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Abstract: One of the noteworthy difficulties in the classification of nonstationary data is handling data with class imbalance. 

Imbalanced data possess the characteristics of having a lot of samples of one class than the other. It, thusly, results in the 

biased accuracy of a classifier in favour of a majority class. Streaming data may have inherent imbalance resulting from the 

nature of dataspace or extrinsic imbalance due to its nonstationary environment. In streaming data, timely varying class priors 

may lead to a shift in imbalance ratio. The researchers have contemplated ensemble learning, online learning, issue of class 

imbalance and cost-sensitive algorithms autonomously. They have scarcely ever tended to every one of these issues mutually to 

deal with imbalance shift in nonstationary data. This correspondence shows a novel methodology joining these perspectives to 

augment G-mean in no stationary data with Recurrent Imbalance Shifts (RIS). This research modifies the state-of-the-art 

boosting algorithms,1) AdaC2 to get G-mean based Online AdaC2 for Recurrent Imbalance Shifts (GOA-RIS) and AGOA-RIS 

(Ageing and G-mean based Online AdaC2 for Recurrent Imbalance Shifts), and 2) CSB2 to get G-mean based Online CSB2 for 

Recurrent Imbalance Shifts (GOC-RIS) and Ageing and G-mean based Online CSB2 for Recurrent Imbalance Shifts (AGOC-

RIS). The study has empirically and statistically analysed the performances of the proposed algorithms and Online AdaC2 

(OA) and Online CSB2 (OC) algorithms using benchmark datasets. The test outcomes demonstrate that the proposed 

algorithms globally beat the performances of OA and OC. 
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1. Introduction 

A data stream is a boundless sequence of real-time data 

instances with high arrival rate [11]. Predictive models 

for data stream classification have intense demand in 

numerous applications like spam separation [5], web 

monitoring [1], medical diagnosis [27], fraud detection 

[30] and prediction of financial distress [32]. In such 

real-world applications often, data may have skewness 

where the number of examples of one class is very few 

when contrasted with the number of instances of other 

[35]. The class with a majority of samples influences 

the performance of the classifier causing negligence to 

the minority class [15]. The Imbalance Ratio (IR) is a 

proportion of the number of majority samples to the 

number of minority samples [25].  

The broad categorization of class imbalance is of 

two types: intrinsic imbalance and extrinsic imbalance 

[17]. The inherent nature of sample space causes the 

intrinsic imbalance. Consider a sample space for fraud 

detection that has a majority of legitimate transactions 

and a minority of fraudulent transactions. Some 

external factors like time, memory capacity result in 

skewed data in the nonstationary streaming 

environment. This form of imbalance is categorized as 

the extrinsic imbalance. Suppose for a specific time 

interval if data from some sensors is interrupted then it 

may result in skewed data during that time interval. In 

the next time interval, smooth transmission from all 

sensors may resume leading to the balanced data 

stream. Thus, nonstationary data may have variations 

in IR. In dynamic data streams its distribution of data 

changes. The population of classes may vary causing 

the change in class priors [19]. The most researches 

focus on the intrinsic imbalance in stationary data [10, 

17]. 

The organization of the remaining contents is as 

follows. Section 2 overviews the related work. Section 

3 explains the background of this research. Section 4 

provides a thorough description of the proposed 

methodology. Section 5 highlights the results of our 

experiments. Section 6 reports the conclusions and 

mentions a few points for future work.  

2. Related Work 

Noting the importance of skewed data problem, many 

researchers have been managing it by three general 

classes of techniques [10, 17, 39]:  
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1. Data level (external) 

2. Algorithm level (internal)  

3. Cost-sensitive techniques.  

Data level strategies pre-process data to balance the 

uneven class distribution through resampling [2, 22, 23, 

28, 43]. Algorithm level procedures develop or change 

the existing algorithms to focus on examples of positive 

class [12, 32, 40]. The cost-sensitive approaches use a 

combination of both data and algorithm level methods 

[24, 30, 39]. Though cost-sensitive approaches are less 

popular than re-sampling based data level approaches 

they are computationally more efficient than re-

sampling. Hence in streaming data cost-sensitive 

approach may be more suitable [15]. This 

communication presents a novel cost-sensitive 

approach to deal with skewed data streams. 

