
248                                                         The International Arab Journal of Information Technology, Vol. 18, No. 2, March 2021 

Survey on Software Changes: Reasons and 

Remedies 

Ibrahim Assi1, Rami Tailakh2, and Abdelsalam Sayyad1 
1Joint Master in Software Engineering, Birzeit University, Palestine 

 2Mashvisor Real Estate Advisory, Palestine 

Abstract: Software systems play a key role in most businesses nowadays. Building robust, reliable and scalable software 

systems require going through a software production cycle (or process). However, it has been noticed that software systems 

are subjected to changes, whether those amendments are important or not. Those changes to software systems are viewed as a 

considerable issue in software engineering; they are considered as a burden and cost a lot, especially in cases such as 

enterprises and large-scale software systems. This study aims to identify the reasons that cause software changes and suggest 

remedies for those reasons. We survey the opinions of experts such as technical managers, team leaders, and senior 

developers. We collected 81 responses to our questionnaire, which aimed to establish common software development practices 

in the local industry. We also conducted 16 semi-structured interviews targeting the most senior experts, in which we directly 

discussed the reasons and remedies for software changes. Our results highlight the most influential reasons that cause changes 

to software systems, such as changes to user requirements, requests for new features, software development methodology, 

solving bugs, refactoring, and weak user experience design. Most importantly, the study solicited solutions that can reduce the 

need for software changes. 

Keywords: Software changes, software maintenance, empirical study, survey, questionnaire, interviews. 

Received May 12, 2019; accepted April 8, 2020 

https://doi.org/10.34028/iajit/18/2/14 
 

 

1. Introduction 

Over the past decades, a huge number of software 

systems were developed, and have been playing a key 

role in most businesses. However, research and studies 

significantly focused on the software properties that 

are being planned to develop rather than the 

maintainability of software systems that are already 

running [22]. 

Experienced software engineers believe that 

software changes are inevitable, it is a recurring task in 

both development and maintenance phases of the 

Software Development Life Cycle (SDLC). Therefore, 

more concentration should be given to the software 

properties such as changeability, complexity, and 

interoperability. Researchers look into ways to make 

software changes safer, easier and less costly [22]. 
Software maintenance is viewed as a key process in 

software engineering. This process consumes 

considerably more resources and efforts than the 

software development phase itself. Some studies 

claimed that the cost is between 40 and 67 % of the 

total cost of the system life cycle. Furthermore, many 

organizations use the majority of the total software 

budget on maintenance. As a result, researches should 

center on managing maintenance costs, and how it 

could be balanced with benefits. There is also another 

problem, which is how to estimate the ongoing efforts 

that will be spent on maintenance. According to one 

estimate, software maintenance constitutes 50% (or 

more) of the difference between the expected and 

ongoing efforts [6]. 

Another significant issue affecting software changes 

is software testing. In the software development 

process, mistakes are highly likely and are regularly 

committed by software developers. This necessarily 

requires to properly and thoroughly test software 

systems. Interestingly, software testing could reduce 

(or prevent) any future software changes. Majchrzak 

[14] states that “to program testing is to try to make it 

fail”. By testing software, potential faults and bugs, 

that are one of the causes of software changes, it could 

be reduced. 

Nonetheless, there is no silver bullet. According to 

Brooks [5], software changes cannot be ultimately 

prohibited, and so, it is highly demanded to identify 

reasons for software changes. It is also required to 

understand why these changes took place; to reduce (or 

avoid) changes as much as possible. 

In this work, we present the results of a two-part 

survey. In the first part, a questionnaire targeted senior 

software developers and managers from the Palestinian 

software industry, from which we received 81 

responses. We asked questions that measured the 

frequency of software life cycle activities, to establish 

a baseline of the way the local industry operated as 

compared to the global standards. In the second part, 

we interviewed 16 of the participants in the 



Survey on Software Changes: Reasons and Remedies                                                                                                                 249 

questionnaire to specifically explore the research 

questions and to identify their opinions on possible 

remedies that can reduce software changes. 

2. Research Questions 

We designed our questionnaire and interview questions 

to be able to address the following research questions: 

 RQ1: Does applying the standard methodology for 

the SDLC affect software changes? 

  RQ2: Does gathering and changing user 

requirements affect software changes? 

  RQ3: Does the experience of software developers 

affect software changes? 

  RQ4: Does bug solving cause software changes? 

  RQ5: Does upgrading of the running environment 

and development framework result in software 

changes? 

  RQ6: Do code refactoring and non-functional 

requirements result in changes to software systems? 

  RQ7: Does adding new features impact software 

changes? 

 RQ8: Does reducing resource usage cause software 

changes? 

  RQ9: Does the lack of HCI skills affect software 

changes? 

3. Paper Organization 

The remainder of the paper is organized as follows. 

Section 4 discusses related work and how we benefited 

from it in our survey. Section 5 explains the survey's 

protocol, participants, and data collection. Section 6 

and section 7 details the results of the survey and 

discusses their implications. Section 8 outlines 

potential threats to validity and how we mitigate them. 

Finally, section 9 summarizes our conclusions and 

recommendations. 

4. Related Work 

Our review of software engineering papers, journals 

and books revealed considerable research concentrated 

on new software systems. However, there have been 

few studies that discussed the reasons for software 

changes in running software systems, whereas other 

studies illustrated software maintenance. 

Some literature studies are concerned with data; 

such as developer's notes and code changes captured 

from version controls software. For instance, the 

researchers, in [25], studied the comments provided by 

code reviewers identifying defects in the submitted 

code via pull requests. As well known, in source safe 

software systems, pull requests are used to tell other 

software engineers about changes pushed made. In this 

research, the authors introduce deep learning 

algorithms in addition to utilizing developer's reviews. 

The target of this proposal is to find the best code 

change given a review; by studying the historical 

useful reviews. It is stated that this model helped 

minimize the workload that the developers suffer; for 

example, by providing review recommendations 

without humans interference. In other words, the 

model can help developers correct their code as soon 

as possible, thereby, reducing the time between each 

revision of code changes.  

Similarily, Uqaili and Ahsan [27], they propose a 

model built employing Machine Learning algorithms 

in an attempt to predict software defects. Their model 

has shown accuracy metrics of precision and recall 

with above 90%. The desired goal of this model is to 

give prioritization to what changes are critical to be 

performed first. However, this research does not show 

what reasons that have caused these changes. 

While other studies concerned the changes with 

regards to the platform. In [28], for instance, the study 

has addressed the influence of the frequency of 

changes, and the co-evolution of source code changes 

in mobile and non-mobile platforms. The investigation 

employed statistical and regression models to explain 

which factors affect the frequency of changes as well 

as find types of changes that frequently co-occur. The 

statistical analysis has shown that being mobile 

significantly impacts the frequency of changes. 

However, the study was conducted on Android systems 

concerning mobile platforms, while for the non-mobile 

platform, desktop and Web applications were 

considered. However, it is not stated what technologies 

and programming languages are used in building those 

applications. 

