary sequence vector, and transformed into an 8-bit 

binary array. Each 8-bit binary number is considered as 

a byte corresponding to a 256-order grayscale. After 

that, it is converted into a pixel matrix. The GIST 

feature extraction is applied to the grayscale image. 

Neither the source nor the types of the samples used in 

the evaluation is mentioned in the paper. Therefore, we 

do not compare the technique proposed in [2] with 

ours.  

Darus et al. [4], the authors applied the GIST 

features to visualized images of Android APKs, to 

classify malware. DEX bytecodes of an Android APK 
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is first translated to 8-bit grayscale image. The GIST 

features are extracted from the grayscale image for 

classification. They used different classifiers to 

evaluate their technique. They achieved an accuracy of 

84.14%. 

Naeem et al. [18], a cross-platform (Windows and 

Android operating systems) malware variant 

classification system is proposed. Here we only discuss 

their part that deals with Android applications. First, 

they decompile an Android Application (APK) to Java 

source code. The Java source code is then translated to 

grayscale image and GIST features are extracted. 

These features are then used for classifying Android 

APKs. The experiments carried out in the paper 

achieved promising results, obtaining an accuracy of 

96.3% with Android applications. 

Fang et al. [6], Android malware classification is 

investigated by the multiple kernel learning method to 

classify Android malware. At first, the DEX file is 

extracted from Android malware. Then, it is converted 

into an RGB image and plain text jointly. Textual 

features, such as variables, methods, and classes, are 

extracted from the DEX data section. Gabor features 

are extracted using the GIST descriptor from the RGB 

image of the DEX bytecode. Feature selection is 

performed by applying different kernels, such as linear 

and Gaussian. Finally, Support Vector Machine (SVM) 

is used for classification. The results indicate a 

precision and Detection Rate (DR) of 96%. 

2.2. Windows OS 

The work in [20] compares GIST based static texture 

analysis with dynamic analysis. It is found that static 

texture analysis can provide a comparable 

classification accuracy of 98% to that of dynamic 

techniques. Nataraj et al. [19] present grayscale 

malware images to classify using GIST feature 

extraction. The results show 98% accuracy. 

Makandar and Patrot [14], at first, sub-band filtering 

was applied to the grayscale malware image. After 

that, the Gabor filter is applied to get second-order 

gradient features as static pattern recognition. Finally, 

the SVM classifier is applied for malware class 

recognition. 89.68% accuracy is obtained through 

experiments. Malware class identification is also 

studied in [13]. The Gabor wavelet is used for feature 

extraction. Along with Gabor, GIST and discrete 

wavelet transform and other features are considered. 

Finally, from an image processing-based perspective, 

SVM multi-class classifier is leveraged for malware 

classification. They got 98.88% accuracy. 

Zhou and Jiang [34], visualized malware as a 

grayscale image. Then, the Gabor filter is used for 

extracting texture features. They used extremely 

randomized trees classifiers, and the results are 

compared with K-Nearest Neighbor (KNN), and 

Random Forest classifiers. The experimental results 

revealed 96.19% accuracy and a 97.51% recall rate. 

Grayscale visualization technique is also studied in 

[10] for malware detection. Intensity-based and texture 

(Wavelet and Gabor) based features are used with the 

SVM classifier. Accuracy of 95% is achieved. 

Naeem et al. [17], the authors present a lightweight 

malware classification system using GIST based 

features and hybrid local features. According to 

conducted experiments, 97.4% accuracy is achieved by 

the SVM classifier. GIST descriptors are applied to 

malware classification problem in [32]. After feature 

reduction by determining a minimal set of GIST 

features, deep learning techniques of Tensor Flow is 

applied for classification. Experimental results showed 

accuracy of between 90% and 100% in different 

experimental setups. Kumar et al. [11], present a 

malware classification work based on the grayscale 

visualization method. GIST, Histogram of Oriented 

Gradient, and Local Binary Pattern feature descriptors 

are used for the SVM classifier. The highest accuracy 

achieved is 98.73%. 

