
372                                                            The International Arab Journal of Information Technology, Vol. 18, No. 3, May 2021 

Algebraic Supports and New Forms of the Hidden 

Discrete Logarithm Problem for Post-quantum 

Public-key Cryptoschemes 

Dmitriy Moldovyan1, Nashwan Al-Majmar2, and Alexander Moldovyan1  
1St. Petersburg Institute for Informatics and Automation of Russian Academy of Sciences, Russia  

2Computer Sciences and Information Technology Department, Ibb University, Yemen 

Abstract: This paper introduces two new forms of the hidden discrete logarithm problem defined over a finite non-

commutative associative algebras containing a large set of global single-sided units. The proposed forms are promising for 

development on their base practical post-quantum public key-agreement schemes and are characterized in performing two 

different masking operations over the output value of the base exponentiation operation that is executed in framework of the 

public key computation. The masking operations represent homomorphisms and each of them is mutually commutative with the 

exponentiation operation. Parameters of the masking operations are used as private key elements. A 6-dimensional algebra 

containing a set of p3 global left-sided units is used as algebraic support of one of the hidden logarithm problem form and a 4-

dimensional algebra with p2 global right-sided units is used to implement the other form of the said problem. The result of this 

paper is the proposed two methods for strengthened masking of the exponentiation operation and two new post-quantum public 

key-agreement cryptoschemes. 

Mathematics subject classification: 94A60, 16Z05, 14G50, 11T71, 16S50. 

Keywords: Finite associative algebra, non-commutative algebra, right-sided unit, left-sided unit, global units, discrete 

logarithm problem, post-quantum cryptography, public key-agreement. 

Received December 23, 2019; accepted November 24, 2020 

 https://doi.org/10.34028/iajit/18/3/14 
 

 

1. Introduction 

Development of the practical post-quantum public-key 

cryptoschemes is considered by the cryptographic 

community as a current challenge in the area of 

theoretic and applied cryptography [1, 8]. A crypto-

scheme is called post-quantum, if it runs efficiently on 

classical computers but will resist quantum attacks, 

performed with using hypothetic quantum computers. 

Post-quantum crypto-schemes should not be based on 

the factorization problem nor on the Discrete 

Logarithm Problem (DLP) [10], since both of the latter 

two computational problems can be solved by a 

quantum computer in polynomial time [20, 21].  

The Public Key-Agreement (PKA) schemes Classic 

McEliece, CRYSTALS-KYBER, NTRU, and SABER 

considered currently as candidates for a post-quantum 

PKA standard [19] resist well quantum attacks, 

however, they are not very practical because of very 

large size of the public and secret key (700 to 3000 

bytes). 

The Hidden DLP (HDLP) is very attractive as the 

base primitive of the practical post-quantum 

cryptoschemes with relatively small size of public and 

secret keys [12, 14]. However, the first implementation 

of a HDLP-based PKA scheme was not successful and 

an efficient attack was proposed in [7]. 

Estimation of potentiality of the HDLP as post-

quantum cryptographic primitive is connected with 

developing new forms of the HDLP and with the 
search for new NFAAs as their algebraic supports [7]. 

In this paper, we introduce two new forms of 

HDLP, suitable to design post-quantum PKA schemes 

with small enough size of public and secret keys. New 

types of algebraic supports, namely, the NFAAs 

containing a large set of the global left-sided units 

(called algebras of L-type) and the NFAA containing 

the right-sided units (called algebras of R-type), are 

applied as algebraic supports of the proposed forms of 

the HDLP, each of which resists attack [7] due to 

performing two different masking operations instead 

of one in the known versions of the HDLP used earlier 

to develop PKA schemes. 

