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Abstract: To overcome the problem of occlusion in visual tracking, this paper proposes an occlusion-aware tracking 

algorithm. The proposed algorithm divides the object into discrete image patches according to the pixel distribution of the 

object by means of clustering. To avoid the drifting of the tracker to false targets, the proposed algorithm extracts the 

dominant features, such as color histogram or histogram of oriented gradient orientation, from these image patches, and uses 

them as cues for tracking. To enhance the robustness of the tracker, the proposed algorithm employs an implicit spatial 

structure between these patches as another cue for tracking; Afterwards, the proposed algorithm incorporates these 

components into the particle filter framework, which results in a robust and precise tracker. Experimental results on color 

image sequences with different resolutions show that the proposed tracker outperforms the comparison algorithms on handling 

occlusion in visual tracking. 
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1. Introduction 

Despite the advances in visual tracking in these years, 

there are still unsolved problems, such as background 

clutters, occlusions, pose changes, illumination 

variations. For example, a tracker tends to drift to the 

neighborhoods of an object's ground-truth state, when 

the object's appearance becomes dissimilar from that of 

the template while occlusion occurs. 

A reasonable solution to the problem is tracking 

only based on these image parts that are not occluded 

by the disruptors. Such a strategy is employed by part-

based trackers [9, 10]. The part-based trackers divide 

the object into image patches, figure out these patches 

that are occluded by measuring the appearance 

differences between these patches and their 

counterparts in the template, then exclude them from 

the appearance model, or limit their contributions to 

the appearance model. By doing so, such trackers can 

overcome the problem of partial occlusions to some 

extent. 

But there are some problems in the conventional 

part-based trackers [9, 10]. First, there are no feasible 

solutions for the adaptive division of a target into its 

parts. Second, the previously designed algorithms do 

not provide the strategy to facilitate visual tracking by 

using image features with different reliability. 
To overcome such problems, this paper proposes an 

occlusion-aware visual tracking algorithm, which 

employs an appearance model that is robust against 

occlusions. The proposed appearance model is 

composed of the dominant features of the parts and the 

spatial constraints among parts. 

The novelties of the proposed algorithm are as 

follows. 

First, unlike the baseline part-based tracking 

schemes [9, 10], the proposed algorithm divides the 

object into discrete parts adaptively by means of color 

clustering.  

Second, the proposed algorithm is different from the 

baseline multi-cue or multi-feature tracking schemes [8, 

16, 19] in that it uses a dominant feature for tracking, 

which is the most discriminative one selected from the 

features. 

At last, beyond what is stated above, the benefit of 

the proposed scheme is beyond robust against 

occlusion. The proposed scheme utilizes spatial 

structural constraints among the image patches of the 

object as cues for tracking. As complementation of the 

appearance, the spatial structural constraint plays an 

important role in the proposed scheme. For example, 

there are false targets that are similar to the ground-

truth target in the distribution of the appearance, such 

as Color Histogram (HoC) [7] or Histogram of 

Gradient Orientations (HoG) [13]. But they are 

different from the ground-truth target in the spatial 

arrangements of image patches. Such kind of false 

targets can be distinguished from the ground-truth 

target according to the spatial structural constraints 

among the image patches. 

https://doi.org/10.34028/iajit/18/2/7
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2. Related Work 

Visual tracking has been an important topic in 

computer vision for a long time, therefore a handful of 

algorithms are proposed in the past decades. There are 

famous examples, such as mean-shift tracker [2], 

covariance tracker [21], color name tracker [3], 

Particle Filter (PF) [1, 14], kernel correlation tracker 

[6], and tracker based on deep neural networks [26].  

These trackers must exploit features from images 

for tracking, either explicitly or implicitly. There are 

color features, edge features, textural information, 

motion information, and so on. But single feature for 

tracking tends to fail, it is likely to be confounded with 

false targets or background clutters. Hence, multi-

feature/multi-cue trackers are proposed. For example, 

Lan et al. [8] used a joint sparse representation and 

robust feature-level fusion for multi-cue visual tracking. 

The tracker dynamically removed unreliable features to 

be fused for tracking and performed feature fusion on 

kernel spaces. Meanwhile, Sadeghian et al. [16] 

proposed a scheme to track multiple cues with long-

term dependencies. They proposed a structure of 

recurrent neural networks jointly reasons on multiple 

cues. Their algorithm tracked multiple targets robustly 

by using targets' appearance, motion, and interactions. 

