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Abstract: We use lattice basis reduction for ciphertext-only attack on RSA. Our attack is applicable in the conditions when
known attacks are not applicable, and, contrary to known attacks, it does not require prior knowledge of a part of a message
or key, small encryption key, e, or message broadcasting. Our attack is successful when a vector, comprised of a message and
its exponent, is likely to be the shortest in the lattice, and meets Minkowski's Second Theorem bound. We have conducted
experiments for message, keys, and encryption/decryption keys with sizes from 40 to 8193 bits, with dozens of thousands of
successful RSA cracks. It took about 45 seconds for cracking 2001 messages of 2050 bits and for large public key values
related with Euler’s totient function, and the same order private keys. Based on our findings, for RSA not to be susceptible to
the proposed attack, it is recommended avoiding RSA public key form used in our experiments.
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1. Introduction

We Consider Ciphertext-Only Attack (COA) on
textbook RSA [38], hereafter RSA, without
preprocessing of the plaintext such as Optimal
Asymmetric Encryption Padding (OAEP) used in RSA
standard [33]. LLL algorithm [29] of lattice basis
reduction is used for COA on RSA [10, 13, 14, 19, 20,
42, 43] and other public key cryptosystems such as
NTRU [21, 22, 27, 50]. Most of the attacks require
either message broadcasting, or prior knowledge of a
part of a message/private key. And the problem of
attacking RSA is considered as a problem of finding
the shortest vector Shortest Vector Problem (SVP) in a
lattice dimension of which grows with the growth of
the encryption exponent, e. LLL algorithm
computational complexity exponentially depends on
the lattice dimension [23, 24], and, hence, it solves
SVP efficiently for low-dimensional lattices but the
solution is infeasible for lattices with dimension
greater than 400 [25]. That is why, attacks on RSA
using LLL assume low encryption exponent value [31].
Herein, we propose a new line of COA on RSA using
LLL [29] algorithm to solve SVP in a 2-dimensional
lattice. It is based on the first found herein opportunity
of RSA encryption representation in terms of 2-
dimensional lattice. It requires neither message
broadcasting, nor prior knowledge of a part of a
message/private key contrary to all known approaches.
Below, in subsections 1.1-1.3, we briefly review
literature on the attacks on RSA private key and
plaintext message, and introduce the paper structure
attacks on RSA are reviewed, e.g., in [7, 34, 49].

1.1. Lattice-Based Attacks against RSA Private
Key

In [13], prime factors of N =p - g, used as the modulus
value in RSA encryption (3) with the public key, e, and
decryption (5) with the private key, d, are found as
roots of a bivariate polynomial constructed using high
order (5 +¢)log, N bits of p, &> 2/log; N (high
order bits of q are known by division of N by p). LLL
lattice basis reduction algorithm is used for dimension
r=2k + 1,k> 1/ (4¢). In [8, 9], LLL method is used to
disclose the private key, d < N% & =0.292, that
extends the attack applicability compared to attack [46]
assuming 6 = 0.25. In [45], two parameters define the
attack applicability: &, and 8 such that A = |p — q| =
N&. In [45], Figure 1, specifies that known attacks on
RSA are not applicable for g € [0.5, 1], and mainly not
applicable for & € [0.5,1], 8 € [0.25,0.5]. Using B,
the attack [45] extends applicability of [9] attack up to
6—-1for B - 0.25+¢¢e—0.In[10, 42, 43], LLL
algorithm is used to disclose secret RSA exponent
provided that part of it (least- or most-significant bits)
are known. Figures 1, 2 in [42, 43] show that § can be
extended to 0.57 and 0.37 for the use of most-and
least-significant bits, respectively.

1.2. Lattice-Based COA against RSA Messages

In [14], an encrypted RSA message is disclosed as a
root of a univariate polynomial of low order, e.
Exponent considered in the paper is e=3 resulting in
the polynomial of order, k=e=3. Message, m, to be
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—— 1
found shall be rather small: |m| < Nx"%,& = @,k <

log N, (see section 2 in [14]). Respective lattice size is

Size=2h-k=k=2-—k—k (1)
=2log,N-k >0,

Where h is such that h - k > 7 and h—12>

(hk—l)(%—s). It is known from NTRU security

requirements [25] that if the size of a lattice is, Size >
400, then LLL attack is unfeasible. Thus, from (1), it
follows that already for 512-bit RSA the attack is not
feasible because log:N =512, k < 512, and, hence, Size
> 1024 - k > 512. Note that in [14], estimates of RSA
parameters, such that the proposed attack is feasible,
are not defined. Hastad [19] showed that the message,
m, can be revealed in polynomial time when it is
encrypted with several public keys, (ei, N;) each having
the same public exponent, e, and different moduli
values, Ni,i=1, ..., k, expected to be mutually relatively
prime, and meeting (2):

. 1
m< min N;, k> e(e—+),
i=1,k 2

e(e+1) (k+e+1) (k+e+1)?
TTo(k+e+1) 72 2z (e+Dett, (2

N>n 2
k
i=1

Method [20] is practically the same as in [19] with
slightly different lattice constructed, and, thus, slightly
differing from 2 inequalities [20] and is also applied to
a broadcasted message. The broadcasted message, m, is
revealed by applying LLL algorithm to the lattice
defined using coefficients of the polynomials resulting
from the message encryption using different moduli.
Also, Chinese Remainder Theorem (CRT) is used.