Fang et al. [6], the authors exhibit another malware 

classification work where they use GIST along with 

entropy filter to compute texture features. 89% 

accuracy is achieved with the KNN classifier. A 

method for transforming a malware into a binary 

grayscale image to characterize malware variant is 

proposed in [16]. After transforming the malware into 

a grayscale image, the local and global malicious 

patterns feature descriptor is used to extract local and 

global image interest points. Then, feature selection 

methods are applied for key feature extraction. Finally, 

KNN, SVM, and Naive Bayes classifiers are applied 

for classification. An accuracy of up to 98.40% is 

achieved. 

3. Overview of the System 

Android applications are distributed in a packed 

(compressed) form called Android application 

packages (APKs). An APK contains files and 

directories, such as a manifest file, resources, 

classes.dex etc. The system proposed in this paper 

takes APK files as input and extracts DEX bytecodes 

from each APK; These bytecodes are converted to 

grayscale image and then Gabor features are extracted 

from these images; After preprocessing and feature 

selection, the selected Gabor features are used by a 

classifier for training to detect a sample either as 

malware or benign. Figure 2 provides an overview of 

the proposed system. The complete system is 

implemented as 2000+lines of Python code. The 

feature selection component is the most time-

consuming part of the system. Therefore, to optimize 

we parallelized this part by using recently introduced 

Python’s multiprocessing package. In the following 

sections, we explain and discuss in detail each of the 

components shown in Figure 2. 
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Figure 2. Overview of the system.

3.1. DEX Bytecode Extraction 

Android programs are normally written in Java; 

compiled to Java bytecode; converted to Dalvik 

instructions and stored as Dalvik Executable Format 

(DEX) [27] bytecodes in a file classes.dex. These DEX 

bytecodes (i.e., classes.dex) are then combined with 

other resources and compressed to form an APK. The 

file classes.dex contains all the classes and APIs, and 

the structural and behavioral functionality of the 

application. Therefore, to analyse an APK, we 

decompress the APK file and extract classes.dex (DEX 

bytecodes) file. 

3.2. DEX Bytecode to Grayscale Image 

We store the extracted DEX bytecodes in a vector 

space of 8-bit unsigned integers. If the size of these 

bytecodes is more than 4 bytes (our experimentation 

reveals that ≤ 4 is of no importance), then we convert 

the bytecodes to a 2D grayscale image. Each pixel 

value (row, col) in this 2D grayscale image represents 

a DEX bytecode normalized in the range of 0–255. 

This value represents luminous (light) intensity [26] 

with 0 being the weakest and 255 the highest. As 

shown earlier in Figure 1, this intensity maps to the 

code in the application. For detecting malware, it is 

very useful to find more information about a snippet of 

(localized) code to search for malicious code 

embedded in an application. Applying Gabor filters 

[28] to this image facilitates us in finding such 

information. Gabor filters extract localized features 

from the image, i.e., snippets of code (patterns), to help 

find similarity with malicious code. 

3.3. Gabor Feature Extraction 

We apply Gabor filters to extract localized features 

(pattern of code) from an Android application’s 

grayscale image. For this a set of filters is created as 

follows. 

A 2D Gabor filter in the spatial domain is defined 

by the following function: 

𝐺(𝑥, 𝑦; 𝜆, 𝜃, ∅, 𝜎, 𝛾) = 𝑒𝑥𝑝 (−
𝑥′2

+𝛾2𝑦′2

2𝜎2
) 𝑐𝑜𝑠 (2𝛱

𝑥′

𝜆
+ 𝜙) 

Where, 𝑥′ = 𝑥 𝑐𝑜𝑠 𝜃 + 𝑦 𝑠𝑖𝑛 𝜃  𝑎𝑛𝑑 𝑦′ =  − 𝑥 sin 𝜃 + 

 

𝑦 cos 𝜃 and (x, y) is the position/location of the pixel 

whose Gabor weight (co-efficient) is computed by the 

filter. 