2. State of the art of the HDLP-based PKA 

Schemes 

2.1. Notion of Hidden Logarithm Problem 

The DLP is defined in a finite cyclic group as follows: 

Y = Gx; where G is a generator of the group and the 

value x is an unknown natural number. Finding the 

value x, when the values G and Y are known, is called 

DLP. The HDLP is defined so that one of the values G 

and Y [14, 15] or both of them [11, 16] are masked. 
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Masking is possible if the considered cyclic group is 

contained in some other set of algebraic elements, 

which contains many different cyclic groups as its 

subsets. Non-commutative Finite Associative Algebras 

(NFAAs) represent significant practical interest as 

algebraic supports of the HDLP [17]. Different types of 

the NFAAs are used to define different forms of the 

HDLP [13, 18]. 

Initially the HDLP was defined in the finite algebra 

of quaternions and applied to design a Public Key-

Agreement (PKA) scheme [12, 14]. Reducibility of the 

first form of the HDLP to the DLP in a finite field was 

shown in the paper [7], where the search for new 

algebraic supports of the HDLP has been recommended 

as a next stage in the direction of post-quantum public-

key cryptoschemes development, based on a 

computational difficulty of the HDLP. Recently, 

several new NFAAs and new forms of the HDLP were 

introduced and used as the base primitive of post-

quantum digital signature protocols [11, 16]. 

However, that forms of the HDLP are not suitable 

for developing the PKA. Development of new forms of 

the HDLP suitable for developing the HDLP-base PKA 

schemes is a task of practical interest. In present paper 

we propose two new forms of the HDLP and develop 

on their base PKA schemes. For the first time two 

masking operations are used to set the HDLP forms 

suitable for developing the PKA schemes.  

2.2. The NFAAs of the L-Type and R-Type 

A finite m-dimensional vector space defined over the 

field GF(p) can be complemented with an additional 

operation, namely, with the vector multiplication that is 

distributive relatively the addition operation. A finite 

vector space complemented with the said multiplication 

operation is called finite algebra. If the multiplication 

operation (denoted as ) is non-commutative and 

associative, then the algebra is a NFAA. A vector A can 

be denoted in the following two forms: A= (a0, a1, ..., 

am-1) and A=a0e0+a1e1+...,am-1em-1); where e0, e1, ... , em-1 

are the basis vectors and  0 1 1, ,   ,  ma a a GF p  . 

Usually the multiplication operation of two vectors 

A and 
1

0

,
m

i i

i

B b e




  is defined by the formula [13, 

15]: 
1 1

0 0

( )
m m

i j i j

j i

A B a b e e
 

 

 , in which products of 

different pairs of basis vectors i je e are substituted by 

a single-component vector indicated in the so called 

Basis Vector Multiplication Table (BVMT). 

Every cell of the BVMT contains some single-

component vector ke , where ( )GF p is called 

structural coefficient. 

If 1  , then the content of the cell is denoted as ek. 

One usually assumes that the left operand ei defines the 

row and the right one ej defines the column. The 

intersection of the i-th row and j-th column defines the 

cell indicating the value of the product i je e . 

Table 1 defines the 6-dimensional L-type NFAA, 

containing p3 of different global left-sided units 

described by the following formula [16]: 

1
, , , , ,

d h k
L d h k

  

  

 
   
 

  

Where d, h, k=0,1,...p-1. Every unit of set (1) acts as a 

left-sided unit on all vectors in the considered NFAA, 

i.e., equality A L A holds true for all vectors A. 

The algebra contains no global right-sided unit nor 

global right-sided one. However, for a fixed set of 

algebra elements there exists an element acting as a 

right-sided unit. The latter is called a local right-sided 

unit. Generally, different right-sided units act in 

different subsets of algebraic elements.  

Consider a vector A = (a0, a1, a2, a3, a4, a5). A right-

sided unit can be calculated from the following vector 

equation with the unknown value 

R = (r0, r1, r2, r3, r4, r5): 

A R A   

Table 1. The BVMT setting a 6-dimensional NFAA containing p3 
different global left-sided units [16]. 