1.3. Non-Lattice-Based Attacks against RSA
Private Keys and Messages

RSA secret key can be disclosed if the integer
modulus, N, is factorized. Methods of integer
factorization are reviewed in [2, 36], and application of
one of them, Number Field Sieve (NFS), in [28] in
December, 2009, resulted in factoring 768-bit RSA
modulus, RSA-768. RSA moduli RSA240 and
RSA250 with 795 and 829 bits were factored by NFS
in December 2, 2019, and February 28, 2020, [47]
which took 4000 and 2700 core-years of Intel Xeon
Gold 6130 CPUs as a reference (2.1GHz), respectively
[44, 51].

In [12], a method of factoring RSA modulus, N =
pg, g < p < 2q, in time polynomial in logN is proposed
under assumption that an encryption exponent, e,
meets e-x—(p?—1)(q*— 1)y =12zgcd(y,x) =

3 1
1,z# 0,x- y < 2N- 4V2N1,|z| < (p - q)NZy,e <
(p?- 1)(¢*-1). In [46], continued fractions are

used for d disclosure with§ < 0.25. In [48],
applicability of the attack [46] is extended to d < N9 -

2",r<7. In [17], a method of N factorization is
proposed applicable when |[N%> —p%5.405| s
sufficiently small (less than 212 as explained on in
[17]).

Timing attacks are type of attacks where an intruder
compromise secrete parameters from the execution of
the cryptosystem rather than from any ingrained
weakness in the mathematical properties of the system
[5]. In [1] a timing attack is proposed against RSA
private key using genetic algorithm. A  Super-
encryption (successive encryption of the ciphertexts) is
proposed in [41, 4]. However, in [26, 37], it is shown
that the probability of success is about 10 for the
parameters proposed for RSA in [38] because p-1, g-1
shall have large prime factors, and similar for them as
well. Bleichenbacher [6] defines that plaintexts m; are
related if mi= fi(m) for some known polynomials f; and
shows that having [ RSA public keys
(e1,N1),...,(e,N),N = NiN...N; and ¢i= fi(m)e‘ mod N;
for i=1,...,1, the plaintext m can be computed in time
polynomial in log N using Coppersmith’s algorithm
[14], A method of the broadcasted message disclosure
is proposed based on the use of the CRT allowing
reducing a number of modular equations to a single
equation and then finding e-th order root over integers,
in the simplest case of broadcasting one and the same
message, [6], or a univariate polynomial root finding
using Coppersmith method [14] for broadcasting
related messages based on a small message. The paper
considers messages, m;, related to the base message, m,
by an affine transformation, mi = ai - m + £ mod n; [6],
p. 242, whereas in Coppersmith method only
translation transformation is expected to be used: m =
m+t [14], Delaurentis [16] considered two cases. In
Case 1, a probabilistic algorithm is proposed that
allows factoring modulus N = p - g, using information
on the public-private key pair of the attacker (insider)
but not of the other users, neither public, nor private
keys, within average number of runs at most 2. In Case
2, without factoring of N, an own encryption-
decryption key pair as well as an encryption key of
another valid user are used to disclose an equivalent
for the private key of another user that may be used to
disclose his messages and to forge his signature.
Simmons [40] considers one message encrypted by
two different encryption keys resulting in two
ciphertexts of one and the same message. If the
encryption keys are co-prime, their mutual inverses
may be found and used for the message disclosing. In
[30], it is said: “Values such as 3 and 17 can no longer
be recommended, but commonly used values such as
216+1=65537 still seem to be fine. If one prefers to stay
on the safe side one may select an odd 32-bit or 64-bit
public exponent at random.”

If a known plaintext-ciphertext pair, (P,C) is known,
Discrete Logarithm Problem (DLP) solution can be
used to disclose the private key as d = logcnP. DLP
computational complexity is of the order of that of
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integer factorization and in parallel with factorization
respective DLP solving is reported in [44, 51].

In [14], a method for recovering RSA messages is
proposed for rather large encryption exponent such as,
e = 2%+1. The method assumes that two plain
messages are encrypted with the same encryption
exponent, e, and modulus, N, and one of the messages,
m, is related with another one, m,;, by an affine
transformation, m, = a - my + b, and two respective
ciphertexts are known, ¢1,c2. The message, ms, is found
as a root of a polynomial which is the Greatest
Common Divisor (GCD) of two univariate
polynomials modulo N, p;(m;) = m{ — ¢y, p,(my) =
(a-my+b)°—c,. The GCD is obtained using
Euclid’s algorithm. The method is generalized for the
cases of my=p(m1), where p( ) is a polynomial, and
for multiple messages polynomially related, p(m,...,
my) = 0. As far as all the related messages, my,..., Mg
depend on the single message, mi, this mode of
operation can be considered as “broadcasting” of the
message m; and its dependent messages, my,..., Mg
encrypted each with its own encryption exponent.
Maximal encryption exponent mentioned in the paper
is e = 2%+1, We found GCD of two univariate
polynomials, p1 = x* — C; mod N and p.=(x+1)° - C;
mod N, where N=p - q = (220 +7) - (220+13), C;= m°
mod N, C,= (m + 1)°* mod N, e = 21°+1 by Maple 2016
(Intel i7-7700 CPU 3.60 GHz, 8GB RAM), nearly in 6
minutes. Then, message, m = 2, is recovered as the root
of GCD (Figure 1), Boneh [11] proposed attacking n-
bit RSA message, m, using Meet-In-The-Middle
(MITM) attack. MITM attack is applied by two steps.
A pre-computation step where the message is
represented as m = mimy with m; < 2™ and m, <
2"z, Hence, c/m5 = m§{ mod N. A table of size 2™
has to be built containing the values m$ mod N for all
my; €0,1,---,2™ — 1. Then, in the search step we
check for eachm, €0,1,---,2"2—1, whether
c/m§mod N is present in the table. Any collision
reveals the message m. We implemented MITM attack
[11] using NTL [39] library (Intel i5-8250U CPU 1.60
GHz, 8GB RAM). Our implementation shows that the
time to recover a 40-bit message encrypted with e =
216+1 (see Example 1)

