
The International Arab Journal of Information Technology, Vol. 18, No. 3A, Special Issue 2021 393

Multi-Agents Collaboration in Open System

Zina Houhamdi1 and Belkacem Athamena2

1Software Engineering Department, College of Engineering, Al Ain University, UAE
2Business Administration Department, College of Business, Al Ain University, UAE

Abstract: Share constrained resources, accomplish complex tasks and achieve shared or individual goals are examples

requiring collaboration between agents in multi-agent systems. The collaboration necessitates an effective team composed of a

set of agents that do not have conflicting goals and express their willingness to cooperate. In such a team, the complex task is

split into simple tasks, and each agent performs its assigned task to contribute to the fulfilment of the complex task.

Nevertheless, team formation is challenging, especially in an open system that consists of self-interested agents performing

tasks to achieve several simultaneous goals, usually clashing, by sharing constrained resources. The clashing goals obstruct

the collaboration's success since the self-interested agent prefers its individual goals to the team’s shared goal. In open

systems, the collaboration team construction process is impacted by the Multi-Agent System (MAS) model, the collaboration’s

target, and dependencies between agents’ goals. This study investigates how to allow agents to build collaborative teams to

realize a set of goals concurrently in open systems with constrained resources. This paper proposes a fully distributed

approach to model the Collaborative Team Construction Model (CTCM). CTCM modifies the social reasoning model to allow

agents to achieve their individual and shared goals concurrently by sharing resources in an open MAS by constructing

collaborative teams. Each agent shares partial information (to preserve privacy) and models its goal relationships. The

proposed team construction approach supports a distributed decision-making process. In CTCM, the agent adapts its self-

interest level and adjusts its willingness to form an effective collaborative team.

Keywords: Multi-agents system; open system; collaboration, dependency relationships, decentralized decision making.

Received February 20, 2021; accepted March 7, 2021

https://doi.org/10.34028/iajit/18/3A/2

1. Introduction

A survey of current methods in collaborative team

construction, particularly in an open system based on

MAS identifies several shortcomings:

 The existing methods design the system as a single

neighborhood system, multi-disjoint neighborhoods,

or multi-overlapped neighborhoods with transitive

dependencies. These methods are expensive due to

the interaction cost and constraints of the possible

collaborative teams that can be constructed due to

the open system properties

 The existing methods model the agents’ goals as

local or common exclusively during the

collaborative teams’ formation.

 The existing methods also model the agent as

cooperative and self-interested. Nevertheless, in an

open system, the self-interested agent should balance

between its self-interest level and the collaboration

to fulfill several goals concurrently, especially

because it accesses to only restricted domain

information and shares constrained resources.

 The existing methods also model the decision-

making process of the agents is semi-decentralized

and force the agents to remain in the Multi-Agent

System (MAS) throughout the collaboration process.

However, this is limited in an open system in which

each agent is

allowed to join or leave the system in an unpredictable

way without any time constraints.

This paper extends the proposed Collaborative

Team Construction Model (CTCM) presented in [13]

by describing the detailed algorithm of each phase of

the model. It addresses the design purposes of CTCM.

The article describes the CTCM design and

demonstrates how the proposed model meets the

Collaborative Team Construction requirements in

open MAS. Note that the main purposes of this study

are to model and develop a collaborative team

construction model that enables agents: acting in

multi-overlapped neighborhoods, concurrently

achieving both their local and common goals, adapting

their level of self-interest during the formation of the

collaborative teams, and finally, making decentralized

decisions. The proposed model has the following

characteristics, considered as research contributions,

needed to satisfy the mentioned requirements:

 Operation in Multi-Overlapped Neighborhood:

each agent is capable of acting in multi-overlapped

neighborhoods, and the communications between

agents in each neighborhood are constrained to

their explicit or implicit relations.

 Self-evaluation: In open MAS, a self-interested

agent has partial access to domain information and

shared constrained resources with other agents

acting in its neighborhood. Such agent adapts its

394 The International Arab Journal of Information Technology, Vol. 18, No. 3A, Special Issue 2021

self-interest level and cooperates with other agents in

its neighborhoods to fulfill common and local goals.

The agent applies a decentralized decision-making

process, without the need of a central supervisor

agent, without commitments or negotiation while

collaborating.