Dhassi and Aarab [4] proposed a visual tracker fusing 

multiples cues. They fused the color and texture 

features to describe the appearance of the object under 

the particle filter framework. Walia and Kapoor [19] 

proposed an online object tracking algorithm via an 

adaptive multi-cue based particle filter framework. 

They estimated partial conflicting masses and 

conjunctive consensus among three cues for each 

evaluated particle. They used the reliabilities of 

context-sensitive transductive cues for discounting the 

particle likelihoods for quick adaptation of tracker. 

These multi-cue tracking schemes have largely 

improved the robustness of visual tracking, but they 

won't work well while there are occlusions. Hence 

part-based trackers are proposed. For example, Shu 

[18] proposed a part-based multiple-person tracker 

with partial occlusion handling. The tracker 

dynamically handled occlusions by distributing the 

score of the learned person classifier among its 

corresponding parts. By doing so, the tracker detected 

and predicted partial occlusions, and prevented the 

performance of the classifiers from being degraded. 

Meanwhile, Wang et al. [20] proposed a robust 

occlusion-aware part-based visual tracking with object 

scale adaptation. They used correlation filters to 

integrate the global model and part-based model. They 

used both global and local information to improve the 

robustness of the tracker. Yao et al. [23] proposed a 

part-based robust tracker using online latent structured 

learning. They modeled the parts of objects as latent 

variables and extended an online algorithm to the 

structured prediction case with the latent part variables. 

Zhang et al. [24] proposed a part-based visual tracker 

with spatially regularized correlation filters. They used 

multiple correlation filters to extract features within the 

range of the object, alleviated the boundary effect 

problem, and avoided penalization of the target 

content. 

As stated above, the part-based schemes are usually 

embedded into a tracker such as a particle filter or 

correlation filter, where particle filter is a popular 

visual tracking algorithm in these years. For example, 

Morales et al. [12] proposed a combined voxel and 

particle filter-based approach for fast obstacle 

detection and tracking. They used a particle filter to 

extract the 3-D object and estimated the motion. 

Meanwhile, Zhang et al. [25] proposed a correlation 

particle filter for visual tracking. They exploited and 

complemented the strengths of both the correlation 

filter and the particle filter. The tracker effectively 

handled large-scale variations via a particle sampling 

strategy, maintained multiple modes in the posterior 

density using little particles, and enabled the particles 

to stand close to the modes of a state by using a 

mixture of correlation filters. Fang et al. [5] proposed 

an on-road vehicle tracker based on a part-based 

particle filter. They combined the part-based strategy 

into a particle filter. They represented the central 

position of the vehicle as a hidden state and updated 

the particles corresponding to vehicle parts sharing the 

same motion effectively. Meng and Zhang [11] 

proposed an object tracker using a particle filter based 

on adaptive patches combining multi-features. They 

used weighted Bhattacharyya coefficients to calculate 

the sub-patch matching degrees of the particles, and 

adjusted the particle sub-patch weights by integrating 

the particle space information. 

3. Spatial Structural Cues and Dominant 

Features for Tracking 

3.1. Spatial Structural Information for 

Tracking 

The proposed algorithm divides the object into discrete 

patches according to the object's pixel distribution. To 

simplify the division, the target image is mapped from 

2D space onto 1D space. Suppose the size of the patch 

is N×M, the mapping of a 2D patch onto 1D space is 

the accumulation of N elements in the vertical direction: 
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where b(i,j) is the color value of a pixel on (i,j), Cj is 

the accumulation of b(i,j) upon i. 

The proposed algorithm then divides the object into 

discrete patches by clustering on columns 

{C1,C2,…,CM}. If 
cjj

TCC 
1

, then Cj+1 follows into 

the same cluster of Cj. Otherwise, a new cluster is 

initialized by Cj+1, where Tc is a preset threshold. 

(1) 
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Another clustering and segmentation take place upon 

rows {R1,R2,…,RN}in the horizontal direction, where Ri 

is the accumulation of b(i,j) upon j. An example of the 

division of a pedestrian is presented in Figure 1.  

 

Figure 1. Segmentation of an object into discrete patches. 

In Figure 1, the proposed algorithm maps the 

pedestrian image from 2D space onto 1D space in the 

vertical direction, then divides it into three patches 

according to the object's pixel distribution in the 1D 

space. These patches correspond to the head, the body, 

and the legs of the pedestrian respectively. Moreover, 

the proposed algorithm can divide a patch into sub-

parts. In the case of the pedestrian, there are lots of 

background clutters both at the right side and the left 

side in the body part. The proposed algorithm can 

divide this patch into three sub-parts, and then exclude 

the left sub-part and the right sub-part from the 

appearance model. 