Is 2.25 seconds for pre-computation step and 0.202
second for searching step. Thus, from the analysis
conducted we see that known lattice-based attacks
against RSA private key section 1.1 and against RSA
messages practically use small public encryption
exponent, large part of the message to be known in
advance, or a message to be broadcast. On the other
hand, a non-lattice based attack in [15] has cost of
O(e?) for computing GCD [3], where e is the RSA
encryption exponent represents the degree of

polynomials, while MITM [13] has cost of 0(nv2"),

where n is the message length in bits. Table 1 shows
features of the known RSA attacks. The analysis of the
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attacks on RSA conducted above shows that they are
not applicable for key-size greater than 829 bits, with
p,g such that p-1, g-1 have large prime factors,
encryption and decryption keys are greater than N°°,
and round (N> — [p®®] - [¢®%]) is large. Herein, we
propose a new fast attack using LLL against RSA
messages based on the first found herein opportunity of
RSA encryption representation as an element of 2-
dimensional RSA lattice. Our attack works in the
conditions specified above where other attacks can’t
work, and requires neither knowledge of any part of
the message in advance, nor limitations on the size of
public exponent e, nor message broadcasting as shown
in the last row of Table 1 but imposes constraints on
the recoverable messages. Our COA attack
computational complexity is O(n?), see Section 3.4. In
our experiments, see example 3, our attack on 2001
RSA 2050-bit messages took 45.775 seconds with
about 0.1 success rate. The rest of the paper is
organized as follows. In section 2, we introduce RSA
algorithm, lattice concepts, and LLL algorithm. In
section 3, we introduce 2-dimensional RSA lattice and
COA on RSA using LLL is proposed, its complexity is
estimated. Additional experiments on application of
our attack to RSA cracking with up-to 8193-bit
messages are given in section 4. Section 5 concludes
the paper.

w o= 2

2

p = 27° + 7
1048583
g = 22° + 13
1048589
N = p-g
1099532599387
e = 2% 4+ 1
65537
ol = m“ mod N
283976582449
2 = (m + 1) mod NV
217618377630
pl — (x — ¢c/)mod N
x©5537 4 815556016938
2= ((x + 1) — c2) mod NV
(x + 1)°3537 4 881914221757
s = Ged(pi. p2) mod N

x + 1099532599385

time(God(pi. p2) mod N)
343,953

— 1099532599385 mod NV
2

Figure 1. Maple code implementation of GCD attack [12],
recovering RSA message encrypted with large exponent e=26+1,
as a root of a polynomial which is the GCD of two polynomials P1
and P2 nearly in 6 minutes.
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Table 1. Comparison between lattice basis reduction COA and
other known RSA attacks.

Attack’s Requirements
Attack Prior Small value of | Broadcast
knowledge of

number of bits | €XPonente | messages
Coppersmith [13] Yes No No
Boneh et al. [10] Yes No No
Takayasu[ir;(; Kunihiro Yes No No
Coppersmith [14] No Yes No
Hastad [20] No No Yes
Bleichenbacher [6] No No Yes
Hastad [19] No No Yes
Simmons [40] No No Yes
DeLaurentis [16] No No Yes
Boneh [11] No No No
Bunder [12] No Yes No
Lattice Be&snospl\?eductlon No No No

2. RSA Algorithm, Lattice Concepts, and
LLL Algorithm

In this section, we

1. Review RSA [38],

2. Introduce lattice concepts including Minkowski
Second Theorem [35], which sets an upper bound
for the norm of the shortest vector in a 2-
dimensional lattice,

3. Introduce LLL [29] to find a shortest vector in a 2-
dimensional lattice.

2.1. Review of RSA
A message, m € Zy, is encrypted using
¢ =mfmod N, (3)

Where N = p - g, p and g are two different prime
numbers, and the encryption exponent, e, is chosen
according to

ged(e,(p—1)(@—-1) =1 (4)

The message, m, is retrieved by decryption of the
ciphertext, ¢, from (3) as follows

m = c%mod N, (5)

Where the decryption exponent, d, is the multiplicative
inverse of e satisfying

e-dmod (p—1)(g—1) =1. (6)
The public key is (N,e), and the private key is(N,d).

o Example 1 Example of 40-bit RSA
encryption/decryption. Let p = 2% + 33= 10485609
and g = 2% + 13 = 1048589 be two prime numbers.
Then modulus N = p - g= 1099559862701.
According to (4), let encryption exponent, e = 21¢ +
1= 65537. According to (6), decryption exponent,
d=10823774375609. The public key is
(N,e)=(1099559862701,65537), and the private key
is (N,d)=(1099559862701,1082377437569). Let the

message, m=986648, then
calculated according to (3):

c = m®mod N = 480808351840. @)

the ciphertext is

Message, m, is retrieved by decryption of the
ciphertext (7) according to (5) as shown in (8):

m = c% mod N = 986648. (8)

2.2. Lattice Concepts

In the following, |lx||,(x- y),[al, and Z denote
Euclidean norm [18] of the vector x, dot product of the
vectors, x and y, rounding of the real number, a, and
the set of integer numbers, respectively.