  0e
 1e

 2e
 3e

 4e
 5e

 

0e  0e  1e  2e  3e  4e  5e  

1e  4e  5e  0e  1e  2e  3e  

2e  2e  3e  4e  5e  0e  1e  

3e  0e  1e  2e  3e  4e  5e  

4e  4e  5e  0e  1e  2e  3e  

5e  2e  3e  4e  5e  0e  1e  

 

Using Table 1, one can reduce the Equation (2) to 

the following system of six linear equations with the 

unknowns 0 1 2 3 4 5, , , , , ( )r r r r r r GF p  [16]: 

0 0 1 2 2 4 3 0 4 2 5 4 0

0 1 1 3 2 5 3 1 4 3 5 5 1

0 2 1 2 2 0 3 2 4 4 5 0 2

0 3 1 2 2 1 3 3 4 5 5 1 3

0 4 1 2 2 2 3 4 4 0 5 2 4

0 5 1

a r a r a r a r a r a r a

a r a r a r a r a r a r a

a r a r a r a r a r a r a

a r a r a r a r a r a r a

a r a r a r a r a r a r a

a r a r

     

     

     

     

     

 

     

     

     

     

     

 2 2 3 3 5 4 1 5 3 5a r a r a r a r a   










    

 

If vector A is such that the main determinant of the 

system (3) A  satisfies the condition: 

0A  , 

Then the system (3) has a unique solution RA. 

Evidently, for all integer values i the following 

equality 
i i

AA R A  holds true. It is easy to show 

 (1) 

 (2) 

 (3) 

 (4) 
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that for a vector A satisfying the condition (4) the 

sequence A, A2 ...Ai,... is periodic and for some integer 

w we have Aw
=RA and 

AR A A , like in NFAA 

considered in [15], i.e., the unit element RA is a two-

sided unit EA= RA One can easily see that all possible 

integer powers of the vector A compose a 

multiplicative cyclic group with the unit element EA, 

like in [18]. Since the vector A is invertible in the 

mentioned cyclic group, it is called locally invertible 

[18]. It is also easy to show that the value EA is 

contained in set (1) [16]. 

Table 2. The BVMT setting a 4-dimensional NFAA containing p2 
global right-sided units [16]. 

  0e
 1e

 2e
 3e

 

0e  
2e  

0e  
0e  

2e  

1e  3e  1e  1e  3e  

2e  0e
 2e

 2e
 0e  

3e  1e  3e  3e  1e  

An algebra containing a set of global right-sided 

(left-sided) units is called R-type (L-type) algebra. 

Table 2 defines the 4-dimensional R-type NFAA, 

containing P2 of different global right-sided units 

described by the following formula [16]: 

( , ,1 , )R d h h d   ,  

Where d,h=0,1,...p-1. Every unit from the set (5) acts as 

a right-sided unit on all 4-dimensional vectors. The 

considered 4-dimensional algebra contains no global 

left-sided unit no global two-sided one. In some subsets 

of algebra elements some of vectors L act as local left-

sided units that can be calculated from the following 

vector equation, where vector L = (l0, l1, l2, l3) is 

unknown: 

L A A   

Consider a vector A = (a0, a1, a2, a3) the coordinates of 

which satisfy the following condition [16]: 

2 2

1 2 0 3( ) ( ) 0a a a a      

In this case the vector Equation (6) has unique solution 

LA which represents the single local two-sided unit, 

relating to the vector A and to all integer powers Ai. 

One can easily demonstrate that LA is contained in the 

set of the global right-sided units (5), therefore, LA is a 

local two-sided unit EA, relating to the vectors Ai , i.e., 

EA=LA The value EA is the unit element of the 

multiplicative cyclic group generated by the vector A, 

which is a subset of elements of the considered 4-

dimensional NFAA. 