The ensemble of learners enhances the performance 

of a single learner. It binds a few classifiers to get a 

novel classifier that beats all of it [10]. Being one of the 

topmost ten data mining algorithms [41], AdaBoost 

ensemble learning [9] has caught the eye of data 

scientists to build up an assortment of cost-sensitive 

boosting algorithms [20, 21]. Several such blends are 

having different viewpoints, basic assumptions, and 

theories [24]. The most illustrative ensembles of this 

family are AdaCost [7], AdaC1, AdaC2, and AdaC3 

[33], AdaCost (β2), CSB0, CSB1, CSB2 [34], and 

RareBoost [18]. These algorithms contrast in their 

weight update rule. The comparative study of various 

cost-sensitive boosting algorithms with different 

imbalance levels is available in [42]. The research work 

in [39] introduces Cost-Sensitive Deep Neural Network 

Ensemble (CSDE) that applies undersampling to deal 

with the class imbalance in large stationary data. All 

these studies consider inherent imbalance in data where 

the positive class is always in a minority. None of these 

cost-sensitive boosting techniques incorporates online 

processing and extrinsic imbalance in nonstationary 

streaming data.  

Adaptive, online processing is essential for dynamic 

environments to incorporate new incoming data [11]. 

Online learning can be a situation of incremental 

learning with a single element in each batch [37]. It 

achieves fast adaptation to the changing environment as 

it does not wait for the arrival of a full chunk to update 

the learning model [37]. The research in [26] describes 

an online boosting framework using the concept of 

approximation of the binomial distribution by Poisson 

distribution when n→∞, where n is the number of trials. 

The correct classification of an instance results in a 

decrease in the Poisson distribution parameter λ 

associated with it when passed to the next learner and 

misclassification results in an increase in λ [26]. The 

study in [35] presents online versions of some state-of-

the-art ensemble algorithms to tackle the skewness in 

data and their performance evaluation by using 5-fold 

cross-validation. The oversampling and undersampling 

based online bagging methods are described in [37, 

38]. The work in [28] proposes selection-based 

resampling ensemble and that in [32] presents time-

weighted oversampling by combining Synthetic 

Minority Oversampling Technique (SMOTE) with 

AdaBoost-SVM to deal with the intrinsic imbalance in 

dynamic data streams. Both the algorithms [28, 32] 

process the data stream in batches. Adaptive Random 

Forest with weighted resampling [8] handles skewness 

of nonstationary data stream. Very few studies are 

based on online cost-sensitive algorithms [14, 36] to 

classify data streams with intrinsic imbalance. 

In streaming data, the minority class at a certain 

time interval may turn to the majority class at the next 

time interval due to the nonstationary environment. 

This leads to shifts in class imbalance. Many studies 

are available on class imbalance problem [10, 15, 17, 

20, 21, 24, 42]. However, there is hardly any work that 

addresses extrinsic imbalance problem in dynamic 

data, online ensemble method and adaptive cost-

sensitive learning altogether. In the case of extrinsic 

imbalance, both the classes may face a minority 

problem at different time slots and a classification 

algorithm needs to adapt to the changes in both class 

priors. This study presents a joint solution to all these 

issues. The proposed research modifies the state-of-

the-art cost-sensitive boosting algorithms AdaC2 [33] 

and CSB2 [34] to get four variants namely: 

1. GOA-RIS  

2. AGOA-RIS 

3. GOC-RIS  

4. AGOC-RIS.  

The proposed research aims at following novelty 

aspects: 

 Online adaptive cost-sensitive boosting algorithms 

to improve G-mean in RIS. 

 G-mean based weighted costs to deal with changing 

extrinsic or intrinsic imbalance in dynamic data. 

 Ageing based approach to incorporate the latest 

change in class priors in incoming data. 

 Empirical and statistical tests to compare G-mean 

of the proposed algorithms with algorithms AdaC2 

and CSB2 on benchmark datasets.  

The experimentation results mentioned in this study 

support the distinguished performance of the proposed 

novel approach than the state-of-the-art algorithms.  

3. Background 

The current communication deals with the problem of 

frequently changing IR due to the streaming nature of 

nonstationary data. It addresses both the extrinsic and 

intrinsic imbalance. It refers to online versions of cost-

sensitive boosting algorithms AdaC2 and CSB2. It 

modifies these algorithms to have improved G-mean 

when data experience RIS. 
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3.1. Problem Formulation 

Consider a data stream DS={(xt, yt)} arrived at time 

step t = 1, 2… and xt is a data sample in m-dimensional 

feature space with class label yt ϵ Y ={y1, y2…, yL}; L is 

the number of class labels. This research assumes a 

binary class imbalance problem where Y = {0, 1}. Let 

DS t
  be the set of positive samples with label ‘1’ and 

DS t
  be the set of negative samples with label ‘0’ 

received at time step t such that DSDSDS tt   and 




DSDS tt
 . Class imbalance occurs in a data stream 

at time step t when |||| DSDS tt
  , i.e., positive 

samples are in the minority, and negative samples are in 

the majority at certain time step t. 

As data streams are dynamically changing, they may 

possess extrinsic imbalance. The changes in class priors 

at next time step t’ may cause imbalance due 

to ||||
'' DSDS tt
  . Over the period, the minority of one 

class for a certain time step t, ( |||| DSDS tt
  ) may 

transform into the majority of the same class for some 

other time step t’, ( ||||
'' DSDS tt
  ). This type of 

population shift may lead to RIS in nonstationary data. 