Let E(V,,V,) c Z? be a 2-dimensional lattice with
basis vectors, V; and V,, shown in (9):

E(W,Vy) = {a,Vy + ayVy: ay, ay € Z}. 9)

The same lattice can be represented by different bases.
SVP is one of the most widely studied computational
problem on lattices [32] defined as follows [23], p.
395:

o Definition 1 SVP is the problem of finding a
shortest nonzero vector in a lattice L, i.e., v € L that
minimizes the Euclidean norm ||v||.

e Remark 1 There may be more than one solution to
the SVP.

For example, the integer lattice Z2, is the set of all 2-
dimensional vectors with integer entries. Integer lattice
Z? can be represented by basis vectors Vi = (1,1) and
Vo= (1, 2), while the four nonzero vectors (0,+1),
(x1,0) are the solutions to the SVP.

Minkowski’s Second Theorem [35], sets an upper
bound for the norm, I, of the shortest nonzero vector in
a 2-dimensional lattice given by (10):

A< 73 det(L)?, (10)

Where y, = % ~ 1.154 is Hermit’s constant [35], p.

41, and det(L) is the determinant of the lattice matrix
formed by its basis vectors. Hence,

y < J1.154det(L) ~ 1.07 \/det(L). (11)
2.3. LLL lattice Basis Reduction Algorithm

LLL [29] is a lattice reduction algorithm, on
termination returns the shortest vectors in the lattice,
beginning with the shortest vector vi, and then with
vectors whose lengths increase as slowly as possible
until we reach the last vector in the basis in E(V1,V2).
In next section we propose COA on RSA using LLL.

3.COAon RSA using LLL

We introduce COA on RSA using LLL algorithm.
More specifically we
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1. Show that RSA encryption forms a 2-dimensional
RSA lattice,

2. Show that the plaintext message can be revealed as
a component of the shortest vector in the RSA
lattice.

3. Propose using LLL for COA on RSA by solving
SVP in the RSA lattice.

4. Evaluate complexity of the proposed COA on RSA,
and conduct experiments for up to 8193-bit
messages.

3.1. 2-Dimensional RSA Lattice

RSA message recovery problem can be formulated as

SVP in a 2-dimensional lattice, E(V1,V2). From (3), we

can see that:
c=m/-m*JImodN,j=1..e —1, (12)

And, hence,

(13)

From (13), we see that for any pair of integers, A and
B, satisfying:

ml = (m‘f‘j)_1 - ¢ mod N.

B = A-cmodN (14)

(AB) is likely to be ((m¢=1)™",mJ), or (m~, me).
Hence, Equation (14) can be written as
(15)

Where r is an integer. It forms a 2-dimensional RSA
lattice,

A-c+N -r =B,

A-V1i+r-V2=(4B), (16)

Where V1=(1,c) and V.=(0,N) are basis vectors, at least

one of them having Euclidean norm of order O(N), and
determinant of the lattice equal to N.

3.2. RSA Message as the Shortest Vector in the
RSA Lattice

According to Minkowski’s Second theorem (11),
vector (A,B) (16) likely is the shortest vector in the
RSA lattice, if

|14, Bl| < 1.07VN. (17)

Hence, our task is to find a pair of comparatively
small, (A,B), satisfying (16) where Vi=(1,c) and
V,=(0,N) are known vectors. Then, (A,B), is likely to
be ((me‘f)_l,mf), or (m~/,m®7). In our attack we
adopt LLL to find the shortest vector in the 2-
dimensional RSA lattice (16).

3.3. LLL Attack on RSA Message as a Shortest
Vector in the RSA Lattice

We want to find a shortest vector w from E(V1,V2)
using LLL that might disclose

@.8) = ((m*) ", m) (18)
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if ||((me‘f)_1,mf)|| from (18) is of the order of

0(v/N) meeting (17). In our experiments we used LLL
algorithm implemented in Maple 2016.2.

e Example 2 shows LLL attack on Example 1
message.

e Example 2 LLL attack on 40-bit RSA message from
Example 1.

Ciphertext from Example 1, ¢ = 480808351840, and
modulus N = 1099559862701.

Hence, Vi=(1, 480808351840), and V>=(0,
1099559862701).  LLL  attack  with  Vi=(1,
480808351840), V.=(0, 1099559862701), defined in
(16) terminates in 15 milliseconds using Maple,
obtaining the shortest vector (see Figure 2) given in
(19):

v, = (82493,986648).

withi IntegerRelarions)

(19)

[LLL. LinearDependericy, PSLO]

16

e = 2 -+ 1

65537
p= 220 4 33
1048609
g = 2% 4 13
1048589
m == 986648
OBO6G4B
Ni= p-g
1099559862701
¢ — wmmod NV
480808351840
I = [1.c]
[1. 480808351840]
P2 = [0, N]
[0, 1099559862701 ]
vi— LEL([FI P21
[[82493 986648]. [-1136417. —262855]

v[1]
[82493, 986648 ]
fime( LLL([ VI F2])):
0.015

Figure 2. LLL attack on RSA message in example 1 using maple
2016.2.