Other efforts, in the literature, concern the effect of 

the development approach. In [3], a comparative 

analysis was conducted on the changes in the 

requirements. The comparison was made between In-

House developed and global software development 

approaches; in an attempt to find what are common, 

and what is different in the two development 

approaches. The study was performed by conducting a 

questionnaire that was answered by industry 

practitioners. The comparative analysis and the survey 

resulted in a set of factors (challenges) that cause 

changes. These challenges range from cost and time 

estimation, document management, tracking of 

requirements, communication and coordination issues, 

knowledge management and sharing, and user 

involvement. 
Mockus and Votta [18] had conducted a study, 

which focused on the textual description field that 

represents the software developer's remarks when 

applying their changes to the master source code. They 

used this feature to reduce the efforts of surveying the 

developers' opinions, in addition, to gain more accurate 

results to avoid any administrative or environmental 

influences, which could minimize developer's bias as 

well. Their studies concluded that there is the 

relevance between the size of comments added by 



250                                                         The International Arab Journal of Information Technology, Vol. 18, No. 2, March 2021 

developers, and the type of changes, on the one hand, 

and the required time on the other hand. However, the 

developer’s remarks might be short, and sometimes 

they don't clearly explain the performed issues and 

countermeasures. The remarks feature isn't a 

mandatory field, whereby developers can apply their 

changes without filling up this field and results can be 

only considered as a start point. 

Other studies were also concerned with analyzing 

textual data. For instance, Banker et al. [4] proposed a 

model that analyzed the errors stored in the log files. In 

their study, they made efforts to identify factors that 

affect the changes to the software. It was concluded 

that more frequent changes could cause more errors. 

Moreover, it was found that programmer experience 

matters for efficient system maintenance. That is, 

inexperienced programmers made significantly higher 

error rates than experienced programmers. 

Furthermore, the complexity of software systems may 

also affect error rates over time. Such noticed factors 

are more managerially controllable factors, which 

depend on the current management team, and may vary 

by changing the management team.  

Rahman et al. [21], investigated whether clones of 

legacy code will make a difference that may cause 

defects to the software. Such defects will definitely be 

results of software modifications. However, they 

observed that the majority of software faults were not 

related to code clones. Moreover, the cloned code 

affected the non-cloned in the same way. 

On the other hand, Sjøberg et al. [26] observed that 

the cloned code may require refactoring actions on the 

code to reduce such problems. As stated, refactoring is 

costly and it may introduce issues to the project. Most 

importantly, they concluded that minimizing the code 

size will reduce the number of modifications by 

minimizing code duplication, code arrangements, put it 

in line with global methods, and allow classes to be 

reused. Mondal et al. [19] stated that cloned code 

could be a problem, so any changes to the code 

necessarily require changing other similar software 

code. Therefore, they proposed an algorithm that may 

discover where the changes were made, which 

minimized the efforts of finding the cloned code. 

Teamwork can be one of the key points for more 

productive projects, but Rastkar and Murphy [23] 

found that it is a challenge when several software 

developers work on the same project. A team member 

may individually make changes to the code which will 

result in conflicts among developers. It proposed 

techniques that generate human description in the form 

of document briefings, which may help developers to 

find out why a change happened and what are the 

actions that could be conducted. When this approach 

was experienced, the targeted developers suggested 

adding more technical information that gives more 

details about a specific piece of code. 

Code changes are introduced in different forms.  

According to Ray et al. [24], modifications are 

frequent or repetitive. Unique modifications are 

different from the non-unique ones. However, 

developers commonly commit repetitive code than the 

broadening of unique changes. It is stated that such 

issues can be reduced by important approaches such as 

risk analysis, code reviews, and automated program 

repair. Likewise, Yan et al. [30] proposed to employ 

models that can help classify changes. It is also stated 

that such automatic classification could help managers 

to be well-informed, and so, it helps them make more 

appropriate decisions regarding these changes. For 

instance, they can have the decision of whether to 

increase quality assurance tasks such as software 

testing and code reviews. Kreutzer et al. [12], proposed 

a clustering model to detect the changes according to 

similar metrics. The model was used in automatic 

cluster groups of similar code modifications. It was 

interesting that they found that these groups of similar 

code changes made the bugs easily fixed. For example, 

similar changes may refer to a certain bug, such as the 

generated dataset by the clustering process, which may 

be helpful to be utilized for recommendation systems 

for software modifications processes. Code review 

could lead to better software quality. McIntosh et al. 

[16] state that code review is one of the important tasks 

in which another expert team member can review the 

code whether it is written in alignment with the best 

practices, standards (etc.,). In their research, they 

experimented on post-release defects, and they studied 

each fault with the coverage and participation of 

experts in code review. The most interesting thing that, 

they found there is an important connection between 

code quality with the code review extent, participation, 

and experience level of the experts who make reviews. 

Changes to code are inevitable, but this should not put 

the software at risk. Almasri et al. [2] proposed an 

approach that analyzes the impact of changes. This 

approach automatically measures the potential impact 

for a required change instead of depending only on the 

developer's experiences who provide support and 

maintenance for a given software system. 

5. Research Methodology 

The ultimate goal of this research is to identify the 

reasons behind the changes to software products in one 

hand, and what resolutions can help reduce (or avoid) 

such causes. Identifying these causes will be from the 

perspective of technical managers and software 

developers with senior level of experience. This 

research is comprised of a questionnaire and an 

interview. The questionnaire aims to discover the 

frequency of occurrence of software activities that are 

suspect as reasons for software changes, that were 

extracted from previous studies as mentioned in the 

Related Work section. While the qualitative approach 

through one-to-one interviews targeting experts in the 



Survey on Software Changes: Reasons and Remedies                                                                                                                 251 

field of software production and asks direct questions 

about the potential reasons of software changes, and 

then allows the participants to elaborate on their 

experience with those reasons and the remedies that 

they have used to mitigate them. Qualitative 

approaches are usually harder and time-consuming. 

[10] 

5.1. Questionnaire 

 Protocol: According to the previous studies 

(discussed in the related work section), a 

questionnaire has been designed with questions 

that could help quantify the rate of occurrence of 

the reasons for changes to software systems. The 

questionnaire contains 23 questions, in which 

each question (or set of questions) is to measure 

one of the expected reasons for software changes. 

The questions were selected to be direct and 

easily understood; that is, the audience could fill 

out the questionnaire in 10 minutes, or less. The 

questions cover important topic areas that 

measure the following factors: experience in 

terms of the number of years of experience in 

software development and management as well; 

standard methodology in SDLC; gathering 

requirements; software implementation (coding 

technologies and frameworks); software testing; 

support and maintenance; frequency of adding 

new features to software products; software 

refactoring; human interaction with software; and 

other areas related to software performance. As 

mentioned, the questionnaire almost covers the 

whole phases of SDLC on purpose measuring the 

most important reasons for software changes. 

The design of this questionnaire was based on the 

guidelines provided by Kitchenham and Pfleeger [11]. 

Moreover, several references [1, 13, 20] were reviewed 

to thoroughly understand the software development life 

cycle, and specifically, the testing and maintenance 

phases. The questionnaire was reviewed and validated 

by different levels; a highly-experienced researcher 

with a Ph.D. degree, a Statistical Specialist, three 

senior developers, and a technical manager to check 

whether the questionnaire is direct and easily 

understand. In the beginning, and following Devore et 

al. [7], a sample of the audience was determined, 

which represented 10 % of the survey respondents; and 

to check whether the questions can be measured to 

help in achieving more accurate results. Moreover, the 

questionnaire included some questions that may result 

in contradictory answers, to help exclude random 

responses which may affect the results. 