3.2. G-mean as an Evaluation Metric in Skewed 

Domain 

The standardized assessment criterion is paramount in 

the evaluation of a variety of research work in the 

domain of skewed data. The confusion matrix 

illustrated in Table 1 describes the binary classification 

result. Let ‘0’ represents a negative class label and ‘1’ 

represents a positive class label. 

Accuracy     FNFPTNTPTNTP  is less suitable 

evaluation metric in imbalance domain as poor 

performance of a learner on minority samples may get 

obscured by better performance of the learner on 

majority samples [17]. So, there are some other 

favourite metrics like sensitivity   FNTPTP  , 

specificity   FPTNTN  , precision   FPTPTP  , G-

mean  ySpecificitySensitivit   [17]. As described in 

section 3.1 when nonstationary data undergo frequent 

shifts in class imbalance, the performance of both the 

classes is important. In such cases sensitivity (true 

positive rate) and specificity (true negative rate) 

equally, need to be high. Since G-mean measures 

geometric mean of sensitivity and specificity, it is the 

appropriate metric for measuring performance in RIS. 

Table 1. Confusion matrix for binary classification. 

 Actual Class Label ‘0’ Actual Class Label ‘1’ 

Predicted Class Label ‘0’ TN(True Negative) FN(False Negative) 

Predicted Class Label ‘1’ FP (False Positive) TP(True Positive) 

3.3. AdaC2 and CSB2 

Since the empirical study in [33] claims that AdaC2 

outperforms other algorithms of the same family, the 

current study selects it as one of the state-of-the-art 

cost-sensitive boosting algorithms. AdaC2 boosts false 

negative samples more than false positive samples. It 

reduces lesser weights of true positive samples than 

true negative samples. Another state-of-the-art 

algorithm referred in this work is CSB2 [34] that 

blends AdaBoost and AdaC2. In the case of 

misclassification, it follows the weight update rule of 

AdaC2 and that of AdaBoost, otherwise. Both AdaC2 

and CSB2 modify the weight update equations to 

integrate dissimilar costs for misclassification of data 

belonging to different classes. These algorithms 

handle an intrinsic imbalance in stationary data using 

batch processing. Summary of weight update rule and 

the weight parameter of base learners are given in 

Table 2. 

Table 2. Summary AdaC2 and CSB2 w.r.t. weight update rule and 
the weight parameter of base learners. 

 AdaC2 [33] CSB2 [34] 
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3.4. Online AdaC2(OA) and Online CSB2(OC) 

In the streaming environment, the whole training 

dataset is not available at the start; instead, the current 

work follows the test-then-train approach for each 

incoming data sample. To have a fair comparison with 

the state-of-the-art algorithms the current 

experimentation refers to online versions of AdaC2 

and CSB2. Due to unavailability of whole data set in 

the online environment, tracing of normalization 

factor becomes impractical. The weight update rules 

without normalization factors for online processing of 

AdaC2 and CSB2 are mentioned in [35]. 

Assume (xt, yt) be the tth data instance available for 

training of learner l. Cost of a False Positive (CFP) 

and Cost of a False Negative (CFN) are the costs 

associated with the negative and positive samples, 

respectively. y
t

ˆ is the predicted class of a data instance 

xt by a learner l. As proposed in [35], Equations (1) 

and (2) mentioned below respectively define weight 

update rule for Online AdaC2 (OA) and Online CSB2 

(OC). OA traces weighted accuracy and weighted 

error while OC traces both unweighted and weighted 

errors. In online boosting [26], the Poisson parameter 

λ is needed to be updated. The presented algorithms 

calculate weighted λ parameters for true positive 

(W
TP

l
), true negative (W

TN

l
), false positive (W

PF

l
) and 

false negative (W
FN

l
) referring to lth learner such that 



106                                                       The International Arab Journal of Information Technology, Vol. 18, No. 1, January 2021 

Equation (3) gives their weighted total (W
Total

l
). 

Equations (4) and (5) respectively formulate weighted 

accuracy (W
acc

l
) and weighted error (W

err

l
) of the learner 

l. Equation (6) defines unweighted error (εl) where 

(W
MS

l
) represents the weighted λ parameter for 

misclassified samples by the lth learner. 