 New Social Reasoning Model: in open MAS, each

agent often leaves and joins the system, and thus it

needs a technique to collect information about other

agents acting in its neighborhood to perceive its goal

relations. This issue is essential for constructing

collaborative teams of agents that use the same

resources to fulfill a set of goals concurrently.

2. Literature Review

This section reviews and summarizes present existing

researches that have discussed cooperation community

construction. The study described in this section

introduces multi-agent open systems in section 2.1.

section 2.2 presents the agents’ collaboration. The

collaboration objective is discussed in section 2.3.

section 2.4 surveys the current research studies by

focusing on the formation of a collaborative team.

Finally, a conclusion discusses current literature and

summarizes this study’s requirements related to the

proposition of the CTCM model, where a set of agents

is trying to achieve a collection of different goals in an

open system.

2.1. Multi-Agent in Open System

The Multi-Agents in open systems are composed of

independent agents that require resources available in

the system and collaborate to reach a set of goals. The

following are the proprieties of multi-agent in an open

system [14]:

 The Agent joins or leaves the system regularly and

randomly.

 The Agent has multiple goals and strategies, which

can probably be incompatible.

 The Agent is usually self-interested.

 The acquisition of complete information about the

agents’ existence and resources’ availability in the

system is always expensive and sometimes

unfeasible because the agents do not desire to reveal

their complete information.

 The existence of a global scheduler to manage all

system agents is as well unfeasible.

2.2. Agent Collaboration

Agent’s collaboration dependents extremely on

interaction concepts: cooperation, coordination, and

negotiation. Cooperation allows a set of agents to

operate jointly to achieve a shared goal [1, 23].

Coordination enables a set of agents to work together

by adapting their behaviors and tasks in a common

context [4], and finally, negotiation allows a set of

agents to attain a mutually accepted agreement [10].

As reported by the literary studies, multi-agent

collaboration is a process that requires coordination

between a set of agents working together in order to

address a subject or to support a common goal [3, 20,

25].

On the other hand, particularly in the subject’s

addressing the case, collaboration is a cooperated and

synchronized process resulting from an ongoing effort

to develop and preserve a common perception of the

subject [18]. Moreover, collaboration is a cooperative

process where a set of agents interact together to reach

a common purpose [1, 9]. Therefore, we define

collaboration as an activity that requires a team of

participants to operate jointly towards a particular

goal.

2.3. Collaboration Objective Identification

This section reviews the existing approaches in the

literature related to collaboration objectives.

Collaboration between agents is required in this

situation: Agent must achieve a target, but it cannot

reach the target, or in case the agent chooses a

collaborative solution [16]. The literature addresses

several important objectives related to the

collaboration process, such as controlled resources

sharing, common goal accomplishment, local profit

improvement, local goal accomplishment, and

complex action fulfillment. These objectives were

addressed by applying distinct methods for team

construction. Controlled resource sharing is the main

point in dynamic domains. A set of agents coordinate

their behavior and collaborate in order to improve the

resource usage. This objective was indirectly

addressed in methods of coalition formation based on

utilities because it is modeled as a common advantage.

Also, other multi-agents decentralized methods are

studying the allocation of shared resources in dynamic

domains [7, 26]. Local profit improvement and local

goal accomplishment were addressed in the coalition

organization context in which a set of agents enter

coalitions and organize their behavior to improve their

local payoff [2, 15]. This objective was discussed in

the coalition formation context based on utilities. On

the other hand, the common goal accomplishment was

formalized as a coalition approach [6] and as a

teamwork approach [17, 21] based on the agents' type.

Finally, to fulfill a complex action, an agent in charge

(to which the action is allocated) identifies a set of

potential partners called collaborators that can help

partially in accomplishing the complex action. These

collaborators build a collaborative team. Divide and

Conquer is a well-known and preferred technique [5].

[11, 12, 30], where the agent identifying a

collaboration need decomposes the complex action

into sub-actions, which are more small and simple,

Multi-Agents Collaboration in Open System 395

and assigns them to specialized agents. The specialized

agent becomes accountable for the assigned sub-action

and can iterative apply the divide and conquer

technique to decompose the sub-action by making it

simpler and smaller and search for additional agents to

collaborate [5, 11, 12, 30]. This objective was mainly

discussed within the framework of team coordination.