 Participants: The targeted population in this 

study is a group of highly-experienced 

developers and technical managers (see Figures 1 

and 2.) working for medium-size businesses and 

enterprise levels in the local market. These 

companies and organizations have developed 

various applications in different forms; web, 

desktop, and mobile applications. To avoid bias 

and the possibility of divulging sensitive 

information about their companies, the 

questionnaire does not include any questions 

about organizations where the audience works. 

The participants were serious in their answers, 

that is, the questionnaire was filled up by 81 

participants and only two responses were 

neglected because of their contradictory answers. 

 

Figure 1. The Participants experience. 

As shown in Figure 1., the highest percentage was 

for the years of experience “10 through highest”, 

which is 37 % of the total. While the period “6-9” 

years comes in the second place, at a rate of 22.2 %. 

Besides, the period of “4-5” years of experience comes 

in third place, with a rate of 21.0 %. Figure 2., 

Participants Experience Management, shows that the 

highest percentage was 56.8 % of “1-5” years of the 

respondent’s experiences as a manager/ team leader. 

While the second place was at a rate of 28.4 %, for “0” 

years. Moreover, the third place was at a rate of 12.3 % 

of the total, for the period “6-10” years. 

 

Figure 2. Participants experience management. 

 Data Collection: The questionnaire survey was 

firstly published on Google forms. During the 

interviews, a hard copy of the questionnaire was 

asked to be filled, in case they did not fill the 

online copy. After that, the questionnaire results 

were filled out in the format of Comma-

Separated Values (CSV) file, which is suitable 

for result analysis using Powerful Statistical 



252                                                         The International Arab Journal of Information Technology, Vol. 18, No. 2, March 2021 

Software Platform (SPSS) CSV format which 

save data in a text file, the lines representing rows 

and each row separated by commas to 

representing columns [9]). 

5.2. Interviews 

 Protocol: The interviews took different forms 

such as Skype calls, phone calls, and one-to-one 

interviews. The interview was divided into three 

sections; the first one inspected their experiences, 

while the second section was to discuss reasons 

and resolutions that may decrease such changes. 

The third section included other issues that had 

not been presented during the interview. Other 

new issues and proposed remedies were also 

tackled by other participants were also been 

discussed. Concerning time, each interview took 

about 60-90 minutes on average.  

 Participants: The targeted group was selected 

from different organizations and sections, 

working on various projects. In other words, they 

have had varied knowledge, roles, and 

experiences. More specifically, A total of 16 

interviews were conducted; (6 technical 

managers, 4 team leaders, and 6 senior 

developers) with experiences of 4-20 years in 

software development, 4-15 years of experience 

in team leadership, in addition to technical 

management. 

 Data Collection: All interviews were digitally 

recorded using personal smartphone voice 

recorders. Then the audio records were manually 

transcribed into texts. Finally, these interviews 

were summarized and categorized according to 

similar factors, opinions, and suggested solutions. 

6. Results 

In this section, we analyze the questionnaire results to 

measure the frequency of each question, which 

represents the expected reason for changes to software 

systems. Interview results are also analyzed to identify 

reasons and suggested remedies. Then the interview 

results are combined with the questionnaire results in 

the Discussion section. 

 Survey Outcomes: In this section, a descriptive 

analysis of each question will be presented and 

discussed. Based on the descriptive illustrated in 

Table 2, it can be shown the number of participants, 

in addition to calculating means, standard 

deviations, and answers' percentages. The results 

shown in this table do not represent quantitative 

questions, but, it shows the answers to the scalable 

questions. All the questions of the questionnaire are 

mandatory; therefore, it was answered by the 81 

participants. The percentage column in Table 2 

shows the percentage of answering each question of 

the conducted questionnaire. This percentage is 

calculated by dividing the mean value over the 

maximum score; considering each question scored 

with a number. That is, it is scored from 1 to 5, then, 

multiplied by 100. 

The Third Question (Q3) has the options: Never, 

Seldom, Sometimes, most of the time, and always; 

scored from 1 to 5 respectively. The percentage value 

of each option is calculated as the following: 

 Never: %20%100*)(
5
1   

 Seldom: %40%100*)(
5
2   

 Sometimes: %60%100*)(
5
3   

 Most of the time: %80%100*)(
5
4   

 Always: %100%100*)(
5
5   

to calculate percentage of question answer of Q3 by 

this equation: %100*)(
score Maximum

answerquestion  ofMean 
 so the 

percentage of the Q3 is: 68.89%%100*)(
5

3.44   

Moreover, the questionnaire presents and discusses 

each research question, as seen in Table.1 that shows 

the relation between the research questions and 

questionnaire questions. 

The first part of the questionnaire investigated the 

RQ1 (see Table 1). The Q3 in this part, the standard 

derivation is 1.245, and percentage was 68.89 % in 

average, which is close to the option “sometimes”, in 

which software development teams sometimes apply 

standard methodologies in SDLC.  

The second part of the questionnaire concerns RQ2 

(see Table 1) about gathering and changing the 

requirements. 

The Fourth Question (Q4) the stranded derivation is 

0.876, and the percentage was acknowledged by 64.20 

%, which is close to the option “sometimes” of the 

detailed description of the customer's needs. 

Concerning the Fifth Question (Q5), the stranded 

derivation is 0.830 with participants responses are 

close to the option “sometimes” that was 

acknowledged by 55.06 % percentage. Question Six 

(Q6) in this part, the standard derivation is 0.846 with 

responses of 73.83 % which is close to the option 

“most of the time” of customer requirements changes 

after the beginning of implementation. 

The developers' experience was measured in the 

third part of the prepared questionnaire, it answers the 

research question number 3, question RQ3 (see Table 

1) about. In the Seventh Question (Q7), the standard 

derivation is 0.766 with respondents that are close to 

the option “senior”; which was acknowledged by 70.99 

% where the majority of the participants are at the 

senior level. 

The fourth section of the research questionnaire 

surveyed the audience's opinions about bugs solving 

that cause software changes, this answers the RQ4 (see 



Survey on Software Changes: Reasons and Remedies                                                                                                                 253 

Table 1). The Tenth Question (Q10) in this part, the 

stranded derivation is 1.208 and the percentage was 

61.23 % which is close to the option “sometimes”, in 

which 61.23 % apply a standard framework for testing. 

The standard derivation in (Q11) is 2.62, and 52.35 % 

of the participants are “Sometimes” use automated 

testing tools. (Q22) in this section fount that the 

stranded derivation is 0.679 and the percentage was 

acknowledged by 60.74 % of responded with the 

option “Sometimes” for the need for committing 

changes on code to enhance performance. 

 

Table 1. Research questions and questionnaire questions. 

Research Questions Questionnaire Questions 

RQ1: Does applying standard methodology for SDLC affect 

software changes? 

Q3. Do you apply one of the standard methodologies; such as Agile, Scrum etc., for the 

software production life cycle? 