A convolution kernel is a square matrix that is slid 

across the image and multiplied with the input image 

to produce different filtered images. Three different 

convolution Gabor kernels of sizes 2, 25, and 30 were 

generated using Equation (1). These three kernel sizes 

gave us a better variance between the different Gabor 

filters. We observe that there was no effect of the size 

beyond 30 on the output (filtered) image. These 

kernels were then multiplied by the original image to 

produce different Gabor filtered images. In this way, 

we created 24 Gabor filtered images using different 

values of the above five parameters (λ, θ, ϕ, σ, and γ) 

and the three kernels. Table 1 shows the set of Gabor 

filters used to produce 24 filtered images of the 

original grayscale image of an APK’s DEX bytecodes. 

These Gabor parameter values were computed 

empirically through a series of regression tests. 

These filtered images are the coarse Gabor features 

of an APK. The extracted Gabor features after 

preprocessing and selection, are used by a classifier for 

training to detect a sample either as malware or benign. 

In the next section, we explain the preprocessing and 

feature selection performed on these extracted Gabor 

features. 

3.4. Preprocessing and Feature Selection 

Before preprocessing, we first formally define the 

Gabor features extracted in section 3.3 as follows. Let 

GFk = {F1, F2, F3, ..., Fn} denotes the extracted Gabor 

features for the kth APK; Fn is the filtered image n; n is 

the total number of Gabor filtered images for the kth 

APK, and is same for all the APKs; i.e., each APK has 

n filtered images {F1, F2, F3, ..., Fn}; in our case n=24. 

A filtered image is a 2D array of Gabor weights 

(computed by Gabor function in Equation (1)) for each 

pixel in the original grayscale image of an APK. These 

weights map to the coding intensity in the original 

DEX bytecodes of the APK. We are looking for 

finding similarities, i.e., part (Window) of a malicious 

code that is found in malware APKs. Therefore, we use 

the concept of a Window that slides over these Gabor 

(1) 
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weights to find such similarities. Keeping this concept 

of a sliding Window, we define a filtered image as f= 

{W1, W2, W3, ..., Wn}, where p is the number of 

Windows in the filtered image, W={W1, W2, W3, ..., 

Ws}, w is the Gabor weight and s is the size of the 

Window W. s is the same for all the Windows. Each of 

these Windows represents a specific Gabor feature. 

Table 1. The set of Gabor filters used to produce 24 filtered images 

of the original grayscale image. For each of the 24 Gabor filters 

value of ∅ = 0 and 𝛾 = 0.05. 

 kernel size 𝜽 𝝈 𝝀 

1 2 0 9 0.7 

2 2 0 9 1.5 

3 2 0 17 0.7 

4 2 0 17 1.5 

5 2 2 9 0.7 

6 2 2 9 1.5 

7 2 2 17 0.7 

8 2 2 17 1.5 

9 25 0 9 0.7 

10 25 0 9 1.5 

11 25 0 17 0.7 

12 25 0 17 1.5 

13 25 2 9 0.7 

14 25 2 9 1.5 

15 25 2 17 0.7 

16 25 2 17 1.5 

17 30 0 9 0.7 

18 30 0 9 1.5 

19 30 0 17 0.7 

20 30 0 17 1.5 

21 30 2 9 0.7 

22 30 2 9 1.5 

23 30 2 17 0.7 

24 30 2 17 1.5 

We remove a Window W from f, if the number of 

w’s (Gabor weights) with a value 0 (i.e., no intensity) 

in W ≥ 70%. It means, the intensity of code is very less 

in this Window and will not contain any useful code 

for comparison. 

To select important Windows (Gabor features) out 

of this set of Windows that help us classify malware, 

we compute the frequencies Window Frequency (WF) 

and Document Frequency (DF) of a Window Wj in a 

filtered image Fi as follows: 

𝑊𝐹𝑗 =
𝑓𝑗

𝑝
     𝑎𝑛𝑑  𝐷𝐹𝑗 = 1 +

𝑀𝑖

𝑁
 

Where, fj is the number of times (frequency) Wj 

appears in a filtered image Fi; and Mi is the number of 

all the filtered images Fi in the N APKs with Wj in it. 