2.4. Collaborative Team Construction

In MAS, an agent is usually modeled as an independent

entity. The agent operates autonomously (i.e., without

direct human involvement or supervision [26].

Nevertheless, agent autonomy does not mean full

independence, and it is not necessary self-sufficiency.

Accordingly, the agent has partial information about the

domain and limited abilities, and it needs to interact and

cooperate with other agents for distinct collaboration

objectives [8]. Thus, it is mandatory for autonomous

agents to establish teams and coordinate together in

order to achieve their goals effectively. Collaborative

team construction is an activity where a group of agents

create a team and collaborate together for a particular

objective. Teams are created only once during the

design phase based on a static framework of agents, or

during the execution time if a collaboration need arises.

In the latter case, the agents build dynamic teams

cooperatively. The teams change depending on the

environmental modifications. A complete description of

the existing contributions in collaborative team

construction in a dynamic environment and a

comprehensive comparison of current collaborative

team construction approaches are presented in [13].

 The existing approaches for collaborative team

construction conceive the system as:

 Unique neighborhood: that increases the

communication amount.

 Multi-disjointed neighborhoods: that restricts agent

to a few alternatives presented in its neighborhoods.

 Multi-overlapped neighborhoods with transitive

dependencies: it has an expensive interaction cost

(because of the huge number of relationships

between all agents).

Accordingly, Neighborhoods’ definition aim is the

reduction of the complexity of interactions. Thus,

modeling a system by allowing agents to act in multi-

overlapped neighborhoods is necessary. However, the

model should enable agents to determine all possible

solutions in all neighborhoods with an acceptable

interaction cost.

 Furthermore, existing approaches construct

collaborative teams to reach:

 Agent’s local goal (that increases local payoff) by

modeling agent’s resource relations,

 Common goal (by fulfilling a complex task) by

modeling agents’ action relations.

Moreover, the existing approaches do not model

agents’ goal relations and consider the agent type as

cooperative or self-interested. In fact, in real-world

systems with constrained resources, the self-interested

agent has a set of goals that can be local or common

goals to fulfill concurrently. Thus, the agent needs to

perceive its goal relations in order to construct

productive collaborative teams. Also, the agent needs

a method for adapting its self-interest and cooperative

levels, relying on its goal relations, to fulfill its goals

concurrently while sharing resources with constraints.

Finally, in current approaches, the process of

decision-making is supported by:

 A supervisor agent that assists the team

construction process, communication between

agents, and making a final decision. But, the

existence of a central supervisor is unfeasible based

on the properties of an open system.

 A decentralized approach that simplifies

hypothesis, for example, the fulfillment of a unique

goal and making commitments when constructing a

collaborative team.

Nevertheless, the agent needs a decentralized method

that enables it to fulfill several goals and facilitates the

system leaving and joining in unpredictably while

avoiding commitments.

The next section presents our suggested approach

to Collaborative Team Construction.

3. Collaborative Agents Team Model

This section proposes a model that allows the

construction of a collaborative team of agents having

different goals. These agents work in more than one

area and share their information with other members

of the team. Information sharing, in addition to the

social reasoning model, are used by agents to create

their goal dependency models, which enable the

determination of dependency relationships (for

example, conflict, complementary, or collaborative).

Based on their dependency models, each agent adjusts

its individual-interest level and collaboration in order

to achieve a set of goals concurrently while

performing in an open system having limited

resources. For instance, in case the shared resource is

overburdened, agents act in a neighborly manner by

deciding to not use the resource, if it is possible, or to

cascade the resource claim to other neighborhood, to

meet a collaborative goal in a better way by reducing

the overload of the shared resource).

The proposed CTCM is a decentralized model

where agents are autonomous. Agents communicate

together by sharing information in order to collaborate

and organize their behavior. In the CTCM, agents are

a member of the set of teams, and they are assisted in

finding possible options in other neighborhoods by

modifying the resource claim to other neighborhoods

396 The International Arab Journal of Information Technology, Vol. 18, No. 3A, Special Issue 2021

if the shared goal can be achieved and the resource in

the original neighborhood may be overloaded. Figure 1

illustrates the proposed architecture of the CTCM.