RQ2: Does gathering and changing user requirements effect 

software changes? 

Q4. Does the customer provide detailed description what their needs?  

Q5. Does the customer have documentation of the applied processes and procedures?  

Q6. Does the customer change the requirements after beginning of the implementation (coding) 
phase? 

RQ3: Does the experience of software developers affect software 

changes? 

Q7. What is your level of experience the technologies (Programming languages, development 

framework, database engine etc.) that will be employed for the implementation phase? 

RQ4: Does bugs solving cause software changes? 

Q10.Do you apply a framework for testing? 

Q11.Do you use automated testing tools?  

Q22.How often do you perform changes on code in order to enhance performance? 

RQ5: Does upgrading of the running environment and development 

framework result of software changes? 

Q13. Does a change of the environment; e.g.; upgrading/changing of the 

operating system, require changes on the software product? 

RQ6: Do code refactoring and non-functional requirements result of 
changes to software systems? 

Q8. Do any other software developers review your code?  

Q12. Does the software production team have QA members?  
Q15. How often do changes affect old features when applying new features?  

Q16. Do you often need alteration on software structure (Refactoring)? 

RQ7: Does adding (a) new feature(s) impact software changes? 
Q14. How often do customers request adding new features in one-month period of time after 

using a release? 

RQ8: Does reducing resources usage cause software changes? Q23. How often do you perform changes on code in order to reduce resources usage? 

RQ9: Does the lack of HCI skills affect software changes? 

Q17. What is the level of criticality of software products that you work on in general?  

Q19. Do software products you work on require training in general?  

Q20. Do you provide user manuals of the software products that you work on in general?  

Q21. How often do users make mistakes due to misusing the software? 

Table 2. The descriptive statistics. 

Question N Mean Std. Deviation 

Q3. Do you apply one of the standard methodologies; such as Agile, Scrum etc., for the software production life cycle? 81 3.44 1.245 

Q4. Does the customer provide detailed description what their needs? 81 3.21 .876 

Q5. Does the customer have documentation of the applied processes and procedures? 81 2.75 .830 

Q6. Does the customer change the requirements after beginning of the implementation (coding) phase? 81 3.69 .846 

Q7. What is your level of experience the technologies that will be employed for the implementation phase? 81 2.84 .766 

Q8. Do any other software developers review your code? 81 2.89 1.118 

Q10. Do you apply a framework for testing? 81 3.06 1.208 

Q11. Do you use automated testing tools? 81 2.62 1.309 

Q12. Does the software production team have QA members? 81 3.41 1.330 

Q13. Does a change of the environment; e.g.; upgrading/changing of the operating system, require changes on the software 

product? 

81 2.51 .853 

Q14. How often do customers request adding new features in one-month period of time after using a release? 81 3.33 .908 

Q15. How often do changes affect old features when applying new features? 81 2.89 .775 

Q16. Do you often need alteration on software structure (Refactoring)? Note: Refactoring is the act of improving design 

without changing its behavior 

81 2.88 .678 

Q17. What is the level of criticality of software products that you work on in general?  81 2.35 .636 

Q19. Do software products you work on require training in general? 81 3.48 .937 

Q20. Do you provide user manuals of the software products that you work on in general? 81 3.25 1.210 

Q21. How often do users make mistakes due to misusing the software? 81 2.89 .707 

Q22. How often do you perform changes on code in order to enhance performance? 81 3.04 .679 

Q23. How often do you perform changes on code in order to reduce resources usage? 81 2.69 .769 

 

The fifth section of the questionnaire regarding the 

RQ5 (see Table.1). The standard derivation in (Q13) is 

0.853, while 50.12 % of the answers were “Seldom” 

because of the software changes that cause 

upgrading/changing the operating system. The code 

refactoring and non-functional requirements are results 

of software changes that were measured in the sixth 

section, which answers RQ6 (see Table.1). In (Q8), the 

stranded derivation is 2.89, and 57.78 % of participants 

chose the option “Sometimes” regarding the of code 

review. Regarding (Q12), the stranded derivation is 

1.330 with a percentage of 68.15 % answers chose the 

option “Sometimes” that there are Quality Assurance 

(QA) members in the development team (a QA in the 

software production process refers to the responsibility 

for ensuring that software meets the established 

standards set by the company or business) [16]. In 

(Q15), the standard derivation is 0.775 and percentage 



254                                                         The International Arab Journal of Information Technology, Vol. 18, No. 2, March 2021 

was 57.78%, which was close to the answer 

“Sometimes” regarding changes that affect old features 

when applying new features. Regards (Q16), the 

standard derivation is 0.678 and participants chose the 

option "Sometimes" with a percentage of 71.91 % for 

code refactoring.The seventh section answered RQ7 

(Table 1) the standard derivation of (Q14) is 0.908 and 

the percentage was 66.67 %, which was close to the 

answer “Sometimes” for a customer's request to add 

new features in one month after using a release.While 

the eighth section related to RQ8 (Table 1) that 

measures the changes in software code to reduce 

resource usage. The standard derivation of (Q23) is 

0.769, and 53.83 % of responses selected the option 

“Sometimes” for the need of making changes on 

software code to reduce resource usage. Finally, 

Human Interaction concerns the audience's surveys. In 

this section of the questionnaire, which answers the 

RQ9 (Table 1), it has been found the standard 

deviation of (Q17) is 0.636 and 46.91 % of the answers 

to this question were with the option “Moderate” for 

the criticality of software products. For (Q19), the 

standard derivation is 0.937, and the option 

“Sometimes” with a percentage of 69.63 % of answers 

that users sometimes require training of the way to use 

their software system. In (Q20), the standard derivation 

is 1.210 and the percentage was 64.94 % with the 

option “Sometimes” to offer user manuals of used 

software products. While the stranded derivation of 

(Q21) is 0.707, and the percentage was 57.78%, which 

was close to the answer “Sometimes” for users who 

make mistakes due to misusing the software, also that 

refers to the weakness of HCI. 

6.1. Interview Outcomes 

This section presents and discusses each individual 

interviewed to identify what factors could cause 

software changes, and, to what extent such factors can 

result in changes to software products. Besides, this 

section presents the suggested solutions by the highly 

experienced people who participated in this study 

interviews. Most importantly, each factor is presented 

in one of the research questions. 

 Applying Standard Methodology for SDLC (RQ1): 

Software development methodologies are very 

important for successful software products. As 

shown in Table 3, 14 participants considered that 

the “applying of standard SDLC methodology” is 

strongly affect reducing software changes. One 

other participant considered that it doesn't strongly 

affect. While another participant considered that 

applying a standard methodology somewhat can 

affect, during their usage, a customized 

methodology is applied to suit their special work 

environment and needs. 

Table 3. Factors of software changes. 

RQ Effect Remedies 

RQ2 Gathering and changing user 

requirements 

16: Strongly affects 14: multiple meetings with users 

 4: use mock-ups 
 4: use stories 

 4: use control panel 

 3: train devs in domain 
 3: study the user process 

 most: changes in req are inevitable, just give more time. 