 
 
 
 






































WCFPy

WCFNy
yy

WCFPy

WCFNy
yy

DD

err
lt

err
lt

tt

acc
lt

acc
lt

tt

t

l

t

l

2;0

2;1
ˆ

2;0

2;1
ˆ

1

  

     
 
 

























WCFPy

WCFNy
yy

Wyy

DD
err
lt

err
lt

tt

err
lllltt

t

l

t

l

2;0

2;1
ˆ

1;ˆ

1

   

 WWWWW
FN

l

FP

l

NT

l

PT
l

Total
l

  

  WWWW
Total
l

TN

l

PT

l
acc
l

  

  WWWW
Total
l

FN

l

PF

l
err
l

  

WW
Total

l

MS

ll
  

4. Proposed Methodology 

The objective of the proposed methodology is to 

address imbalanced data streams, adaptive cost-

sensitive algorithms and online ensemble learning 

simultaneously to improve G-mean in skewed data 

streams with changing class priors. It introduces G-

mean based weighted cost-functions for false positive 

and false negative samples resulted in online learning 

of skewed data stream. These proposed cost-functions 

combined with online AdaC2 and CSB2 boosting 

algorithms cater to online learning of nonstationary 

data with recurrent imbalance shifts.  

4.1. G-mean based Cost-Sensitive Boosting 

Approach 

Being computationally more efficient, a cost-sensitive 

approach is highly suitable to handle the imbalance 

problem in online data streams [15]. The cost-sensitive 

approach assigns higher misclassification cost to 

minority instances than that of majority instances. The 

critical task in online cost-sensitive approach is the 

setting of misclassification costs for unknown data [14]. 

Very few online cost-sensitive algorithms [14, 36] are 

available. But all of them assumes intrinsic imbalance. 

Though there are variations in IR these works assume 

that one class is always in minority and other is in 

majority and hence CFN is always larger than CFP to 

focus on a positive class which is in a minority. 

In dynamic data with the extrinsic imbalance, any 

class may turn in minority or majority in different time 

intervals as explained in section 3.1. In such scenarios 

of changing class imbalance, setting misclassification 

cost of one class always larger than that of other may 

not focus on both the classes. G-mean represents the 

balanced performance of a learner between two 

classes. Hence, this research presents a G-mean based 

cost-sensitive boosting approach to deal with frequent 

shifts in class imbalance. The research objective is to 

set the cost value for each class such that it maximizes 

the G-mean. The cost function of the traditional 

approach is changed to G-mean based adaptively 

weighted cost function so that it decreases the 

significance of negative class only when the 

performance of positive class degrades. Thus, it 

emphasizes both the classes in case of RIS caused by 

changing class priors. 

Let || DS t


 be the total number of positive data 

samples with label ‘1’ and || DS t
 be the total number of 

negative samples with label ‘0’ received at time t. Let 

Set and Spt be the sensitivity and specificity 

respectively, at time t. 
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where I is an indicator function.  

The proposed online cost-sensitive boosting 

approach sets different cost values for the negative 

and the positive class referring to Equation (7) to have 

maximum G-mean. Let CFNt and CFPt be the costs of 

false negative and false positive instances 

respectively, at time t. Equations (8) and (9) give the 

G-mean based weighted cost-functions for CFNt and 

CFPt respectively. 

|||| DSDSCFN ttt


  
 

SeCFP tt   

At any time t, if the received data possess skewness, 

then the IR at that time is ≥1, increasing the cost of a 

positive class. As per Equation (9), the cost of a 

negative class is directly proportional to the true 

positive rate. If the learning model is performing 

satisfactorily with a higher true positive rate, then the 

cost associated with the negative class does not 

decrease further. It pulls down the prominence of the 

negative class only when the true positive rate 

decreases. 

4.2. Proposed Algorithms 

This research contributes four algorithms that 

effectively tackle population shift due to change in 

class priors in an imbalanced data stream: 

1. GOA-RIS  

2. AGOA-RIS 

3. GOC-RIS 

 (1) 

 (2) 

 (4) 

 (5) 

 (6) 

 (3) 

 (7) 

 (8) 

 (9) 
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4. AGOC-RIS.  

The novel approach reported in this paper modifies the 

cost-functions in OA and OC [35] to maximize G-mean 

as mentioned in section 4.1 Also, it applies the test-

then-train approach with and without ageing factor to 

deal with a nonstationary imbalanced data stream. 

4.2.1. Algorithms GOA-RIS and GOC-RIS 

The algorithms GOA-RIS and GOC-RIS present the 

modified versions of OA and OC by incorporating G-

mean based cost-functions (Equations (8) and (9)) and 

the test-then-train approach without ageing factor. 

Algorithm 1: GOA-RIS 

Input: (xt, yt) is an incoming data instance at time t = {1, 

2,…} of data stream DS, Ensemble of B learners, initial 

costs of CFNt and CFPt of positive and negative samples 

respectively. 