We also run the experiment in C using NTL [39]
and found that LLL attack terminates in 4 x 10°
seconds. Thus, we see that our attack, both in Maple
and C, takes less time than attacks mentioned in
Section 1.3. LLL attack succeeds to retrieve message
since it is a component of a shortest vector in the
lattice,

[Ime=H~1, m|| ~ 990090.6 < 1.07VN ~ 1124497.2.

3.4. Complexity of LLL Lattice Basis
Reduction Algorithm

Lenstra et al. [29] state that for n-dimensional lattices
with integer input basis vectors of bounded length N,
the LLL algorithm terminates after at most O(n?logN)
iterations.
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4. Experiments on RSA Cracking for Up to
8193-Bit Messages

We have conducted experiments using Maple 2016.2
in Windows 8.1 on Lenovo laptop with Intel i5-6200U
CPU 2.30 GHz, 8 GB RAM, for RSA with p, g values
specified in Table 2 with sizes of

N=p-q (20)

from 40 to 8193 bits more than twice exceeding
recommended RSA key size, 4047 bits, for 2050 year
according to the requirements of [30], Table 1. Values
of p, g are defined as integer expressions (see Table 2).
Note that the prime values (p,q) used in Rows 1, 2 of
Table 2 are strong according to [38], since p-1, q-1
have large primes as their factors, that is confirmed by
the following Maple code:

The International Arab Journal of Information Technology, Vol. 18, No. 2, March 2021

2N DSO A VT dsprrirrzes( g2l ) s
FOATORKOOIIIRITASGROGZIZOIOSI1IZ012014393

rrree
rtrrre(er 2 )2
SA0034T75163141171RRODID4RTRSOZ3IO

,,,,,,,

ifactor(ql-1)

(2) (11) (13)
(
161946977954288385207791587424738332661440143075132343462928964

1964774285713

ifactor(pl-1):

(2)* (103) (2639809)
(
124764335585903797489729800929088384303001190653264216177036223
5159)

It can be checked that (p,q) values in rows 1, 2, and 6

of Table 2 have large round(N°®° — [p®®]-[q®%])

values precluding attack [17].

Table 2. Pairs (p,q), bit size of N used in our experiments, (a,b) pairs from (27)-(29) for which RSA was cracked, number of cracked

messages, and respective Smin and Omax from (30), for Digits=10 and C=0 in Maple.
1 2 3 4 5 6 7 8
. Bit size of | (a,b)from (24) for which RSA was | Number of
Pair(p.q)# P q N cracked, k=1 RSA cracks Smin Smax
0 220 +33 220 +13 40 (8,1),(4,+1),(2,+1) 153 0.025 0.508625
1 21305 2131 + 39 261 (14,-1),(4,2),(2,£1) 58 0.01 0.5010325
2 3x2%°+17 (22 -1)>-2 509 (2,£1),(4,—1),(22,+1) 59 0.01 0.5007125
3 3 x 2512 + 349 3x 2512 —511 1026 (4,1),(8,-1),(2,£1) 85 0.01 0.5007065
4 3 x 2102% 4 545 3 x 2192 —1717 2050 (20,6), (4,2), (2, £1) 64 0.01 0.5005
5 3 x 22048 4 595 3 x 22048 — 1105 4098 (26,5), (4,2), (2, £1) 68 0.001 0.5007
6 3 x 2%0% + 1075 2409 _ 2549 8193 (28/4), (4,2), (2, +1),(14,-1) 66 0.00375 0.50003
In our experiments, messages are defined via a 2001 RSA messages in the range mO-
parameter, 1000...m0+1000, where mO is defined in its first
5€(0,1) (21) line as trunc (N9).
. 0.5 b
As follows, sti=time( ) :bnd = 10TN"":lb:=[]:gb:=[]:m0:= tmnc(N ):
m = int(N®) +ii,ii € —C,,C,C =0, (22) for ii from -1000to 1000 do#—992 do#—1000 to le3 do

Where C >0 is an integer and int( ) returns integer part
of its input. Calculations on the float-point numbers are
done with accuracy of 10, 15, 100, 200, 600, 800, and
1600 digits:

> Digits == 1600:#600;,#200;#10,;#15
Digits == 1600

We try vectors

v(j) = ((me‘j)_l,mj) (23)
Meeting the following two-dimensional lattice
equation
v()1 -V +1 -V =v(j) (24)
With
n= ()= (3) @)

For j=1,...,100, according to (16), by the following
code:

e Code 1. Maple code for RSA cracking using LLL
with je {1,- ,100}. Initial conditions for the code
are defined in Code 3 and example 3. It trie cracking

m = ml) + i
p0:= expn(m = 1 ) g, el ):
¢:= p0-mmod N;

rm = (me]2 +m )0'5

Vi=1[[1¢|,[0,N]] ; VR+= LLL(V.integer");
for;to le2 do
ifabs(R[1, 1]) = orabs(PR[1, 2]) = n orabs(PR[2, 1]) = or
abs(VR[2,2]) = then
if irm < bund then [b:= [op(1b), [ii,]]] else gb:= [op(gb), [iL,}]]
end if
end if
end do:
end do: /i := fime( ) : fot = fi — st,
In the Code 1, with C = 1000, we check the both
returned by LLL vectors and each their component on

equality to m!. Exponentiation function and LLL used
in Code 1 are introduced in Code 2 as follows:

b

e Code 2. Maple code introducing exponentiation
function and LLL.
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expmB =proc(m . integer, e - integer, N .. integer) -
localp!. m0, p0;
description "Exponentiate m power e mod N";
pl=1:pl=e ml:=m:
while(p/ # 0) do
ifpl mod 2 = 0 then p0 := p0-m0 mod N end if.