RQ7 Add new feature 16: Strongly affects 4: improve requirements gathering 

RQ1 Apply standard methodologies for 
SDLC 

14: Strongly affects  
1: Affects  

1: Somewhat affects 

8: apply SDLC to the letter 
2: dedicate bug fixing iterations 

RQ4 Bugs 13: Strongly affects  

3: Affects 

fairly common suggestions (see text) 

RQ6 Refactoring 10: Strongly affects 

3: Affects 
3: Somewhat affects 

5: involve reviewer and QA in dev team 

5: hire experienced devs and train existing devs 
5: build independent software services 

2: use good design structure  

RQ9 Lack of HCI skills 6: Strongly affects 
6: Affects 

4: Somewhat affects  

9: employ UX designers  
3: use mock-ups  

3: run beta to get user feedback  

3: reduce user clicks  
2: reduce input fields, links, etc.  

2: use validation messages 

RQ3 Developer Experience 4: Strongly affects 
12: Affects 

8: involve reviewer and QA in dev team 
4: use comments 

4: expand business experience of devs. 

most: teams should mingle and loads should be 
balanced. 

RQ8 Reduce resources 1: Affects 

7: Somewhat affects 

6: Neutral 
2: Does not affect  

 

RQ5 Upgrade environment and 

development framework 

5: Somewhat affects 

7: Neutral 
4: Does not affect 

 



Survey on Software Changes: Reasons and Remedies                                                                                                                 255 

In some businesses, standard methodologies are 

partially applied. Some companies hire their 

development teams to build their required software 

systems (in-house development). In some other cases, 

some of (small-business) companies hire one individual 

developer to build and maintain (a) software system(s). 

Moreover, there are challenges, to thoroughly applying 

standard methodologies, and face developers, 

especially when solving software bugs of previous 

versions. Additionally, new user's requirements and 

modifications may arise during the implementation 

phase affecting the good utilization of standard SDLC 

methodologies.  

Interestingly, participants suggested solutions to 

resolve (or avoid) such mentioned issues. Eight of them 

recommended applying standard SDLC methodology 

with its all concepts. While two participants suggested 

customizing the SDLC methodology, according to their 

capabilities and needs. Two other participants stated 

that applying a standard methodology requires a 

management team to allocate a special period for 

solving bugs of the running version. Finally, one of the 

participants recommended being given enough time to 

apply the standard SDLC methodology. 

 Gathering and Changing User Requirements (RQ2): 
The collection of user needs and requirements is 

viewed as a ground for building systems that meet 

what is required. As shown in Table 3, all 

participants in consensus consider the “gathering of 

user requirements” is strongly important; a gathering 

of wrong requirements could cause changes to the 

software. Customers are not conscious enough about 

their needs, rather, they may only have a general 

idea without details, for example. After the 

implementation and the application of software, 

customers usually request changes to the software; in 

some cases, the changes may include cancellation of 

(recently) built feature(s).  

During the requirements gathering phase, customers 

provide developers with documentation, which is 

sometimes not up-to-dated, does not describe their 

current processes and responsibilities. This may put the 

whole project at risk of failure, or it may cause 

expensive extensions. The changes to requirements are 

more challenging when users request their requirements 

on standard software (generic) used by many 

customers. In other cases, documentation reflects the 

vision of the manager while it does not reflect reality. 

For instance, some organizations hire temporary-

contract consultants to develop such documentation. 

During the development of the documentation, these 

consultants usually interview managers and neglect the 

employees and workers who can describe their needs.  

The participants suggest some solutions that can 

solve issues concerning the gathering of requirements. 

The majority of participants (14 participants) suggest 

holding multiple meetings with users until achieving 

clear user requirements. Three of the participants 

suggest to develop and train the development team in 

the work field. Three of the participants also suggest 

studying and analyzing the current user process to 

help users identify their needs well. Meanwhile, four 

participants recommend using mock-ups to validate 

and approve user requirements. Another four 

participants suggest to document requirements as a 

story, to be verified by users. The other four of the 

participants propose to add a module; control panel for 

example, within the software to enable or disable 

software features and services. Importantly, six of the 

participants ensure building scalable, easily 

maintained, and readable code as possible to reduce 

the effects of the changes to requirements. Three 

participants suggest setting a guideline for software-

design architecture to meet any possible changes in 

requirements. One of the participants ensures that the 

existence of Quality Assurance (QA) members will 

help to monitor the gathering process in addition to 

review requirements. Seven of the participants state 

that there is no issue of any (important) changes if 

there will be extension to the delivery time according 

to the arose changes. Interestingly, most of the 

participants conclude that changes in user 

requirements are an inevitable process. However, any 

related issues should be reduced as possible to avoid 

expensive changes. It is worth mentioning that 

changes in requirements that could affect software 

architecture are costly as well.  

 Experiences of Developers (RQ3): The developers' 

experience is considered one of the key factors. 

Four of the participants, as illustrated in Table 3, 

state that the developers experience strongly play a 

vital role in reducing (or probably managing) the 

changes to software systems. On the other hand, 12 

of the participants state that it may affect software 

changes. Software developers who have solid 

experience can better manage to reduce software 

changes, meanwhile, junior developers may cause 

changes (by increasing). It has also been discussed 

that senior developers may develop low-quality 

code as a result of the loads that may be assigned in 

a short period of time. Therefore, it is not only 

required to have highly experienced developers, but 

they also need enough time to achieve their tasks.  

Development teams sometimes have different 

experiences that help developers, of beginner and 

intermediate levels, benefit from senior developers' 

experiences. In other words, teams should mingle to 

share knowledge and experience among team 

members. The presence of senior developers will also 

help validate code written by junior developers. 

Moreover, eight participants ensure involving code 

reviewers and QA members in the development team 

(from developers who have high experience). Two 

other participants propose holding regular meetings 



256                                                         The International Arab Journal of Information Technology, Vol. 18, No. 2, March 2021 

between developers to solve development problems. 

Four of the participants indicated that senior developers 

usually write comments on the written code that helps 

other team members in understanding their developed 

code. Concerning teams' development and training, four 

of the participants recommend widening developers' 

knowledge and experience in businesses and 

technologies as well. 

 Solving Bugs (RQ4): During the software running 

phases, some bugs may result in changes to this 

software system. As presented in Table 3, 13 of the 

participants consider the “solving bugs” strongly 

affects software while it is running. While three 

participants do not consider it to cause considerable 

software changes. Moreover, solving the bugs 

process is viewed as changes to the software. It may 

also affect other components of the software. 

Besides, it will affect the action plan and result in 

creating confusion for developers who are already 

assigned to other tasks. This will impact users' 

confidence in the software, the company, or the 

development team. Solving bugs and testing 

software processes are also not given enough time. 

Furthermore, developers are not available; they are 

sometimes busy with other assignments, which may 

also introduce other issues that will require changes. 

Participants in consensus agree that lacking software 

testing is one of the main causes of software bugs 

during systems running. One of the participants 

suggests improving the testing phase by including 

different techniques -not limited to- such as black-box 

testing, and automation testing in addition to designing 

different test cases and scenarios. Importantly, users 

should be involved in the testing phase. The majority of 

participants ensure that QA members should be 

involved in the testing phase. One of the participants 

recommends adding a pilot phase during the project to 

test and validate the software before production, while 

one of the important suggestions is to use machine 

learning in monitoring user behavior to help fins and 

identify software bugs. 