The proposed CTCM architecture consists of six

processes. The rectangle represents the process, and the

arrow represents the succession of processes. The

CTCM begins with Team Update process, and the

arrow shows the link between this process and the

remaining processes. Moreover, the clouds on this

diagram show the models that can be formed at each

stage. The cloud shows the model instability as a result

of the frequent membership and departure of the agents.

Join

Neighborhood
Notify

Leave

Neighborhood

Select Task

Identify

Collaboration

Requirements

Nominate

Participants

Update External

Description

Identify Dependency

Relationships

Calculate

Priority

Analyze-Friendship

Analyze-Cascade

Analyze-Sequential

Evaluate Priority

Dependency in Multi

Neighborhood

Select

Neighborhood

Make a Decision

Update Neighborhood Members List

Identify Collaboration Requirements

Develop Dependency Model

Evaluate Dependency Model

Cascade Collaboration

S
y

st
em

 M
o
d

el
in

g
K

n
o

w
le

d
g
e

A
cq

u
is

it
io

n

C
o
ll

ab
o

ra
ti

o
n

T
e
am

 C
o

n
st

ru
ct

io
n

D
is

tr
ib

u
te

d

D
ec

is
io

n
 M

a
k
in

g

Figure 1. Collaborative team construction model architecture.

3.1. Update Neighborhood Members List

As previously mentioned, the agent joins and leaves the

neighborhood unpredictably and regularly in open

systems. The neighborhood members are informed

about all modifications taken place in the

neighborhood. Each neighborhood uses the subscriber-

publisher design pattern for capturing the exit and the

join cases. The subscriber-publisher is known as an

effective and extensible pattern in decentralized

systems without restriction on the flexibility of the

agent leave/join [30]. In our proposed framework, the

neighborhood (represents the shared resource) operates

as a publisher and the agent subscribes to the resource it

wants to make use of and joins the neighborhood

related to the resource. All subscribed agents to a

specific neighborhood are members of the

neighborhood associated with the resource. When the

agent leaves the neighborhood, it has to unsubscribe.

The publisher registers all modifications in the

neighborhood and informs all its members. Formally,

let’s 𝑅𝑒𝑠 expresses the resources set in a MAS. 𝑅𝑒𝑠𝑖

defines a unique resource neighborhood (𝐴𝑟𝑒𝑎𝑅𝑒𝑠𝑖

𝑡)

and it has two varying attributes: the capacity, noted

𝐶𝑎𝑝𝑅𝑒𝑠𝑖

𝑡 , and demands, noted 𝐷𝑒𝑚𝑅𝑒𝑠𝑖

𝑡 , at timeslot 𝑡.

𝑅𝑒𝑠 ≝∪𝑖=1

𝑛 {𝑅𝑒𝑠𝑖}
𝑅𝑒𝑠𝑖 ≝ {𝐶𝑎𝑝𝑅𝑒𝑠𝑖

𝑡 , 𝐷𝑒𝑚𝑅𝑒𝑠𝑖

𝑡 , 𝐴𝑟𝑒𝑎𝑅𝑒𝑠𝑖

𝑡 }
𝐴𝑟𝑒𝑎𝑅𝑒𝑠𝑖

𝑡 ≝ {𝐴𝑔𝑡𝑅𝑒𝑠𝑖
, 𝐴𝑔𝑡𝑡}

𝐴𝑟𝑒𝑎𝑅𝑒𝑠𝑖

𝑡 contains the set of agents, 𝐴𝑔𝑡𝑅𝑒𝑠𝑖
,

subscribed for using 𝑅𝑒𝑠𝑖. 𝐴𝑔𝑡𝑅𝑒𝑠𝑖
⊂ 𝐴𝑔𝑡𝑠 where

𝐴𝑔𝑡𝑠 is the set of all agents in the MAS. 𝐴𝑔𝑡𝛿
𝑡 ⊂

𝐴𝑟𝑒𝑎𝑅𝑒𝑠𝑖

𝑡 represents the subset of agents that take

actions requiring the resource𝑅𝑒𝑠𝑖 at timeslot 𝑡.