m0 = m0” mod N:

— ply.
1=t :
P mnc( 2 ]

end do;

return p0;

end proc:
with(IntegerRelations)

infeger,

RSA was successfully cracked under conditions (27)-
(29) on the encryption key, e, defined via Euler totient
function,

pN)=(@-1-(@—-1D), (26)
In a general form
e=k- ¢(aN) —b, (27)
Such that
ged(e, (V) =1, (28)
¢(N) mod a = 0. (29)

It is implemented in Maple by the following Code 3,
for Digits=1600:

e Code 3. Maple implementation of RSA encryption
key, e, calculation according to (27)-(29), for N of
2050 bit size from Table 2.

2=

prqie = (p-1)*(g-1):
20:

6;
9:
ke

o>

=

K
o
e=k——
a
#e-‘=h'mn‘(;\’u) —1:
igedex(o. e,'z")d");d:z:e-d+z-0;d = dmod 0 :
bi=0
1= Q

1.308838745888095795678952505891133054397986158123477103301278989814
7485331241495811744866571666779952793930774173368697895118421455
9488230435107017165115546638555053337569034171588300889078091032
5240334354554736515210084855026100124554442820708284904058556657
0074703542369468236074131652486058721645191806107155600808763595
9161452882174738426251901534785789094002981859006511964826207998
7964041882612587082740114384947168077587596764319358688877129607
6157219357152284592505030246208128525852212867047829315706713269
1249967406169857390476937074507050816629923641668581778010739603

—b: cvu.\’f(e];#% — 9 : evalf(e)

286289945125318304513028953577451705891 10°!7
1
1

For the example of data shown in Code 2, e = g d~

%, thus attacks described in section 1 are not
applicable. We try finding a range of the parameter,

S [Smin’ amax]r (30)

Or a set of values, {&min Omaxt, fOr which our
method successfully cracks RSA (see Table 2, columns
7, 8). In Table 2, columns 5, 6, pairs (a, b), for which
RSA was successfully cracked, and number of
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successful cracks are given (for C = 0 in (22)). We
found that for all successful cracks,

j=1bl, (31)

holds, where j,b are from (23), (24), and (27),
respectively, i.e., the power of the plaintext message,
m, revealed by our attack on RSA, always is equal to
jbj from (27). Thus, in the experiments, we find two
conditions, (29) and (31), holding that need
explanation. Also, the results of all our experiments
show that condition (32) holds

Smax * |b] = 0.501. (32)

To verify (32), we have conducted special massive
investigation of its validity for (p,q) pair from Table 2,
row 4, results of which are given in Table 3, and
confirm its validity. Hence, we need explaining (29),
(31), and (32).

Table 3. Results of experiments in Maple 2016 on RSA cracking
for Digits=600, p := 3-210244515, :=3-2194+1717, (27)-(29) hold,
k=1, C = 1000, §,,,4 is from (30).

a b Number of cracks Smax Omax - ||
20 6 9205 0.0835 0.501
20 10 4987 0.050107 0.50107
20 -4 2082 0.12521 0.50084
20 -6 1642 0.038348 0.50088
20 -8 1913 0.062615 0.50092
20 -14 1336 0.035769 0.500766
5 -1 5626 0.501 0.501
5 -25 2896 0.020045 0.501125
4 2 21599 0.25066 0.50132
4 6 22937 0.083528 0.501168
10 13 6469 0.0385503 0.501154
Total 80692 Average | 501022
cracks: Omax - |DI:

Explanation of (29). Consider (20), (21), (22) for C
=0, (26), and (27). Then, RSA ciphertext, c, is defined
as follows:

dV)

kP mod N.

(33)

Experiments show that with high probability, ranging
from 0.1 to 0.5, (34) holds:

c=mfmod N =m

k() (34)

m a modN =1.

Note that due to Euler’s theorem [2],
m*Mmod N =1, (35)

And the left-hand side (LHS) of (34) is a-th root of
unity from LHS of (35), which is highly likely to be
also unity. The probability of our COA on RSA
success estimate is illustrated by example 3.

o Example 3 Conducting calculations by Code 1 in
Maple 2016.2, with Digits=1600, g=3-21924-1717, p =
3.21024 4+ 515,§ = 0:071435 considering 2001
numbers, m = [N®| + i, ii € [-C,---, C],C = 1000,
we find 216 cases when (34) holds, in particular, for
ii = —998,—992,—988, etc., Respective Maple
output is shown below:
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> Ib: nops(1b); gb; nops(gb): a; b; total_time

[[—998.6]. [ —992, 6], [—988. 6]. [ —987. 6], [ —977. 6]. [ —972. 61.
[—966, 6], [ —962, 6], [ —951, 6], [ —950, 6], [ —944, 6], [ —942, 6],
[—940, 6], [ —932, 6], [ —916, 6], [ —210, 6], [ —909, 6], [ —905, 6],
[ 892, G]. [ —869. 6], [ —864. 6], [ —863, G], [ —843. 6]. [ —838. 6],