After computing the WFj and DFj we assign a weight 

to window Wj as follows: 

Weightj = WFj × DFj 

We only keep Wj, if Weightj>0.3. This minimum value 

of Weightj is computed empirically. We carried out a 

small experiment with different values of Weightj. We 

found a value>0.3 as the optimal value, i.e., a Wj with 

the final weight of >0.3 does not make any difference 

in the detection rate. 

Similarly, we select specific Windows, satisfying 

Equation (2), from each filtered image of an APK. Let 

a filtered image, after preprocessing and selection, sf = 

{W1,W2,W3, ...,Wq}, where q is the number of features 

(Windows) selected satisfying Equation (2) from the 

feature f. Then, SGFk = {sf1, sf2, sf3, ..., sfn} is the set of 

selected features of the kth APK. We build (extract and 

select) these set of features separately for each set of 

benign and malware APKs in the dataset. 

Common Features out–To further improve feature 

selection and classification accuracy, we take the 

features from malware out that are also present in 

benign. We define the set of features of all the benign 

and malware APKs in the dataset as BF= SGF1, SGF2, 

SGF3, ..., SGFa} and MFold={SGF1, SGF2, SGF3, ..., 

SGFb} respectively. We build the new MF as follows. 

MF = {m | m ∈ MFold ∧ m ∉ BF} 

After taking the common features out, we build the set 

of final selected features for the complete dataset as 

follows. 

SF = {r | r ∈ MF V r ∈ BF} 

3.5. Classifications  

Before performing classification, we further improve 

our model and apply Recursive Feature Elimination 

(RFE) to improve the accuracy of the classification. 

We used a greedy optimization algorithm which aims 

to find the set of best-performing features at each 

iteration. Our RFE technique iteratively 

1. Trains the classifier. 

2. Computes the rank for all the features. 

3. Removes the feature having the smallest rank. 

It repeats this process until the desired set (number) of 

features is eventually reached. To pick which classifier 

to use with RFE, we carried out a small experiment 

with 50 samples, out of which 25 were benign and 25 

malware programs. These 50 samples were picked 

randomly from the dataset used in this paper. We build 

the set of features using Equation (3) for these 50 

samples and the distribution is shown in Figure 3. For 

these 50 samples, 2455 features were selected. The 

number of selected features varies with the size of the 

dataset. The distribution of these selected features 

shown in Figure 3 reveals that the selection is almost 

balanced. It means, the dataset is balanced, same (25) 

number of samples in each class, and the feature 

distribution is also balanced, i.e., almost the same 

(~1250) number of features were selected (observed) 

for each class. 

We can see from Figure 3 the benign and malware 

features can be separated by almost a straight line, and 

a linear classifier is best for such a distribution. In 

general, a Support Vector Machine (SVM) classifier is 

used with RFE. Therefore, we used a linear SVM 

classifier with 10-fold cross-validation to pick the best 

set, out of these features. The selected best features 

after applying RFE were used to build the model for 

(2) 

(3) 
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classification. We used three different classifiers 

(NaiveBayes, AdaBoost, and linear SVM) for training 

and testing to evaluate the accuracy of our model. The 

use of RFE improved the proposed model’s 

classification accuracy by more than 5%. 

 

Figure 3. Distribution of the features built from 25 benign and 25 

malware samples using equation 3. To save space and make the 

graph clearer, the weights are normalized. 

4. Experimental Evaluation 

We carried out an empirical study to analyze the 

correctness and efficiency of our approach. We 

performed two experiments, each using a different 

validation technique. In the first experiment, we used 

80-20 train and test split validation and in the second 

experiment, we used k-fold cross-validation. Intel Core 

(TM) i-7-4510U CPU @ 2.00 GHz with 8 GB of RAM 

running Windows 8.1, was used to run all the 

experiments. In this section, we present the evaluation 

metrics, dataset, Window size computation, the 

empirical study (the two experiments), obtained 

results, and analysis. 

4.1. Metrics 

To evaluate the performance and accuracy of our 

model we use and define the following metrics. 