 Upgrade the Running Environment and 

Development Framework (RQ5): From a different 

perspective, there might be changes to running 

environments. For instance, tracking software 

licenses and support, organizations may have to 

upgrade software such as operating systems. As 

shown in Table 3, five participants consider the 

“upgrade running environment and development 

framework” as a factor that may result in software 

changes, while the other seven participants were 

neutral against this factor. Four of the participants, 

on the other hand, consider that this factor requires 

software changes. Such a problem is inevitable, 

whereby an upgrade cannot be avoided. 

 Code Refactoring and Non-Functional 

Requirements (RQ6): In software production, and 

for reasons such as the increase of concurrent users 

and delivered services, performance issues may 

appear. This requires enhancing software to resolve 

such non-functional requirements. The code 

refactoring is the process of software changes to 

improve internal structure without any change in 

external behavior [8]. The code refactoring is 

important to solving bugs and non-functional 

requirements such as the performance and to make 

the code maintainable and extensible. The 

refactoring code mostly occurred in legacy software 

and those who have bad designs. Furthermore, the 

needed code refactoring that was built by a new 

developer and not reviewed was coded by code 

reviewer or QA member. 

As illustrated in Table 3, ten of the participants 

consider that the “code refactoring” has a strong 

impact on software changes, however, the other three 

participants consider that it affects the software, while 

the other three participants consider that it 

“somewhat” causes software changes.  

Suggestions for such mentioned issues made five 

participants propose to involve QA members and code 

reviewers in the development team. Two other 

participants suggested building a strong design 

structure for software systems, in which they will be 

scalable and maintainable without the need for 

refactoring. Back to the developer experience factor, 

five participants ensured that hiring senior developers 

and experts in addition to keeping team members 

trained with the needed skills reduce (or avoid) such 

an issue. Interestingly, five of the participants 

recommended building each component of the 

software as an independent service that will reduce 

dependability between the software features. Another 

participant proposed to invest in building software 

services as microservices. Another participant 

suggested building the software features as plugins, in 

which any changes will be only performed on the 

plugins without the need to make any changes to the 

software that depends on such plugins. However, this 

issue cannot be ultimately avoided when there is 

interaction with hardware (and this hardware always 

changes). 

 Add New Feature (RQ7): Adding new features is 

important in the software industry from a business 

perspective. A software system with more services 

could help attract more customers. In this research, 

all participants agree that adding new features is 

useful to software systems. However, this may have 

an effect on (some) old features causing 

considerable changes to software, which can be 

viewed as a problem. As seen in Table 3, all 

participants consider the “Add new feature” factor 

will strongly result in changes. Moreover, adding 



Survey on Software Changes: Reasons and Remedies                                                                                                                 257 

new features require one of the two activities; the 

code may either be a subject for extension or 

modification. For systems that are already running, 

adding new features will necessarily require 

software developers and testers to re-run testing 

cases on the running components to make sure that 

they were not affected. This is viewed as costly and 

cumbersome for developers and business owners as 

well.  

Accordingly, two of the participants do not consider 

that a problem, rather, it is important to keep the 

sustainability of projects and businesses. While four of 

the participants see that some features can be viewed as 

new, that is, they were not clear during gathering 

requirements phase in the beginning. 

 Reduce Usage Resources (RQ8): Running software 

systems requires some resources. These resources 

usually are limited; therefore, it should be taken into 

consideration how to properly manage and use these 

resources to the maximum extent. Consequently, the 

code sometimes needs to be modified to meet such 

limitations in resources. 

On the other hand, two of the participants see that such 

a factor does not require changes. Seven of the 

participants consider it “somewhat” affecting, while 6 

participants were neutral against this reason. One of the 

participants, on the other hand, sees that such a factor 

will cause changes to software systems. These readings 

are illustrated in Table 3. Interestingly, the available 

resources in the market are nowadays considered robust 

enough to handle new requirements. 

As a suggestion, one of the participants stated that 

adding new resources is not challenging in their work 

environment. While two other participants proposed to 

change technologies to meet the available resources. 

One of the participants suggested that the code 

refactoring could also meet the available resources. 

While another participant recommended involving QA 

members and code reviewers in the development team 

to help build software code that meets the available 

resources.  

 Lack of HCI skills (RQ9): The HCI is one of the 

areas that developers give attention in building (new) 

software systems. The HCI, in this study, refers to 

the Human-computer interaction, which is the field 

involves the design, evaluation, and implementation 

of interactive computing systems for human use. The 

HCI mainly focuses on end-user, user requirements, 

and context. By employing HCI, users are more 

involved in the design process; to achieve more user 

satisfaction. It also increases user productivity when 

using the software [15]. As a result, HCI concerns 

developing systems that are easy to use and meet 

user's needs. As shown in Table 3, six of the 

participants consider that lack of HCI skills will 

strongly result in software changes, and the other six 

participants see it effecting. While the other 

participants consider it “somewhat” causing 

changes. Any issues in usability do not necessarily 

refer to errors or bugs in software functionality; it is 

usually related to design problems that could affect 

user interaction with a software product. Such an 

issue arises when users are not able to easily 

understand and properly use specific software. 

This, then, requires to hold training sessions and 

provide user manuals to train users on how to use 

those software systems. 

Two of the participants recommended building simple 

interface systems; with minimum input fields, links 

(etc.,). Other three participants proposed to reduce the 

number of user clicks that needs to achieve request 

service. Two other participants suggested enabling 

validation messages on the interface to avoid user's 

mistakes. While the other three participants ensured 

adding a pilot phase to the project and running a 

"beta" version of the software to enable users to give 

their feedback and opinions about the software. 

Interestingly, most of the participants (nine 

participants) suggested employing UX designers in the 

development teams; UX stands for user experience , 

which is viewed as a key factor for the success of 

software products, and so, software developers and 

designers should give great attention to UX in order to 

avoid any negative impressions when users use their 

products [17]. Again, three of the participants 

suggested providing users with mock-ups that help in 

building a more usable interface. 

7. Discussions 

This section discusses the combination of the 

interview outcomes and the questionnaire outcomes, 

in order to identify the reasons of software changes 

from among the frequently-occurring software life 

cycle practices in the local industry. The discussion is 

presented according to the research questions as 

follows: 

 RQ1: Does applying standard methodology for 

SDLC effect on software changes? In the 

questionnaire, the majority's answer about applying 

the standard methodology for SDLC is (Q3) “Most 

of the time” and “Always”, which was 

acknowledged with 50 % of the participants. It can 

be noticed that most companies have applied 

standard methodologies for SDLC. In the 

interviews, 14 of 16 participants consider the 

methodology of applying standard SDLC strongly 

affects the minimizing of software changes. 