[ —837.6G]. [ —835.6]. [ —832.6]. [ —816.G]. [ —791.6]. [ —789. 6],
[—776.6]. [ —756. 6]. [ —751. 6]. [ —750. 6]. [ —747. 6]. [ —743. 6].
[—741.6]. [—710, 6], [ —699. 6]. [ —690. 6]. [ —689, 6], [ —682. 6].
[—665, 6], [—651,6], [—647, 6], [ —646, 6], [ —636, 6], [—611, 6],

[—609, 6], [ —595, 6], [ —594, 6]. [ —583. 6], [ —569, 6]. [ —562, 6],
[—561, 6], [ 542, 6]. [ —538, 6], [ —523, 6], [ 511, 6], [ —503, 6],

[—489.6]. [ —476.6]. [ —471. 6]. [ —468, 6]. [ —466, 6], [ —460. 6].
[ —435.6]. [ —426.6]. [ —418. 6]. [ —389, 6]. [ —384, 6]. [ —365. 6].
—347.6]. [ —322.6]. [ —318.6]. [ —314. 6].

|

[

[ —308.6], [ —302.6]. [ —291.6]. [ —266.6]. [ —253, 6], [ —234, 6],
[—229, 6], [ —214.6]. [ —170, 6], [ —166, 6]. [ —153, 6]. [ —142, 6],
[—125.6]. [—117.6]. [—113.6]. [—93. 6]. [ —83.6]. [ —81. 6]. [ —76.
6]. [—71.6]. [—56.6], [ —50,6], [—48. 6]. [—46. 6], [—27.6]. [10,6].
[32, 6], [39. 6], [48, 6]. [50, 6], [74. 6]. [102, 6], [109, 6], [153, 6],
[161.6]. [166. 6]. [175. 6]. [182. 6]. [196, 6], [202. 6]. [240. 6]. [241.
6]. [249, 6], [250. 6], [260, 6]. [266, 6], [268. 6]. [273, 6]. [288. 6].
[294, 6], [297. 6]. [315, 6], [347. 6], [355. 6]. [378, 6]. [387. 6]. [394,
6]. [396, 6], [415. 6], [434, 6], [437. 6], [438. 6], [439, 6], [442, 6],
(443, 6], [446. 6]. [451. 6], [465. 6], [474. 6]. [476. 6]. [477. 6]. [ 502,
6]. [505, 6], [515.6]. [517.6]. [519. 6]. [523. 6]. [530, 6], [539. 6].
[541. 6], [543. 6]. [545, 6]. [584, 6]. [589. 6]. [592, 6]. [607. 6]. [616.
6]. [618, 6]. [626. 6], [644, 6]. [648, 6]. [655. 6]. [659. 6]. [665. 6].
[670, 6], [676. 6]. [686, 6], [688, 6], [694, 6]. [700, 6], [717. 6]. [ 763,
6]. [768. 6]. [772. 6], [777. 6]. [779. 6]. [782. 6]. [ 783, 6]. [790. 6],
[791. 6], [793. 6]. [794, 6], [812, 6], [B15, 6], [816, 6]. [820, 6]. [822,
6], [827. 6]. [860, 6], [864. 6], [871, 6], [875, 6]. [882, 6], [883, 6],
[BRG, 6]. [894, 6]. [895. 6]. [902, 6], [908, 6], [909. 6]. [933, 6]. [948.
6]. [951. 6]. [956. 6]. [969. 6], [984. 6], [993, 6], [997. 6]]

2106

[]

0

20

—G6

45.775

[—364, 6], [ —358, (_]:

Thus, probability of (34) holding, and thus our attack
takes 45.775 seconds, its success probability under
conditions  (27)-(29), may be estimated as
216/2001=0.1079, and (29) is explained. Now, we
explain (31) and (32).

Explanation of (31) and (32). Our method of
cracking of RSA ciphertext is as follows (recall (12)-
(16), (23), (24)). Rewrite (33):

c=mfJ -mimodN,0<j<e. (36)
From (36), we get
C(m‘?‘j)_1 =m/ mod N. (37)
Reminding (23), from (37), we arrive at (24). Applying
LLL algorithm to the lattice defined by (25), we obtain
a shortest vector, (?) of the lattice such that @1) =
2 2
v(j), if the norm of v(j) meets Minkowski’s Second
theorem

1)

<|lvDl| =vv(Di+v(3<y2-N

(38)

1]
W
=

Where y, = 1.1547 is Hermite’s constant for the 2-
dimensional lattice. To meet (38), from (23), we have

(m—e+j)2 + mj2 < ,% -N (39)

From, (22) with C =0, (27), (34), (39), we have

J P2 +mi* = (40)

(Vo) 4 [N5Jj2 < [2.2= ~ N0s50005

From (40), we have two cases

o

e Case 1. b = 0. Let j = 0 in (40). Then, v(j) =
b
("; ) and we have

/lejbz +1~ NbS < NOSO00S (41)

b -8 < 0.50005. (42)
e Case 2: b<0. Let j=—b=|b|. Then, v(j) =
1
(mb)' and we have

hNaj”"Z +1 ~ NIbI6 < 05005 (43)

|b| - & < 0.50005. (44)

Thus, from (41), (43), we may have RSA cracks in the
from

And thus,

And then,

o = (™" )or bt = (1) (45)

that have been observed in all our experimental results
shown in Tables 2, and 3.