Output:
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 Do for each incoming instance (xt, yt)  

  Set λ = 1; 

  for l = 1 to B do 
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   Let r ~Poisson(λ) ; 

   By test-then-train approach repeat r times 

training of the base learner l;   yh x ttt
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In online data streaming as all n instances are 

unavailable at the start, the IR and sensitivity are 

updated with each incoming instance. Let M t
 and M t

  

be the metrics indicating the percentages of positive 

and negative class samples arrived by time t. The 

function f (Equation (10)) returns 1 for the correct 

prediction of incoming data instance and 0 otherwise. 
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The Algorithms 1 and 2 describe GOA-RIS and GOC-

RIS respectively. 

4.2.2. Algorithms AGOA-RIS and AGOC-RIS 

The population shift may occur in dynamic data 

stream leading to change in class priors of the arriving 

classes. This variation in prior probabilities may result 

in misclassification. When currently arrived instances 

are approaching the large number, the contribution of 

function f (Equation (10)) in the calculation of class-

percentage Equations (11) and (12) becomes 

insignificant. Hence, it takes a long span to notice the 

change in class-percentage by techniques mentioned 

in Equations (11) and (12). The usage of ageing 

factors results in adaptation to varying prior 

probabilities of the classes. More is the age of an 

instance; lesser is its prominence in class-percentage 

and cost-functions. Another set of proposed 

algorithms (AGOA-RIS and AGOC-RIS) uses two 

ageing factors, namely, data-ageing factor Ψ, (0<Ψ<1) 

and sensitivity-ageing factor Φ, (0<Φ<1) to more 

emphasise the latest data and sensitivity.  

The Equations (15), (16), (17), and (18) formulate 

the ageing-based parameters CFPCFNMM tttt ,,, 
. 

    h xfMM tttt 





11  

    h xfMM tttt  


 11
 

MMCFN ttt
  

    h xfSeCFP tttt
  11  

The algorithms AGOA-RIS and AGOC-RIS are same 

as GOA-RIS and GOC-RIS respectively excluding 

 (10) 

 (11) 

 (12) 

 (13) 

 (14) 

 (15) 

 (16) 

 (17) 

 (18) 
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line number 19. For ageing based algorithms, line 

number 19 in both the Algorithms 1 and 2 update 

parameters CFPCFNMM tttt ,,, 
using Equations (15), 

(16), (17), and (18), respectively. 

Algorithm 2: GOC-RIS 
 

Input: (xt, yt) is an incoming data instance at time t = {1, 

2,…} of data stream DS, Ensemble of B learners, initial 

costs of CFNt and CFPt of positive and negative samples 

respectively. 

Output:

    yh xIxH ttt

B

l
l

l

y
t

t 












 
   1}1,0{

1
logmaxarg



  

 
Initialize: ,0,0,0,0,0   WWSeMM

Total

l

MS

lttt

0,0,0,0  
l

err

l

FN

l

FP

l
WWW for all base learners 

lϵ{1,2,..,B}. 

 Do for each incoming instance (xt, yt)  

  Set λ = 1; 

  for l = 1 to B do 

 
  WW

Total

l

Total

l
; 

   Let r ~Poisson(λ) ; 

   By test-then-train approach repeat r times 

training of the base learner l;   yh x ttt
ˆ ; 

   if  yy
tt ˆ  then 

 
       W err

llll
  1  ; 

   else 

    if  1&&0ˆ  yy
tt

then 

 
    

CFNWW t
FN

l

FN

l   ; WW
MS

l

MS

l
; 

Update 
l

err
l

W , using Equations (5), (6) 

respectively;  WCFN err
llt    ; 

    else 

 
    

CFPWW t
FP

l

FP

l   ;

WW
MS

l

MS

l
; 

Update 
l

err
l

W , using Equations (5), (6) 

respectively;  WCFP err
llt   ; 

    end if 

   end if 

  end for 

  Calculate Set ; 

 
 Update CFPCFNMM tttt ,,, 

using Equations 

(11), (12), (13), (14) respectively; 

 end 
 

5. Experimental Results 

The reported study focuses on a binary imbalance 

problem with recurrent changes in IR. It studies 

different semi-synthetic scenarios in which any of the 

classes may become a minority class due to change in 

class priors in that specific time interval. 

5.1. Preparation of Datasets for Different 

Scenarios of RIS 

The experiments are performed on one synthetic and 

two real benchmark datasets with binary class 

imbalance:-SEA [31], Electricity pricing [16], Weather-

NOAA as introduced in [6]. Table 3 gives the 

summary of datasets used for the experimentation. 

Table 3. Summary of datasets used for experimentation. 
 