 

 

  

2.3. The known forms of the HDLP Suitable 

for Designing the PKA Schemes 

For the first time, the HDLP was defined in 

multiplicative group   of the finite algebra of 

quaternions in the form described by the following 

formula [12, 14]: 

xY G Q G  ,  

Where the known values Y (the public key), G, and Q  

are elements of the group and have order equal to a 

prime number of sufficiently large size; the unknown 

natural numbers w and x represent the private key. 

Another form of the HDLP was defined in the L-

type NFAA and was described by the following 

formula [14] for computation of the public key Y : 

( )t x t t x t xY B N A B N A  ,  

Where the vectors N, A, and B are such that the 

following conditions 0N  , 0A  , 

A N N A , and A B L hold true; besides 

the local order of the vector N contains a prime divisor 

having a fairly large size. Finding the values x and t, 

when all other values in the Equation (9) are known, 

represent the HDLP. 

The described two forms of the HDLP suit well to 

design the PKA schemes, but they do not suit well to 

be used as the base primitive of the signature schemes. 

Several different forms of the HDLP and new NFAAs, 

including the algebras containing a large set of the 

global single-sided units, have been proposed and 

used to design the post-quantum signature protocols in 

[11, 18].  

However, the HDLP forms introduced in [11, 18] 

are not suitable for designing the PKA schemes. 

Section 4 presents two new forms of the HDLP used 

for development of the PKA schemes. Next section 3 

describes the homomorphisms used to set the masking 

operations. 

3. Homomorphisms of the L-type and R-

Type 

In the NFAAs containing a set of global left-sided 

units there is a particular type homomorphism. 

 Proposition 1. Suppose the vector L is a global left-

sided unit. Then the map of the L-type NFAA 

defined by the formula ( )L X X L  , where the 

vector X takes on all values in algebra, is a 

homomorphism. 

 Proof. For two arbitrary vectors X1 and X2, one 

can get the following: 

 (5) 

 (6) 

 (7) 

 (8) 

 (9) 
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1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( )

L L L

L L L

X X X X L X L X L X X

X X X X L X L X L X X

  

  

  

      

The Proposition 1 is proven. The L map is called the 

L-type homomorphism. 
 

 Proposition 2. Suppose a homomorphism-map 

operation of the L-type ( )L X X L  , where L is 

a global left-sided unit, is given. Then for an 

arbitrary integer i the exponentiation operation 
iX and the L operation are mutually commutative, 

i. e., the equality ( )i iX L X L  holds true. 

 Proof. Due to Proposition 1 we have 

( ) ( ( ))i i

L LX X  , i. e., ( )i iX L X L . 

The Proposition 2 is proven. 

 Proposition 3. Suppose the vector N satisfies the 

condition 0N  . Then the non-equality 

i jN L N L  holds true for arbitrary two global 

left-sided units 
iL  and Lj that satisfy the condition 

j iL L . 

 Proof. Suppose N◦Li=N◦Li, then N◦(Li-Li)=0, 

where 0=(0,0,...,0) is zero vector. Since 0N  , 

the equation N◦X=0 has unique solution X=0. 

Therefore, we have i j i jL L O L L    . 

The obtained contradiction proves the proposition 

3. 

 Proposition 4. Suppose {L} is the set of global left-

sided units and the vector equation X o W = Z, where 

Z is a non-zero vector, has a solution X=S. Then 

#{L} different values Xi=S o Li, where Li takes on all 

values from the set {L}, also are solutions for the 

given equation. 

 Proof. Due to associativity property of the 

multiplication operation we have 

(S o Li) o W = S o (Li o W) = S ◦ W = Z. Thus, the 

proposition 4 is proven. 

For example, in the case of the 6-dimensional NFAA 

algebra described in subsection 2.1. an equation like 

X ◦ W = Z has p3 different solutions. 

In the NFAAs containing a set of the global right-

sided units one can define the R-type homomorphisms 

as in the following proposition. 