The spatial arrangement of the parts of an object are 

relatively stationary, hence it is ideal to serve as a cue 

for tracking. The proposed algorithm uses a graph to 

model the target by representing the image parts as 

vertices and the spatial connections among the parts as 

edges. The spatial structural constraints of two parts 

(vertices) can be model as: 

  2
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Where K is a parameter for model adjustment, ni is the 

spatial location of the i-th part (vertex), 
ij

  is the initial 

spatial constraint of the i-th part and the j-th part 

generated from the template, which will be updated 

during the tracking process. 

The proposed algorithm examines p(ni, nj) for all 

pairs of parts in an object candidate to measure the 

likelihood according to the spatial structural constraints.  

3.2. Dominant Feature for Tracking 

In a typical multi-feature tracking procedure [8, 16], 

several features are extracted and fused for tracking, 

which produces a robust result. A discriminative 

feature will generate a state that is very close to the 

ground-truth state of the target. But this is not the case 

of indistinguishable features. After fusing, the 

estimated state may be far away from the ground-truth 

state of the target due to the invalid features. Hence, 

feature fusing enhances the robustness of tracking but 

reduces the tracking precision.  

Unlike the baseline multi-cue/multi-feature tracking 

procedure [4, 19], the proposed algorithm only uses the 

dominant feature of a part as the cue for tracking, 

which aims to overcome the problem that the fusing of 

multiple features reduces the tracking precision. 

The dominant feature is the most discriminating one 

in the features, which is produced by independently 

comparing the part with the other parts and the 

background patches according to the features. The 

dominant feature dom

b
f  of an image part (block) b is 

obtained by: 
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For any image part k other than the image part b, 

where d(,) is the difference operator, i

b
f  is the i-th 

feature of the image block b. 

The tracker locates the target according to the 

likelihood of the candidates, which is in turn largely 

dependent on the likelihood of its parts. The likelihood 

of a part b is defined as the similarity of the part b with 

its counterpart b  in the template, which is measured 

by the Bhattacharyya coefficient 
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Where N is the size of the dominant feature. 

There are many handcrafted features: HoC, Scale-

Invariant Feature Transform (SIFT), HOG, Local 

Binary Patterns (LBP), and so on, that can be 

produced from an image part. The proposed algorithm 

chooses HoC [7] and HoG [13] as the candidates for 

the local dominant feature for their successfulness in 

visual tracking in the past decades.  

3.3. The Candidate's Likelihood 

The candidate's probability of likelihood is composed 

of the parts' likelihoods and their corresponding 

weights: 
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Where wb is the weight of the image part b, 

and 1
1




B

b

b
w , supposed that the candidate is separated 

into B image blocks. K is a normalization parameter, 

 is the variance of the candidate's likelihood. The 

parts' likelihood is computed according to (4). 

Meanwhile, the parts' weights are initialized at first and 

updated during the tracking process according to their 

reliability. 

Only those that most of whose unobstructed patches 

satisfy the similarities of appearance and spatial 

structural constraints serve as target candidates. By 

(2) 

(3) 

(4) 

(5) 
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doing so, the proposed algorithm uses the spatial 

structure among the patches as a cue for tracking. Note 

that there are false targets that have the same 

probability density function as the ground-truth target, 

but have different spatial arrangements of parts. Such 

false targets can be excluded from the candidates by 

using this cue. 

3.4. Occlusion Handling and Template 

Updating 

The proposed algorithm can adjust the weights of the 

patches according to how they are occluded. 

Specifically, the proposed algorithm updates the parts' 

weights at time t  by 

       twtwtw
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Where α is the parameter used to adjust the speed of 

weights' updating.  

 If α is set to one, the weight of image part b is only 

dependent on
b

w . While, 
b
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the likelihood of the part according to 
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. The likelihood/similarity is dependent 

on the changes of the image parts' appearance, which 

in turn depend on the occlusions, clutters, pose changes, 

illumination variations, and so on. Here, occlusion is 

the most influential one in these interference terms. 

Hence, the patches contribute to the likelihood of the 

target reasonably according to how they are occluded. 

If the change of a patch's appearance is small 

enough, there is no occlusion. And this patch is used to 

replace its counterpart in the template. If the change of 

a patch's appearance is large enough, it is occluded. 

And the counterpart in the template is kept unchanged. 

Otherwise, the counterpart in the template is updated 

by using a weighted sum of the patch in the current 

frame and the counterpart in the template. 