Dataset 
No. of 

instances 

No. of 

features 

No. of 

Classes 
% Negative % Positive IR 

SEA 50000 3 2 62.84 37.16 1.69 

Electricity 
Pricing 

45312 7 2 57.55 42.45 1.36 

Weather 18159 8 2 69 31 2.23 

 

The present empirical study considers different 

scenarios of imbalance shifts by recurrently changing 

class priors. We equally divide each data set into four 

slots. Each slot has chunks of randomly chosen ten 

samples from an original dataset. We apply specific IR 

to all chunks in each slot to get semi-synthetic datasets 

with RIS. By abruptly varying class priors of each 

class in each slot, three different data sequences are 

produced resulting in three scenarios of RIS as 

described in Table 4. Figure 1 portrays the variations 

in the percentages of positive and negative data 

samples in each slot of different scenarios of RIS. In 

RIS-Extreme both the classes experience minority in 

alternate slots whereas in the remaining two scenarios 

(RIS-Mild and RIS-Variable) only positive class is 

always in a minority but with abruptly changing IR in 

each slot.  

Table 4. Scenarios of RIS.  

Scenario 
Data Description (% negative, % positive, IR) 

1st Slot 2nd Slot 3rd Slot 4th Slot 

RIS-Mild (50,50,1) (90,10,9) (50,50,1) (90,10,9) 

RIS-Extreme (90,10,9) (10,90,0.11) (90,10,9) (10,90,0.11) 

RIS-Variable (50,50,1) (70,30,2.33) (80,20,4) (90,10,9) 
 

 

Figure 1. Data samples distribution in different scenarios of RIS. 

5.2. Experimentation Setup  

The research has implemented the state-of-the-art 

algorithms OA and OC by the test-then-train approach 

to have a fair evaluation of four proposed algorithms 

GOA-RIS, GOC-RIS, AGOA-RIS and AGOC-RIS 

against them. All these algorithms are implemented 

using an ensemble of five Hoeffding trees as base 

learners (i.e., B = 5). The initial costs of a false 

positive and a false negative are 0.7 and 1 
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respectively. We set a data-ageing factor (Ψ), and a 

sensitivity-ageing factor (Φ) to 0.9. The most popular 

analytic tool [29] R is used for this research work.  

5.3. Empirical Results 

In online streaming data, prediction of the total number 

of instances n is unfeasible. Hence, instead of using any 

cross-validation technique, this study has opted 

prequential analysis [3] by which each data sample is 

tested on the learning model before its training, and 

based on it the performance metrics are incrementally 

calculated. At each time step, the G-mean is 

incrementally updated by referring to the recent 

performance. As per the mentioned scenarios of RIS 

(section 5.1), the shift in imbalance occurs in all slots. 

We reset G-mean values after each slot to avoid the 

influence of pre-shift performance on post-shift values.  

Table 5. G-mean (%) of all algorithms in all scenarios of RIS.  

Dataset Slot 

AdaC2 Family CSB2 Family 

OA 
GOA-

RIS 

AGOA-

RIS 
OC 

GOC-

RIS 

AGOC-

RIS 

RIS-Mild (Slots 1&3: IR=1; Slots 2&4: IR=9) 

SEA 
 

 

 

1 74.62 78.12 77.56 79.50 80.05 80.42 

2 77.45 77.39 78.68 75.87 75.61 76.00 

3 75.09 76.76 78.64 80.09 79.64 79.67 

4 78.35 79.04 77.14 76.96 75.73 76.01 

Electricity 
 

 

 

1 77.44 69.80 69.29 70.71 70.84 70.96 

2 68.86 69.33 76.95 66.29 69.39 68.73 

3 72.08 71.17 72.92 73.27 73.12 73.72 

4 73.66 72.05 72.20 69.74 70.41 72.17 

Weather 
 

 

 

1 77.70 67.19 69.71 64.73 69.07 66.92 

2 66.25 67.79 73.35 52.36 65.31 71.28 

3 69.65 71.53 72.22 71.07 71.09 72.32 

4 65.79 67.97 71.69 63.92 63.49 68.71 

RIS-Extreme (Slots 1&3: IR=9; Slots 2&4: IR=0.11) 

SEA 

 

 
 

1 71.31 79.75 76.18 64.14 74.88 71.72 

2 48.57 48.42 66.38 59.10 50.91 69.71 

3 77.25 78.52 77.65 78.44 77.66 76.60 

4 51.11 56.64 69.30 63.26 64.24 70.74 

Electricity 

 

 
 

1 61.10 79.84 71.88 56.01 67.90 64.90 

2 48.31 51.09 63.03 54.95 55.80 66.18 

3 67.05 68.95 69.98 68.25 70.37 69.32 

4 57.43 55.66 65.21 63.80 65.54 68.44 

Weather 

 

 

 

1 50.28 72.65 71.14 38.97 75.79 67.68 

2 49.34 46.32 62.11 57.31 50.23 65.49 

3 59.99 64.06 67.18 61.80 66.96 63.82 

4 54.66 55.93 65.41 61.67 59.22 65.39 

RIS-Variable (Slot 1: IR=1; Slot 2: IR=2.33; Slot 3: IR=4; Slot 

4:IR=9) 