 Proposition 5. Suppose the vector R is a global right-

sided unit. Then the map of the R-type NFAA 

defined by the formula R = R o X, where the vector 

X takes on all values in the algebra, is a 

homomorphism. 

 Proof. For two arbitrary vectors X1 and X2, one 

can get the following: 

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( )

R R R

R R R

X X R X X R X R X X X

X X R X X R X R X X X

  

  

  

      
, then 

the proposition 5 is proven. The R map is called the 

R-type homomorphism. 

 Proposition 6. Suppose a homomorphism-map 

operation of the R-type ( )R X R X  , where R 

is a global right-sided unit, is given. Then for an 

arbitrary non-negative integer i the exponentiation 

operation Xi and the L operation are mutually 

commutative, i.e., the equality R◦Xi=R◦X)i holds 

true. 

 Proof. Due to proposition 5, we have 

( ) ( ( ))i i

R RX X  ; i.e., ( )i iR X R X . 

The proposition 6 is proven. 

 Proposition 7. Suppose the vector N satisfies the 

condition 0N  . Then the non-equality 

i jR N R N  holds true for arbitrary two 

global right-sided units iR  and Rj that satisfy the 

condition Rj≠ Ri. 

 Proof. Suppose Ri◦N=Rj◦N, then (Ri-Rj) ◦N=0, 

where the equation X◦N=0 has a unique solution 

X=0. Therefore, we have 

i j i jR R O R R    , then the obtained 

contradiction proves proposition 7. 

 Proposition 8. Suppose {R} is the set of global 

right-sided units {R} and the vector equation 

W o X = Z, where Z is a non-zero vector, has a 

solution X=S. Then #{R} different values Xi=RioS, 

where Ri takes on all values from the set {R}, also 

are solutions for the given equation. 

 Proof. W o (Ri o S) = (W o Ri) o S) = W o X = S. The 

proposition 8 is proven.  

For example, in the case of the 4-dimensional NFAA 

described in subsection 1.2 the equation like X o W = Z 

has p2 different solutions. 

4. New Forms of the HDLP and Double 

Masking 

In the NFAAs, containing a set of global left-sided 

units the Equation (9) defines different 

homomorphism dependent on the selected global left-

sided unit L. 

 Proposition 9. Suppose a map of the NFAA is 

defined by the formula ( )L X B X A  , 

where the vectors A and B are such that the 

condition A ◦ B=L holds true for some fixed global 

left-sided unit L and the vector X takes on all values 

in algebra. Then the map L(X) is a 
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homomorphism, called the L+ -type homomorphism. 

 Proof. For two arbitrary vectors X1 and X2, one 

can get the following: 

1 2 1 2 1 2

1 2 1 2

1 2 1 2 1 2

1 2

( ) ( ) ( )

( ) ( ) ( ) ( );

( ) ( ) ( ) ( )

( ) ( );

L

L L

L

L L

X X B X X A B X L X A

B X A B X A X X

X X B X X A B X A B X A

X X



 



 

 

 

    

 

 

The proposition 9 is proven. 

 Proposition 10. Suppose the formula 

( )L X B X A  sets a homomorphism-map 

operation of the L+-type. Then for arbitrary non-

negative integer i the exponentiation operation Xi 

and the L operation are mutually commutative, i.e., 

the equality ( )i iB X A B X A holds true. 

 Proof. Due to proposition 9 we have 

( ) ( ( ))i i

L LX X  , i.e., ( )i iB X A B X A . 

The proposition 10 is proven. 

 Proposition 11. Suppose the vectors A and B are 

such that the equality A◦B=L, where L is a global 

left-sided unit holds true. Then, for arbitrary natural 

number t  1 the equality At ◦B t=L holds true. 

 Proof: 
1 1 1 1

1 1 1 1 ...

t t t t t t

t t t t

A B A B A A B B

A L B A B A B L

   

   

  

   
 

the proposition 11 is proven. 