3.5. The Proposed Visual Tracker 

The spatial structural cues and the local dominant 

features are integrated into a particle filter framework 

to produce a robust visual object tracker, which is 

occlusion-aware and robust against appearance 

changes. The Particle filter uses a predict-update cycle 

for state estimation. It predicts the state by first 

producing particles via sampling from the a priori of 

the state, and then transfers these particles through the 

system state formula. Afterward, current observations 

are used to correct the prediction. Thus, the a posteriori 

probabilities of these particles are produced. The 

weighted sum of the particles' states is ultimately the 

estimated state. The implementation of the particle 

filter with spatial structural constraints and local 

dominant features results in the proposed algorithm, as 

shown in Algorithm 1. 

Algorithm 1: Occlusion-aware visual tracking algorithm with 

spatial structural constraints and dominant features. 

1 Initialization in the first frame:  

1.1 Divide the object into several discrete patches according to 

(1); 

 1.2 Initial the state of the target and the states of the patches. 

2 From the second frame to the last frame, do the followings:  

2.1 Prediction: produce several particles (object candidates); 

2.2 Measure the similarity of an image patch between every 

particle and the template; 

(a)Divide the object into several patches according to (1); 

(b)Measure every patches' likelihood using dominant features 

by (4); 

(c)Measure the patches' spatial consistencies according to (2); 

 (d)Measure the likelihood between the particle and the 

template  

based on (b), (c) and (5); 

2.3 Adjust the weights of particles according to their 

likelihoods; 

2.4 Estimate the final state of the object using the weighted sum 

of the particles' states; 

2.5 Resample if it's necessary according to the particles' 

diversity; 

2.6 Update the template of the object. 

4. Experimental Results 

To verify the performance of the proposed tracker. 

First, the differences between the proposed tracker and 

traditional particle filter using HoC and HoG are 

studied, where the “Bolt2” sequence is used in this 

experiment to illuminate the improvement of the 

proposed tracker. There are 293 color images in the 

“Bolt2” sequence with resolutions of 480×270. There 

are similar false targets and heavy occlusions in the 

sequence. The experimental results are shown in 

Figure 2. 

Traditional particle filter uses HoC or HoG of the 

whole object as a cue for tracking, which involves a lot 

of background clutters and is unable to discriminate 

false targets similar to the ground-truth target on HoC 

or HoG. However, while the HoC or HoG of a false 

target is more similar to the template than the ground-

truth target does due to the target's pose changes, the 

tracker will mistake the false target as the ground-truth 

target, see the 35th frame in Figure 2 for example. But 

the proposed tracker is different. The proposed tracker 

excludes the clutter patches in the bounding box from 

the appearance model, or limit their contributions to 

the appearance model. And the proposed tracker 

updates the templates of the patches according to the 

object's pose changes. Hence, the proposed tracker can 

find the ground-truth target even under very poor 

conditions.

   

(6) 

(7) 
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a) The 11th frame.                                                    b) The 35th frame.                                                  c) The 106th frame. 

   
d) The 126th frame.                                        e) The 194th frame.                                                         f) The 230th frame. 

HOC+PF              HOG+PF             Ours  

Figure 2. Tracking results of the “Bolt2” sequence. 

Furthermore, the performance of the proposed 

tracker is evaluated by testing it as well as three 

comparison tracking algorithms: Robust Superpixel 

tracker (RS) [22], Distribution Fields for Tracking 

(DFT) [17], and PF [15] on more challenging image 

sequences “David3” and “Woman”. There are 250 color 

images in the “David3” sequence, where there are close 

background interference and, large pose changes of 

target. While there are 300 color images in the 

“Woman” sequence, and there are partial occlusions 

and large pose changes of the target in this sequence as 

well. The size of the images in the “David3” sequence 

is 480640 . And the size of the images in the “Woman” 

sequence is 288384 . The experimental results are 

given in Figures 3 and 4, respectively. 

  

   
a) The 8th frame.                                                      b) The 81st frame.                                                 c) The 123rd frame. 

   
d) The 140th frame.                                                           e) The 192nd frame.                                              f) The 224th frame. 

     RS                DFT              PF              Ours 

Figure 3. Tracking results of the “David3” sequence.  

The experimental results of the “David3” sequence 

are shown in Figure 3. All of the four trackers 

employed in the experiments do well at the beginning. 

But, while the object is occluded by a tree, the RS 

tracker drifts away from the ground-truth, see the 81st 

frame for example. While the object is confused with 

background clutter from the rear of a black car, the PF 

drifts away from the ground-truth, see the 140th frame 

for example. Similarly, the DFT tracker is sensitive to 

the interference both from the tree's occlusion and the 
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background clutters, see the 192nd frame and the 244th 

frame for example. But the proposed tracker shows 

great robustness against the interference in this 

experiment. 