SEA 
 

 

 

1 72.87 78.39 77.67 78.94 80.02 79.63 

2 79.23 80.35 79.07 81.06 80.35 80.40 

3 80.21 80.12 79.85 80.37 80.27 79.60 

4 77.55 76.33 77.03 73.04 74.09 75.65 

Electricity 
 

 

 

1 77.74 70.60 71.25 70.77 70.87 69.84 

2 70.72 71.57 71.46 73.17 72.59 72.21 

3 72.23 73.03 74.16 72.64 72.12 72.87 

4 68.15 70.70 71.14 65.29 68.83 69.23 

Weather 
 

 

 

1 70.05 67.41 67.32 65.90 68.33 68.79 

2 70.10 70.33 75.95 68.15 70.48 71.16 

3 68.59 71.39 74.08 65.20 67.55 67.95 

4 62.21 67.58 73.39 53.09 64.52 69.67 

Original 

SEA 79.62 81.25 81.35 83.27 83.27 83.06 

Electricity 85.68 85.83 85.12 84.79 85.09 84.70 

Weather 70.93 70.71 72.51 70.91 72.89 71.93 

 

Table 5 gives the percentages of G-mean of OA, 

GOA-RIS, AGOA-RIS, OC, GOC-RIS and AGOC-RIS 

observed in each slot of different scenarios of 

imbalance shifts of each dataset. The proposed G-

mean based weighted cost function assures better 

classification performance over both the classes. It 

reduces the influence of the negative class only when 

the misclassification of positive class increases. Hence 

the proposed algorithms result in improved post-shift 

(slots 2, 3, and 4) G-mean than that of OA and OC in 

all scenarios of RIS. Especially, in the case of RIS-

Extreme where both the classes undergo minority, the 

rise in G-mean values of proposed algorithms is more 

prominent. Influence of old data in cost calculations 

has resulted in competent G-mean values of GOA-RIS 

and GOC-RIS when experimenting with an original 

dataset. 

Table 6. Scenario wise average G-mean (%). 

Scenario 

AdaC2 Family CSB2 Family 

OA 
GOA-

RIS 

AGOA-

RIS 
OC 

GOC-

RIS 

AGOC-

RIS 

RIS-Mild 73.08 72.34 74.20 70.38 71.98 73.08 

RIS-Extreme 58.03 63.15 68.79 60.64 64.96 68.33 

RIS-Variable 72.47 73.15 74.36 70.63 72.50 73.08 

Original 78.74 79.26 79.66 79.66 80.42 79.89 

Overall 

Average 
70.58 71.98 74.25 70.33 72.46 73.60 

 

 

Figure 2. Scenario wise average G-mean (%) of all algorithms. 

Table 6 presents the percentages of average G-

mean of six algorithms in all slots of all datasets for 

each scenario of experimentation. It shows that G-

mean values achieved by the proposed novel approach 

are superior to algorithms OA and OC. More 

contribution of recent data in cost updating has given a 

better performance of ageing-based algorithms in all 

scenarios of RIS. Figure 2 depicts the scenario wise 

percentages of average G-mean of three algorithms of 

AdaC2 family:  

1. OA  

2. GOA-RIS 

3. AGOA-RIS. 

and three algorithms of CSB2 family:  

1. OC 



110                                                       The International Arab Journal of Information Technology, Vol. 18, No. 1, January 2021 

2. GOC-RIS  

3. AGOC-RIS on all datasets. 
 

 

Figure 3. Overall average G-mean (%) of all algorithms. 

Figure 3 presents the percentages of overall average 

G-mean of all six algorithms OA, GOA-RIS, AGOA-

RIS, OC, GOC-RIS, AGOC-RIS. These values are 

computed by averaging the scenario wise percentages 

of average G-mean of all algorithms. The empirical 

analysis exhibits that ageing and G-mean based online 

AdaC2 algorithm AGOA-RIS achieves the highest 

percentage of overall average G-mean. 

Table 7. G-mean based overall average ranking.  

Scenario OA 
GOA-

RIS 

AGOA-

RIS 
OC 

GOC-

RIS 

AGOC-

RIS 

RIS-Mild 2 4 1 6 5 3 

RIS-Extreme 6 4 1 5 3 2 

RIS-Variable 5 2 1 6 4 3 

Original 6 5 3.5 3.5 1 2 

Avg. Ranking 4.75 3.75 1.63 5.13 3.25 2.50 
 

 

Figure 4. Comparison of G-mean based average ranking of all 

algorithms. 

Table 7 computes the G-mean based overall average 

ranking of each algorithm. These rank values are based 

on the results described in Table 6. Figure 4 portrays 

the comparison of G-mean based average ranking of six 

algorithms. It shows that the proposed four algorithms 

GOA-RIS, AGOA-RIS, GOC-RIS and AGOC-RIS beat 

both, OA and OC. AGOA-RIS has the least and OC has 

the highest value of average rank indicating that 

AGOA-RIS is the best performer and OC is the worst 

performer among these six variations of ensembles. 