Detection Rate (DR), also called the true positive rate, 

is the percentage of samples correctly recognized as 

malware out of the total malware dataset. False 

Positive Rate (FPR) is the percentage of samples 

incorrectly recognized as malware out of the total 

benign dataset. Accuracy is the fraction of samples, 

including malware and benign, that is correctly 

detected as either malware or benign. Receiver 

Operating Characteristic (ROC) curve is a graphical 

plot used to depict the performance of a binary 

classifier. Area Under the ROC Curve (AUC) [7] is the 

probability that a detector/classifier will correctly 

classify a sample. 

4.2. Dataset 

Our dataset for the experiments consists of 1402 

Android applications. Out of these, 701 are real 

Android malware programs collected from two 

different resources [22, 34], and the other 701 are 

benign programs containing applications downloaded 

from Google Play, Android system programs, and 

shared libraries. Table 2 shows distribution of the 701 

malware samples. Partitioning of the dataset for 

different experiments, including Window size 

computation, 80-20 validation and k-fold cross-

validation is shown in Table 3. The dataset contains 

samples from a variety of malware families. Most of 

the Android byte code malware families are 

piggybacked applications (Geinimi, jSMSHider, 

ADRD, Pjapps and all of the DroidKungFu families, 

DroidDreamLight, DroidDream). KMin and YZHC 

classes are standalone malware applications. 

4.3. Window Size Computation 

As mentioned in section 3.4, for selecting important 

features we use a Window that slides over the 

extracted Gabor filtered images and helps us classify 

malware. This Window contains the Gabor weight of 

pixels in the Gabor filtered image. In this section, we 

discuss the method used to select the size of this 

Window. 

Table 2. Distribution of 701 Android malware samples. 

Class/family Number of samples 

ADRD 19 

AnserverBot 155 

BaseBridge 24 

DroidDream 13 

DroidDreamLight 42 

DroidKungFu1 23 

DroidKungFu2 27 

DroidKungFu3 214 

DroidKungFu4 63 

Geinimi 43 

jSMSHider 12 

KMin 9 

Pjapps 35 

YZHC 22 

 

To compute the Window size for our dataset, we 

randomly picked 200 samples (100 benign and 100 

malware) from the training dataset. To optimize the 

results and pick the best Window size automatically we 

used a linear SVM classifier. During this testing, we 

perform 10 iterations, each time with a different 20 

samples in the testing set and the rest of the 180 

samples in the training set. Size of the Gabor filtered 

images for our dataset ranges from ~1K – ~3M bytes. 

Therefore, we repeated these 10 iterations 15 times, 

each time with a different Window size, ranging from 

100–1500 with a step of 100. Our priority is the DR, 

therefore at the end of this experiment a Window size 

of 1000 was picked based on the best DR results. In the 

rest of the experiments, we used a Window size of 

1000. 
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Table 3. Partitioning of the dataset (total 1402 samples ⇒ 701 

benign and 701 malware) for different experiments. 

Experiment 

Total number of 

samples 

(benign/malware) 

Training 

samples 

Testing 

samples 

Window size 
computation 

2001 (100/100) 180 20 

80-20 

validation 
1402 (701/701) 1122 280 

K-fold cross-

validation 
1402 (701/701) 1122 2802 

*1The 200 samples were randomly picked from the training dataset. 
*2In this experiment we perform 10 (K = {5, 10}) iterations, each time with 
a different 280 samples in the testing set and the remaining 1122 samples in 

the training set. 

4.4. Cross-Validation 

We carried out two experiments, 80-20 train and test 

split validation, and stratified k-fold cross-validation. 

For the first experiment, we chose the classic 80-20 

train and test split validation. We divided the dataset 

randomly into two subsets. One (80%) for training and 

other (20%) for testing. The result of this validation 

with three different classifiers are shown in Table 4. 

Our dataset contains different types of malware. It is 

possible, with this type of validation, that one subset 

may not contain certain types of malware. This may 

result in overfitting. To avoid these and other problems 

we carried out the second experiment. 