Thus, a pair of the vectors A and B satisfying the 

condition A◦B=L which defines a class of the 

homomorphism-map operations of the L+-type. 

Selecting different values of the parameter t one can set 

different homomorphism-map operations. Using the 

mutual commutativity of the exponentiation operation 

and the homomorphism-map operations of the L-type 

and L+-type, one can propose a new form of the HDLP 

that can be put into the base of the PKA scheme, in 

which the public key Y is computed as follows: 

' '( ) ( )t x t t t xY B N A L B N A L  , 

Where the vector N is a locally invertible element of the 

L-type NFAA (used as algebraic support of the 

considered cryptoscheme) defined over the field GF(p) 

with the characteristic p having a large size (for 

example, 256 to 384 bits); the global left-sided unit 
'L  

and the natural numbers x and t are selected randomly 

representing the elements of the private key connected 

with the public key Y.  

Finding the pair of numbers x and t, when the 

parameters N, A, B and the public key Y are known, 

represents the proposed HDLP of the L-type. The value 
'L is not used to compute the common key. It serves 

only to make computation of the values x and t to be 

significantly more difficult. Based on the said form of 

the HDLP, one can propose the following PKA scheme 

using the 6-dimensional NFAA from subsection 2.1 

(with  =2 and  =1) as its algebraic support. 
 

1. The first and second users generate their private 

keys 
'

1 1 1( , , )x t L and 
'

1 1 2( , , )x t L correspondingly. 

2. Using the formula (10), the users compute their 

public keys Y1 and Y2. 

3. The users exchange their public keys via a public 

channel. 

4. The first user calculates the 6-dimensional vector 
1 1 1

1 2

t x t
Z B Y A . 

5. The second user calculates the 6-dimensional 

vector 2 2 2

2 1

t x t
Z B Y A .  

Correctness proof of the protocol consists in proving 

that each of the users can compute the same secret 

vector Z: 
1 2 2 2 1 1 1 2 2 1 2 1

2 1 1 1 2 2 2 1 1 2 1 2

'

1 2

'

2 1

( ) ;

( ) .

t t x t x t t t x x t t

t t x t x t t t x x t t

Z B B N A L A B N A

Z B B N A L A B N A

 

 

 

 
 

 

Thus, each of the users gets the same secret value 

Z=Z1=Z2. The vector Z is calculated using only two 

elements of the private key. The elements 
'

1L  and 
'

2L  

are used in the procedure for computing the public key 

in order to set a secret homomorphism map of the L-

type as the second masking mechanism. 

In the case of setting the used 6-dimensional FNAA 

over the GF(p) with 384-bit prime p the size of public 

key (secrete key) in the latter PKA scheme is equal to 

288 (384) bytes. These values are significantly smaller 

than the size of the keys in the post-quantum public 

key cryptoschemes [5, 6] based on the 

computationally complex problems other than HDLP, 

as well as in the post-quantum PKA schemes Classic 

McEliece [1], CRYSTALS-KYBER [2], NTRU [3], 

and SABER [4]. 

Using a non-optimized implementation on a 

common laptop computer with microprocessor Intel 

Core i7-6567U at 3.3 GHz, the described PKA 

algorithm generates about 1000 keys per second. Its 

performance can be increased significantly when 

optimizing software implementation, however the 

latter item is outside the scope of this paper. 

In the NFAAs, containing the global right-sided 

units the Equation (9) also defines different 

homomorphism, but the latter depend on the selected 

global right-sided unit R and the vectors A and B 

should satisfy the condition A◦B=R. The following 

propositions can be easily proved similarly to the 

proofs of the Propositions 9, 10, and 11. 
 

 Proposition 12. Suppose a map of the NFAA is 

defined by the formula ( )R X B X A  , where 

the vectors A and B are such that the condition 

A◦B=R holds true for some fixed global right-sided 

unit R and the vector X takes on all values in 

 (10) 
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algebra. Then the map R(X) is a homomorphism, 

called, called the R+-type homomorphism. 