5.4. Statistical Results 

To ensure better comparative analysis and to test 

whether mentioned six algorithms have noteworthy 

differences, this study has used nonparametric 

statistical tests as per the recommendations in [4, 13]. 

We apply Iman-Davenport test to check a significant 

difference among these algorithms. Table 8 provides 

the result of Iman-Davenport test on G-mean in 

different RIS. The resultant p-value for RIS-Extreme 

indicates that there is at least one algorithm that 

behaves differently and rejects a null hypothesis (H0: 

All algorithms are similar) at significant level α=0.05. 

Hence for RIS-Extreme, we opt for Aligned Rank 

posthoc test with Bergmann and Hommel’s correction 

[4, 13]. Table 9 presents the result of posthoc test. 

Except for RIS-Extreme, all scenarios describe a 

minority in just positive class. For such scenarios, all 

six algorithms do not show a significant distinction in 

statistical tests (Table 8). It underpins that the 

proposed G-mean based adaptive weighted cost-

functions (section 4.1) are equally competent to the 

traditional cost-sensitive approach when only positive 

class is consistently in a minority. As both, the classes 

become minor in different slots of RIS-Extreme, the 

behaviour of proposed algorithms due to G-mean 

based adaptive weighted cost-function discern from 

OA and OC. The least values (boldfaced) in Table 9 

resulted by Aligned Rank posthoc test applied to RIS-

Extreme infer the same. 

Table 8. Iman-Davenport test on G-mean (α = 0.05). 

Scenario p-value Remark 

RIS-Mild 0.1437 Accept H0 

RIS-Extreme 0.00001104 Reject H0 

RIS-Variable 0.8412 Accept H0 

Original 0.663 Accept H0 

Table 9. Aligned Rank posthoc test with Bergmann and Hommel’s 
correction on G-mean in RIS-Extreme (α=0.05). 

 OA 
GOA-

RIS 

AGOA-

RIS 
OC 

GOC-

RIS 

AGOC-

RIS 

OA NA 0.30 0.00 0.30 0.03 0.00 

GOA-RIS 0.30 NA 0.04 0.92 0.86 0.18 

AGOA-RIS 0.00 0.04 NA 0.02 0.30 0.92 

OC 0.30 0.92 0.02 NA 0.86 0.12 

GOC-RIS 0.03 0.86 0.30 0.86 NA 0.86 

AGOC-RIS 0.00 0.18 0.92 0.12 0.86 NA 

6. Conclusions and Future Scope 

The presented research contributes to a novel 

approach that combines class imbalance, cost-

sensitive algorithms, online, ensemble learning to 

construct a joint solution. Through this joint solution, 

the reported work addresses the problem of recurrent 

imbalance shift by changing class priors in 

nonstationary data. The paper presents four online 

adaptive cost-sensitive boosting algorithms as 

modifications to algorithms AdaC2 and CSB2 as 

below: 

1. GOA-RIS  

2. GOC-RIS  

3. AGOA-RIS 

4. AGOC-RIS. 
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 To cope with the online streaming environment the 

study follows test-then-train approach and Poisson 

parameter λ that approximates the weight updating rule 

of AdaC2 and CSB2. The proposed algorithms assign 

different costs to positive and negative classes with the 

objective of G-mean maximization in various scenarios 

of imbalance shifts. The work introduces the forgetting 

of old data through ageing factors to adapt to recent 

changes in data.  

The empirical analysis shows that the proposed 

algorithms work globally better than the state-of-the-art 

algorithms in all scenarios of RIS. The G-mean based 

overall average ranking presents AGOA-RIS as the best 

performer among all six mentioned algorithms. 

Referring to the statistical tests the proposed algorithms 

show distinguished performance when both the classes 

exhibit minority due to the extrinsic imbalance in the 

streaming environment. However, they show similar 

behaviours as that of state-of-the-art cost-sensitive 

approaches when data possess changing intrinsic 

imbalance. It indicates the suitability of proposed G-

mean based adaptively weighted cost-functions even in 

conventional cost-sensitive approach. 

Concerning the current work there are some points 

we would like to focus on in the future. We have 

considered a few scenarios of RIS with changing IR, 

but there is a variety of concept drifting scenarios in 

online streaming data. Also, this work is limited to a 

binary class imbalance problem and Hoeffding tree as a 

base learner. We will test our algorithms with different 

base learners using a variety of real data streams of 

multiclass imbalance. More efficient online adaptive 

algorithms to handle different types of concept drifts in 

multiclass imbalanced streaming data constitute future 

scope. 
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