For the second experiment, we chose stratified k-

fold cross-validation because of the following reasons: 

To include the complete dataset (not just 80% for 

training and 20% for testing) in training and testing; 

generalize the testing of the proposed predictive model 

to an independent dataset; limit the problems of 

overfitting and selection bias; and test the proposed 

technique’s ability to predict new malware. 

For this experiment, we divided the dataset 

randomly into k folds of equal size. With each fold we 

partitioned the dataset into two different 

complementary subsets, performing training on one 

subset and testing on the other subset. To make sure 

that each fold has the same proportion of samples from 

each class (benign and malware), we stratified the 

dataset. This process of cross-validation was repeated k 

times, with each of the k folds used exactly once for 

validation. We repeated this complete process twice, 

each time with a different k (5 and 10). The results of 

these 5-fold and 10-fold cross-validations with three 

different classifiers are shown in Table 4. 

 

 

 

 

 

 

 

 

 

 

Table 4. Results of the proposed model using 80-20 train and test 

split validation, 5-fold and 10-fold cross validations with three 
different classifiers. 

Classifier DR FPR Accuracy AUC 

80-20 train and test split validation with RFE 

NB 99.80% 0 99.90% 0.99 

AdaBoost 90.97% 0 95.37% 0.96 

L-SVM 82.91% 0 90.39% 0.91 

5-fold cross-validation with RFE 

NB 98.75% 0 99.36% 0.99 

AdaBoost 92.21% 0 95.72% 0.95 

L-SVM 86.88% 0 92.37% 0.92 

10-fold cross-validation without RFE 

NB 93.65% 0 94.35% 0.94 

AdaBoost 86.54% 0 87.40% 0.89 

L-SVM 82.20% 0 85.34% 0.86 

10-fold cross-validation with RFE 

NB 98.90% 0 99.43% 0.99 

AdaBoost 92.33% 0 95.79% 0.95 

L-SVM 88.49% 0 93.366% 0.93 

NB=Naive Bayes, L-SVM=Linear SVM 

As shown in Table 4, we almost got perfect results 

with the NaiveBayes (NB) classifier. NB is the 

simplest of all the Bayesian classifiers and assumes 

(naively) that all the features (attributes) of the samples 

are independent of each other given the context of the 

class [15]. Because of this assumption, NB learns the 

parameters for each feature separately, which greatly 

simplifies learning. This makes NB perform well when 

the number of features is very large. As in our case, the 

number of features increases as we increase the 

samples. For example, our model generated 2455 

(shown in Figure 3), 7427 and 32027 features for 50, 

200 and 1402 samples, respectively. 

The classifier Decision Tree (DT) was used in the 

AdaBoost as the base estimator. A tree in a DT can be 

very complex and may not generalize well from the 

training data, i.e., a small change in the training data 

may result in a large change in the DT, and hence 

effects the final predictions [8]. 

SVM measures the complexity of a hypothesis 

based on the margin with which they separate the data 

[9]. Therefore, SVM works well if the data is separable 

with a wide margin. Our set of features is almost 

separable (as shown in Figure 3) but the margin of 

separation is not wide. 

All the three classifiers used in this paper, perform 

well when the number of features is large with sparse 

instances. The set of features generated by the 

proposed model in this paper complies with these two 

properties, and hence our model gets an accuracy>90% 

with all the three classifiers (with RFE). 

5. Comparison with Other Works 

Table 5 shows a comparison of our technique with four 

other similar Android malware detection techniques 

discussed in section 2. The reasons for including these 

works are:  

1. All of them are using Gabor filters to detect 

malware. 
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2. Have used machine learning to improve the 

performance. 

3. Have reported at least the DR and accuracy 

obtained. 

Table 5. Comparison of our technique with four other similar 
Android malware detection techniques discussed in section 2. 

Technique 

Total number of 

samples 
(benign/malwre) 

DR FPR Accuracy 

Our technique1 
1402 

(701/701) 
98.9% 0% 99.43% 

Naeem et al. 