Example 4 confirms that (45) holds in a particular
experiment as in all other ones.

e Example 4 Maple output for RSA cracking with k =
9,a=20, b=416, d=0:071435, showing that (34)
holds, and values found by LLL in VR [1,1..2], see
Code 1, meet (45).

mpm.-\-'[m. 92, f\-’} evalf(n®), VRI1, 11, VR, 2], b

L
4.47821720597401582614759033248 1887341 2665665938 75250009283 1845704091 1054
07224490985585125770487178156312236574564346740572953361 851 5402949680670¢
B374824461 869136007371 1122435228305975699105263 1993740439489861 283898421
9673495826202100256014918264630087768685350464 10°*_ 1,

H4782172059740158261 4759033248 18873412663663938 75250009283 1845704091 1054

T22449009855851257704871 781563 12236574564346740572953361 851 5402949680670¢
8374824461869136007371112243522830597569910526319937404 3948986 1283898421«
967349582620210025601491826463098 7768685350464, 20, —6

> expm \-"[m‘ 9- 2: . :\']. e\'u{f(m“]. VR[1,1], VR[1,2].a, b

L
4.478217205974015826147590332481887341266566593875250009283184570409110545
0722449098558512577048717815631223657456434674057295336185154029496806706
83748244618691360073711122435228305975699105263199374043048986128389842 14
9673495826202100256014918264630087768685350464 10°%,
~447821720597401582614759033248188734126656659387525000928318457040911054
5072244909855851257704871781563122365745643467405729533618515402949680670
68374824461869136007371 11224352283059756991052631993740439459861283898421
49673495826202100256014918264630087768685350464, -1, 20, 6

Also, range for 6 defined by (42), (44) is confirmed by
our experiments. From Table 3, last row, we see that
(44) holds on average with accuracy 0.00097=0.50102-
0.50005. Table 3 contains number of RSA successful
cracks for different values of a, b, maximal &4, from
(30) and LHS of (44). Thus, (45) explains (31), and
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(44) explains (32). To find the relation between a and
number of RSA successfully cracked messages, we run
Code 1 with p, g from rows 3-6 of Table 2, § € 0.01,
...,0.52 yields to launch 104,052 attacks on each (p, g,
a) value. Figure 3 shows an inverse proportion
between value of a and number of successful cracks.
Thus, decreasing of the public key leads to decreasing
of the success rate of our attack

o000 -]

2000 400 GO0 SO0 L0000 12000 1800 LaO0 TR0 2000

a) Shows 20010 message cracks at a =2 and drops to 51 message cracks at a = 2048
out of 104,052 message attacks.

oMo

SO0 ——

OO0 SO0 GO0 S00 D000 L2000 LE00 L0 1RG0 2000

b) Shows 34017 message cracks at a = 2 and drops to 18 message cracks at a=2053 out
of 104,052 message attacks.

200Dy
1= t]{)():
1 6000:
14000
12 O(IO:
1 ()(J()():
BOO0O 1
OO E
<MD
20000 1

pete ] ) SO =20 1O 1200 1<

c) Shows 20010 message cracks at a = 2 and drops to 0 message cracks at a = 33739
out of 104,052 message attacks.

2000
1 S0
1 OO
=T TTe B
1 20000
1O OO
el le by
SOHRON
E¥aTelel

2000 A

1o 20 30 Bl

d) Shows 20010 message cracks at a = 2 and drops to 199 message cracks at a = 222
out of 104,052 message attacks.

Figure 3. Inverse relation between value of parameter a in (27) and
number of successful RSA message cracks out of 104,052 message
attacks. (a)-(d) show results for (p, q) from rows 3-6 in from Table
2 respectively. Horizontal and vertical axes represent a and the
number of successfully cracked RSA messages, respectively.

5. Conclusions

In this paper, we show that RSA-encrypted message
considered as a component of a shortest vector of the
RSA lattice can be revealed by LLL attack. LLL attack
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runs in time quadratic in the bit number of modulus N
(see section 3.4). LLL attack targets messages meeting
(13)-(17) being a shortest vector in the RSA lattice.
Our attack works in the conditions discussed in Section
1 in which known attacks can’t work, and it does not
impose any other requirements, such as the need for
very small public exponent, e, part of the plaintext to
be known in advance, or a message broadcasting to
sufficiently many participants, each holding a different
modulus with a known affine transformation, or using
common modulus as other attacks do [10, 19, 20, 21,
22, 28]. Our attack shows significant speed (15
milliseconds using Mupad, and 4 x 10~> seconds
using NTL [39] library for Example 2) in recovering a
40- bit message in comparison to our implementation
for Boneh MITM attack [11] where 2.202 seconds are
needed to recover the same length message (2 seconds
for pre-computation step, and 0.202 seconds

For searching step using NTL [39] library).
Additionally, we have conducted experiments with the
proposed method for N with bit sizes up to 8193 in
Maple 2016.2, with results presented in Tables 2-3, in
which thousands of successful RSA cracks were
conducted using Code 1 run-time of which in the
conditions of example 3 for 2001 RSA 2050-bit
messages cracking is about 45 seconds. The cracks
were made for large public key values meeting (27)-
(29) for which truth of (29), (31), (32) was discovered.
Based on these findings, for RSA not to be susceptible
to the attack proposed herein, it is recommended RSA
public keys to be selected such that (27)-(29) are not
satisfied.
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