Therefore, applying a standard methodology for 

SDLC can be one of the key factors that could help 

manage and reduce changes to software products. 
 RQ2: Does gathering and changing user 

requirements effect software changes? As shown in 



258                                                         The International Arab Journal of Information Technology, Vol. 18, No. 2, March 2021 

the questionnaire (in questions; Q4 and Q5), it can 

be seen that there is a problem concerning the 

misunderstanding of users' requirements, as well as 

the changes to the requirements after the beginning 

of the implementation (coding) phase as shown in 

Q6. In the interviews, all participants, in consensus, 

consider the “gathering and changing of user 

requirements” is strongly important. As a result, the 

“gathering and changing of user's requirements” can 

be also viewed as one of the important causes 

of software changes. 
 RQ3: Does the experience of software developers 

affect software changes? In the questionnaire; 

specifically, in question Q7, as well as in the 

interviews, the majority of the audience consider that 

the developers' experience is one of the key factors 

that affect causing software changes. 

 RQ4: Does the bug solving cause software changes? 

In the questionnaire; especially the questions Q10, 

Q11 and Q22, which are related to software testing, 

the majority of the participants indicate that the 

weakness in software testing may cause bugs in the 

software system. This was also illustrated in 

interviews, in which most of the participants 

consider that the “solving bugs after release” 

strongly affect software while it is running. As a 

result, this factor can be also considered as one of 

the important reasons for software changes.  
 RQ5: Does upgrading of the running environment 

and development framework result in software 

changes? This factor is not important compared to 

other reasons mentioned in the discussion. That is, 

the answer to Q13 in the questionnaire was between 

“sometimes” and “seldom.” This was also concluded 

in the interviews, and, therefore, this factor can be 

viewed as a weak factor.  

 RQ6: Do code refactoring and non-functional 

requirements result in changes to software systems? 

Code refactoring and the non-functional 

requirements are related to each other. For instance, 

performance issues are usually resolved by code 

refactoring. The questionnaire conducted in this 

study includes four questions concerning such a 

factor; questions Q8, Q12, Q15, and Q16. According 

to the answers provided by the audience, it can be 

shown that code refactoring and non-functional 

requirements affect software changes. Most of the 

participants, in the interviews, also considered that 

this factor is an important reason that affects 

software changes.  

 RQ7: Does adding new features impact software 

changes? The addition of a new feature is the most 

important factor. Adding new features can mean 

changes are committed to software products, which 

results in having more competitive software systems. 

This was indicated in the answers of Q14 of the 

questionnaire and the interviews as well.  

 RQ8: Does reducing the usage of resources cause 

software changes? Sometimes, it is required to 

perform changes to reduce resource usages. In the 

questionnaire, most of the participants answered the 

question (Q23) in which most changes do not result 

from such causes. This was also indicated in the 

interviews, where most of the participants consider 

that this reason does not cause changes to software 

systems. Thus, this factor can be also viewed as a 

weak factor concerning software changes. 
 RQ9: Does the lack of HCI skills result of software 

changes? This issue arises when users are not able 

to easily understand and properly use specific 

software (or module), which necessarily requires 

developers to perform changes to software 

products. The questionnaire of this research 

includes four questions (Q17, Q19, Q20, and Q21) 

related to HCI. It can be seen that the answers of 

the audience ensure that HCI results in important 

changes to software systems. In addition, this view 

was raised by most of the interviews in which most 

of the participants consider that HCI issues strongly 

affect software changes. This, as a result, requires 

developing the skills of HCI of software 

developers. 

8. Potential Threats to Validity 

This section will present and discuss the validity of the 

results achieved in this research. The validity check 

has been committed employing the methods outlined 

by Wohlin et al. [29]. This section is comprised of 

three evaluation parts: construct, conclusion and 

external validity. 

 Threats to Construct Validity: Construct validity 

refers to the extent to which a piece of research 

actually investigates against the researcher's 

purpose of this study. The possible factors that may 

affect construct validity are presented as follows. 

The opinions of developers and technical managers 

may be influenced by the interview discussion if it 

takes place before filling out the questionnaire. 

Therefore, we made sure that they filled out the 

questionnaire first. Also, during the one-on-one 

interview, they may also be influenced by the 

researcher; thus, the interviewer could not give any 

opinion (approval or rejection) but only a clarification 

about the question. The interviews conducted with 

software developers were held without the existence 

of their managers, in order to avoid any bias with their 

organizations or the applied methodologies. 

 Threats to Conclusion Validity: This validation 

investigates the relationship between the conducted 

experiment and the outcomes, in which it examines 

the validity of the statistics discussed in the Results 

section against the hypothesis of the study. 



Survey on Software Changes: Reasons and Remedies                                                                                                                 259 

The relationship between the technical managers and 

software developers with regards to software changes 

can lead to discrepancies in the opinions expressed by 

technical managers and developers. We cross-checked 

the outcomes of the quantitative and qualitative 

(questionnaire and interviews) analysis to reduce those 

differences. 

 Threats to External Validity: The study targeted 

managers and senior developers in local market 

companies. Nevertheless, the tools, processes, and 

practices followed in the local market in Palestine 

are the same as other global markets. Therefore, the 

results of this research can still help global 

companies to understand and minimize software 

changes. 

9. Conclusions and Recommendations  

This work has addressed the problem of changes to 

software systems. In this research, efforts were made to 

identify reasons for software changes; by conducting a 

questionnaire and interviews that targeted technical 

managers, team leaders, and senior developers. The 

main results of this research support previous studies 

but also add insights into potential remedies that can 

mitigate reasons for software changes. As a conclusion, 

there are seven key reasons for software changes; 

applying the standard methodology for SDLC, 

gathering and changing user requirements, developer 

experience, bug solving, code refactoring and non-

functional requirements, adding new features, and the 

lack of HCI skills. Suggested solutions for these issues 

also emerged during the interviews. It is also concluded 

that applying the standard methodology, for SDLC, 

reduces the impact of causes resulted from solving bugs 

and code refactoring. Moreover, enhancements in some 

development areas will reduce software modifications. 

These enhancements can be achieved by improving 

three main areas; development methodology, 

development teams, and the testing phase. For example, 

the development team should apply an appropriate 

development methodology that suits the nature of their 

software projects. They can also customize their 

development methodology if it is needed. Furthermore, 

developers should work as teams; thus, a team will be 

formed of different specialties with different 

experiences. For instance, a team can include back-end 

engineers, UX designers, software testers (etc.,). 

Finally, it is recommended to employ automation 

testing tools that help make the testing phase more 

efficient. User behavior can be investigated by using 

Machine Learning models on data, such as the data 

stored in web server access logs. Analyzing such logs 

may help proactively predict user needs. Applying such 

models could help to find the faults during the testing 

phase a well.  

This research also surveyed expert opinions such as 

technical managers, team leaders, and senior 

developers. Future work may include controlled 

experiments to validate and test each of the concluded 

reasons and suggested solutions. Interestingly, this 

could drive to better identification of reasons for 

software changes. 

References 

[1] Al-Fedaghi S., “Conceptualizing Software Life 

Cycle,” in Proceedings of Information Systems: 

Modeling, Development, and Integration, 

Sydney, pp. 438-457, 2009. 

[2] Almasri N., Tahat L., and Korel B., “Toward 

Automatically Quantifying the Impact of A 

Change in Systems,” Software Quality Journal, 

vol. 25, no. 3, pp. 60-640, 2017. 