[18] 
6000 (2000/4000) 97.5% 3% 96.30% 

Fang et al. [6] 
3000 

(0/3000) 
96.0% NA 96.00% 

Kumar et al. 
[11] 

246 
(108/138) 

93.0% 10% 91.00% 

Darus et al. [4] 
600 

(300/300) 
69.1% 6.7% 84.14% 

*1The results of our technique reported here are obtained with NaiveBayes 
classifier with RFE using 10-fold cross-validation. 

Kumar et al. [11] and Fang et al. [6] used 10-fold 

and 5-fold cross-validation, respectively. The other two 

works [4, 18] did not mention about the validation 

technique used during their experimentation. All the 

techniques achieved an accuracy > 90%, except [4]. 

Fang et al. [6] used only malware samples for 

evaluation and did not use any benign samples, hence 

no FPR is reported in Table 5. Naeem et al. [18] 

decompiles an APK to get the Java source code, 

whereas we just decom press the APK to get the DEX 

bytecodes, for translating to grayscale image. This 

makes our technique much safer and accurate. 

All the four techniques translate an APK (after 

preprocessing-to extract either DEX bytecode or Java 

source code) to a grayscale image for applying Gabor 

filters. After translating, the GIST descriptor [21] is 

applied to extract a particular set of Gabor features. 

GIST descriptor also extracts features through Gabor 

filters but with a particular set of Gabor parameters. 

Whereas our technique does not use the GIST 

descriptor but extract different set of Gabor features. 

Therefore, the four techniques used almost similar 

(except few variations) set of Gabor parameters to 

extract features. This employ, that during training they 

were not able to fine tune the Gabor parameters and 

hence the selected features, as we did and were able to 

achieve a much higher accuracy. 

Only two of the works [6, 18] have used a larger 

number of malware samples than used in this paper for 

evaluation. Naeem et al. [18] has not used any cross-

validation to evaluate their technique, and [6] has not 

used any benign samples for validation. Whereas, to 

achieve systematic and precise testing, and to reduce 

any bias and unbalancing in the dataset, the evaluation 

carried out in this paper includes different cross-

validation techniques with real malware and benign 

samples. Moreover, to further reduce the bias and 

unbalanced in the dataset, we use the same number of 

malware and benign samples. 

5.1. Limitations 

Our proposed approach is based on static analysis of a 

sample; therefore, it requires that the malicious code be 

available for static analysis. If an Android application 

requires to download malicious code upon initial 

execution (dynamic code loading), then the sample will 

not be correctly analyzed by the system. If an Android 

application dynamically (while executing) link a third-

party library, which is not included in the application, 

then the library will not be processed. Our technique 

excels at detecting malware that has been previously 

known but will only detect an unknown (zero day) 

malware, if its structure is similar, up to a threshold, to 

an existing malware sample in the training database. 

Encryption and compression change the byte structure 

of a program, and hence our technique may not be able 

to classify such malware. 

6. Conclusions 

In this paper we have proposed a technique based on 

static analysis of a grayscale image of the Android 

APK. We apply different Gabor filters to this image for 

extracting features. A Window is slid over these to 

select important features for classifying the APK. To 

evaluate the performance of our technique we apply 

different cross-validations and compare it with four 

other similar techniques. Our technique when 

evaluated with real malware and benign samples using 

10-fold cross-validation achieves an accuracy of 

99.43%, outperforming the four other techniques. 

One of the major challenges in securing IoTs 

(Internet of things) is the development of cross-

architecture (x86, ARM, MIPS and PowerPC etc.,) 

malware analysis and detection system. In future, we 

will explore the possibility of using similar image 

analysis technique (as used in this paper) for 

classifying IoT cross-platform malware applications. 

In this current work selected features are used for 

binary classification. We would like to improve our 

current feature selection method for multinomial 

classification, i.e, not only classifying malware 

programs as just malware but also classify them into 

their respective families. As mentioned in section 3 

we parallelized feature selection component of our 

system. In future, to further optimize the system, we 

will also parallelize other components of the system, 

such as feature extraction etc. 
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