 Proposition 13. Suppose a homomorphism-map 

operation R(X) of the R+-type is defined by the 

formula ( )R X B X A  . Then the R(X) 

operation and the exponentiation operation Xi
 are 

mutually commutative, i.e., the equality 

( )i iB X A B X A holds true. 

 Proposition 14. Suppose the vectors A and B are 

such that the equality A◦B=R, where R is a right-

sided global unit, holds true. Then for arbitrary 

natural number t the equality 
t tA B R holds 

true. 

Thus, a pair of the vectors A and B satisfying the 

condition A◦B=R defines a class of the homomorphism-

map operations of the R+-type. Selecting different 

values of the parameter t, one can set different 

homomorphism-map operations. Using the mutual 

commutativity of the exponentiation operation and the 

homomorphism-map operations of the R-type and R+-

type one can propose a new form of the HDLP that can 

be put into the base of the PKA scheme, in which the 

public key Y  is computed as follows: 

' '( ) ( )t x t t t xY R B N A R B N A   

Where the vector N is a locally invertible element of 

the R-type NFAA defined over the field GF(p) with the 

characteristic p having large size (for example, 384 

bits); a random global right-sided unit 
'R  and random 

integers x < q and t < q are elements of private key. 

Finding the pair of numbers x and t , when the 

parameters N, A, B, and the public key Y are known, 

represents the proposed HDLP of the R-type. On the 

base of the Equation (11) for computing the public key, 

one can propose the following PKA scheme using the 

4-dimensional NFAA from subsection 2.1. (with  = 2) 

as its algebraic support. 

1. The first and second users generate their private keys 
'

1 1 1( , , )x t R and 
'

2 2 2( , , )x t R correspondingly. 

2. Using the formula (11), the users compute their 

public keys Y1 and Y2. 

3. The users exchange their public keys via a public 

channel. 

4. The first user calculates the 4-dimensional vector 
1 1 1

1 2

t x t
Z B Y A . 

5. The second user calculates the 4-dimensional vector 
2 2 2

2 1

t x t
Z B Y A . 

It is easy to prove that Z1=Z2. In the proposed PKA 

schemes there are used the NFAAs described in 

subsection 2.1., however other L -type and R -type 

NFAAs can be also used as algebraic supports of the 

proposed cryptoschemes. For example, the suitable 

algebras of such types are considered in [13]. 

In the case of setting the used FNAA over the 

GF(p) with 256-bit prime p the size of public key 

(secrete key) in the latter PKA scheme is equal to 128 

(192) bytes. On a common laptop computer with 

microprocessor Intel Core i7-6567U at 3.3 GHz, the 

latter PKA algorithm generates about 6000 keys per 

second. Such performance is high enough for many 

practical applications, besides it can be increased 

significantly when optimizing software 

implementation of the algorithm. 

 

5. Conclusions 

Using the NFAAs, containing a large set of the global 

single-sided units as algebraic support, two new forms 

of the HDLP are introduced as the base primitive of 

the post-quantum PKA schemes. A theoretic result of 

this paper consists in the proposed forms of the HDLP 

that are characterized in using two different 

homomorphism maps as a single strengthened 

masking operation for hiding the output value of the 

base exponentiation operation that is performed in 

frame of the computation of the public key. 

A practical result consists in two PKA schemes are 

proposed as candidates for post-quantum public-key 

cryptoschemes with a relatively small size of the public 

and secret keys. Detailed security analysis of the 

introduced PKA schemes represent a task of 

individual research.  

Another result is that in this study, the possibility of 

expanding the set of forms of the HDLP suitable to 

developing the PKA schemes was shown. This result 

is a new starting point for further searching for novel 

methods and techniques for setting HLP forms as 

primitives of the PKA algorithms. 
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