[3] Anwer S., Wen L., Wang Z., and Mahmood S., 

“Comparative Analysis of Requirement Change 

Management Challenges Between In-House and 

Global Software Development: Findings of 

Literature and Industry Survey,” IEEE Access, 

vol. 7, pp. 116585-116611, 2019. 

[4] Banker R., Datar S., Kemerer C., and Zweig D., 

“Software Errors and Software Maintenance 

Management,” Information Technology and 

Management, vol. 3, no. 1, pp. 25-41, 2002. 

[5] Brooks F., “No Silver Bullet,” IEEE Computer, 

vol. 20, no. 4, pp. 10-19, 1987. 

[6] Carr M. and Wagner C., “A Study of Reasoning 

Processes in Software Maintenance 

Management” Information Technology and 

Management, vol. 3, no. 1, pp. 181-203, 2002. 

[7] Devore J., Farnum N., and Doi J., “Applied 

Statistics for Engineers and Scientists,” Nelson 

Education, 2013. 

[8] Fowler M., “Refactoring: Improving the Design 

of Existing Code,” in Proceedings of 11th 

European Conference, Jyväskylä, pp. 1-163 

1997. 

[9] Hasan M., Altab H., Hosney J., Haider N., and 

Touhid B., “CSV-ANNOTATE: Generate 

Annotated Tables from CSV File” in 

Proceedings of International Conference on 

Artificial Intelligence and Big Data, Chengdu, 

pp. 71-75, 2018. 

[10] Hughes C., Qualitative and Quantitative 

Approaches, http://tinyurl. com/bmztxp8, Last 

Visited , 2012.  

[11] Kitchenham B. and Pfleeger S., “Guide to 

Advanced Empirical Software Engineering,” 

Springer link, 2008. 

[12] Kreutzer P., Dotzler G., Ring M., Eskofier B., 

and Philippsen M., “Automatic Clustering of 

Code Changes,” in Proceedings of the 13th 

International Conference on Mining Software 

Repositories, Austin, pp. 61-72, 2016. 

[13] Langer M., System Development Life Cycle 

(Sdlc), Springer Link , 2008. 



260                                                         The International Arab Journal of Information Technology, Vol. 18, No. 2, March 2021 

[14] Majchrzak T., Improving Software Testing: 

Technical and Organizational Developments, 

Springer Science and Business Media, 2012.  

[15] Mazumder F. and Das U., “Usability Guidelines 

for Usable User Interface,” International Journal 

of Research in Engineering and Technology, vol. 

3, no. 9, pp. 79-82, 2014. 

[16] McIntosh S., Kamei Y., Adams B., and Hassan 

A., “An Empirical Study of the Impact of Modern 

Code Review Practices on Software Quality,” 

Empirical Software Engineering, vol. 21, no. 5, 

pp. 2146-2189, 2016. 

[17] Minge M., Thüring M., Wagner I., and Kuhr C., 

“The meCUE Questionnaire: A Modular Tool for 

Measuring User Experience” in Proceedings of 

Advances in Ergonomics Modeling, Usability and 

Special Populations, pp. 115-128, 2017 

[18] Mockus A. and Votta L., “Identifying Reasonsfor 

Software Changes Using Historic Databases,” in 

Proceedings of International Conference on 

Software Maintenance, San Jose, pp. 120-130, 

2000. 

[19] Mondal M., Roy C., and Schneider K., 

“Acomparative Study on the Intensity and 

harmful-ness of Late Propagation in Near-Miss 

Code Clones,” Software Quality Journal, vol. 24, 

no. 4, pp. 883-915, 2016. 

[20] Nurmuliani N., Zowghi D., and Fowell S., 

“Analysis of Requirements Volatility during 

Software Development Life Cycle,” in 
Proceeding of Australian Software Engineering 

Conference, Australian, pp. 28-37, 2004.  

[21]  Rahman F., Bird C., and Devanbu P., “Clones: 

What is that Smell?” Empirical Software 

Engineering, vol. 17, no. 4-5, pp. 503-530, 2012. 

[22] Rajlich V., “Software Change and Evolution” in 

Proceedings of International Conference on 

Current Trends in Theory and Practice of 

Computer Science, Milovy, pp. 189-202. 1999.  

[23] Rastkar S. and Murphy G., “Why Did This Code 

Change?” in Proceedings of the 35th International 

Conference on Software Engineering, San 

Francisco, pp. 1193-1196, 2013.  

[24] Ray B., Nagappan M., Bird C., Nagappan N., and 

Zimmermann T., “The Uniqueness of Changes: 

Characteristics and Applications,” in Proceedings 

of the 12th Working Conference on Mining 

Software Repositories, Florence, pp. 34-44, 2015. 

[25] Siow J., Gao C., Fan L., Chen S., and Liu Y., 

“CORE: Automating Review Recommendation 

for Code Changes,” in Proceedings of 27th 

International Conference on Software Analysis, 

Evolution and Reengineering, London, pp. 284-

295, 2020. 

[26] Sjøberg D., Yamashita A., Anda B., Mockus A., 

and Dybå T., “Quantifying the Effectof Code 

Smells on Maintenance Effort,” IEEE 

Transactions on Software Engineering, vol. 39, 

no. 8, pp. 1144-1156, 2013. 

[27] Uqaili I. and Ahsan S., “Machine Learning 

Based Prediction of Complex Bugs in Source 

Code,” The International Arab Journal of 

Information Technology, vol. 17, no. 1, pp.26-

37, 2020. 

[28] Viggiato M., Oliveira J., Figueiredo E., Jamshidi 

P., and Kästner C., “How Do Code Changes 

Evolve in Different Platforms? A Mining-based 

Investigation,” in Proceeding of IEEE 

International Conference on Software 

Maintenance and Evolution, Cleveland, pp. 218-

222, 2019. 

[29] Wohlin C., Runeson P., Höst M., Ohlsson M., 

Regnell B., and Wesslén A., Experimentation in 

Software Engineering, Springer Science and 

Business Media, 2012. 

[30] Yan M., Fu Y., Zhang X., Yang D., Xu L., and 

Kymer J., “Automatically Classifying Software 

Changes via Discriminative Topic Model: 

Supporting Multicategory and Cross-Project,” 

Journal of Systems and Software, vol. 113, pp. 

296-308, 2016. 

Ibrahim Assi is the Head of 

Technical Support Unit at AlQuds 

Open University. He holds a 

Masters degree in Software 

Engineering from Birzeit University, 

and a Bachelor degree in Computer 

Science from An-Najah National 

University. His research interests are in empirical 

software engineering and human computer interface.  

Rami Tailakh is a Senior Software 

Developer and Data Science 

Practitioner at Mashvisor Real 

Estate Advisory company. He holds 

a Masters degree in Applied 

Computing and Information 

Technology from the University of 

Bedfordshire, and a Bachelor degree in Electronic 

Engineering from Al-Quds University. His research 

interests are in empirical software engineering, 

machine learning, and predictive analytics. 

 Abdelsalam Sayyad is an 

Assistant Professor in Computer 

Engineering at Birzeit University. 

He holds a Ph.D. from West 

Virginia University and an M.Sc. 

from the University of Maryland at 

College Park. His research interests 

are in search-based software engineering and 

empirical software engineering. 

 