The experimental results of “Woman” produced by 

the four trackers are presented in Figure 4. Here, the 

PF tracker is sensitive to the occlusion from the white 

car and drifts away from the ground-truth in the 108th 

frame. The RS tracker is disturbed by the occlusion 

from the white car and drifts away from the ground-

truth after long time occlusion. But the proposed 

tracker and DFT tracker are robust against the 

interference. 

 

   
a) The 10th frame.                                                    b) The 65th frame.                                                  c) The 108th frame. 

   
d) The 141st frame.                                                         e) The 170th frame.                                            f) The 229th frame. 

     RS                DFT              PF              Ours 

Figure 4. Tracking results of the “Woman” sequence. 

Moreover, the Center Location Error (CLE) is 

employed in the experiment for quantitative evaluation: 

   22
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Where (x(t),y(t)) is the estimated center of the object at 

frame t , (xg(t),yg(t)) is the ground-truth center of the 

object at frame t , e(t) is the center location error. The 

location errors of the “David3” sequence and the 

“Woman” sequence are given in Figure 5.  
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a) “David3” sequence. 
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b) “Woman” sequence. 

Figure 5. Location errors of the “David3” sequence and the 

“Woman” sequence.  

For the “David3” sequence, the proposed tracker 

and the DFT tracker outperform the RS tracker and the 

PF tracker at the beginning. As time goes by, the DFT 

tracker degrades with a large margin due to the 

disturbing from occlusions and background clutters. 

But it is not the case for the proposed tracker. Hence, 

the proposed tracker outperforms all of the 

comparison trackers in the “David3” sequence. See 

Figure 5-a for details.  

The location errors of the “Woman” sequence are 

given in Figure 5-b. In this experiment, the proposed 

tracker and the DFT tracker outperform the RS tracker 

and the PF tracker. The DFT tracker is as robust as the 

proposed tracker. Though, the DFT tracker 

outperforms the proposed tracker in precision in this 

sequence. But considering the performance of the 

DFT tracker in the “David3” sequence, it is clear that 

the proposed tracker is more robust than the DFT 

tracker. 

The quantitative results on the “David3” sequence 

are summarized in Table 1. Here, a successful ratio as 

the ratio of the number of frames with errors less than 

16 pixels to the total frames is defined and applied to 

evaluate the performance of the trackers.  

 

 

 

 

 

 

(8) 
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Table 1. Quantitative comparison of the “David3” sequence. 

Tracker Successful Frames Successful Ratio Average Tracking Error 

RS 156 62.4% 10.7583 

DFT 219 87.6% 5.6472 

PF 196 78.4% 9.0366 

Our 240 96% 6.7711 

 At the same time, the quantitative results on the 

“Woman” sequence are summarized in Table 2.  

Table 2. Quantitative comparison of the “Woman” sequence. 

Tracker Successful Frames Successful Ratio Average Tracking Error 

RS 251 71.67% 7.2088 

DFT 300 100% 3.4848 

PF 139 46.33% 8.3088 

Our 289 96.33% 8.2088 

The results in Tables 1 and 2 agree with what is 

stated above. According to the results, it is evident that 

the proposed tracker outperforms the DFT tracker, the 

RS tracker, and the PF tracker on robustness. 

5. Conclusions 

This paper has developed an occlusion-aware tracking 

algorithm. Experiments on several image sequences 

prove that the proposed tracker outperforms the 

comparison algorithms on robustness. The 

improvement of the proposed algorithm over the 

comparison algorithms lies in the employments of the 

dominant features and the part-based tracking strategy.  

Conclusively, there are several advantages of the 

proposed tracker. First, the proposed tracker processes 

the robustness as PF due to the employment of the PF 

framework. Second, the proposed tracker is robust 

against occlusions due to the employment of the 

strategy of part-based tracking. Third, the proposed 

tracker is more precise than similar tracking algorithms 

due to only the dominant features are used for tracking. 

At last, the proposed tracker is more guaranteed to hit 

the ground-truth object due to the employment of the 

spatial structural constraints among the image patches 

of the object. These advantages are also verified by the 

experiments. The authors expect future work to exploit 

the power of the proposed tracker more deeply and 

explain more explicitly how the particle filter 

framework, the strategy of part-based tracking, and the 

dominant features work together to track the object 

correctly and robustly. 
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