𝐴𝑔𝑡𝛿
𝑡 ⊂ 𝐴𝑔𝑡𝑅𝑒𝑠𝑖

⊂ 𝐴𝑔𝑡𝑠

Figure 2 illustrates the algorithm of Update

Neighborhood Members List. When the agent

subscribes to use a resource, it gets access to the

neighborhood’s information (Resi). The neighborhood

should update this information. The Agent accesses

this information at any time throughout its operation

in the neighborhood by claiming it from the

neighborhood, to prevent possible miscommunication

between the publisher and the subscriber. The

miscommunication occurs in case the publisher is

overburdened and cannot inform all acting agents.

Start

End

End

Join-Area

Notify

Quit-Area

 

 

1

Res Res

Res

Res Register

Res

i i

i

i j

t t

j

t

i

Agt

Area Area Agt

Notify Area





 



 

Resi

t

jAgt Area

Send update message

 



 

 

1

Res Res

Res

Res

Res

i i

i

i j

t t

j

t

i

Unregister Agt

Area Area Agt

Notify Area





 



Figure 2. Update neighborhood members list algorithm.

Figure 3 shows an overview of the information

concerning the resource that can be accessed by the

agent through the neighborhood.

 (1)

 (2)

Multi-Agents Collaboration in Open System 397

Internal Architecture

Context Description

State

Decisional Kernel

Plan

P
ri

v
at

e
S

h
ar

ed

Register

Agent

Neighborhood

Resources

Resi

tCap Resi

tDesm Resi

tArea tAgt

Figure 3. Agent’s external description and neighborhood’s

properties.

3.2. Identify Collaboration Requirements

Since the neighborhood resource is constrained, it

becomes overburden at any timeslots. Thus, the agents

in the neighborhood have to coordinate to prevent the

occurrence of the overload. Because of the absence of a

central supervisor or coordinator, the agents have to

determine the collaboration requirements. Each agent

needs to know the actual 𝐶𝑎𝑝𝑅𝑒𝑠𝑖

𝑡 and 𝐷𝑒𝑚𝑅𝑒𝑠𝑖

𝑡 whenever

it takes an action. Figure 4 illustrates the algorithm for

identifying the collaboration requirement. As illustrated

in Figure 2, this process contains three steps: first, the

agent selects its task, then increases 𝐷𝑒𝑚𝑅𝑒𝑠𝑖

𝑡 (the

resource’s demand) if its task needs to use the resource,

it verifies if the resource demand satisfies the available

resource capacity 𝐶𝑎𝑝𝑅𝑒𝑠𝑖

𝑡 , and finally, it proposes a set

of agents for possible coordination if the 𝐷𝑒𝑚𝑅𝑒𝑠𝑖

𝑡 ≥

𝐶𝑎𝑝𝑅𝑒𝑠𝑖

𝑡 . In the Nomination of the participants, the agent

updates 𝐴𝑔𝑡𝛿
𝑡 by inserting itself and all other agents not

added before and their tasks use the shared resource

(𝛿𝐴𝑔𝑡𝑗

𝑡) at timeslot 𝑡.

Start

NoYes

End

Yes

No

No

Yes

Yes

No

 
j

t

Agt SelectTask 

j

t

Agt  

Re Re

Re Re

1
i i

i i

t t

s s

t t

s s

Dem Dem

x Dem Cap

 

 

x

Re si

t

jAgt Area

jAgt  

 
j

t t

j Agtx Agt Agt   

x  , t

jInsert Agt Agt

 jNext Agt

Figure 4. Identify collaboration requirements Algorithm.

3.3. Develop Dependency Model

The planning and simulation techniques are useless for

perceiving the agent’s behavior and its dependencies

because of the agent’s unpredictable behavior, and the

open system’s properties. Therefore, the agent needs a

technique to obtaining knowledge about its

neighborhood (such as the members of its

neighborhood and the actual capacity of the resource)

rapidly and in a decentralized manner. On the other

hand, the social reasoning techniques proposed and

established by Gonfigured and Sivkumar et al. [8].

Shah et al. [23] have demonstrated encouraging

findings in open systems [19, 22, 28], since they allow

direct communication between agents, at any time, to

exchange information about their tasks, plans, and

goals. We choose the social reasoning technique

particularly because it allows the information sharing

between agents in order to identify their dependency

relationships in a distributed way. Regardless of the

external description developed by Sichman’s model

[25] enables the information sharing between agents,

it also forces agents to disclose a bunch of their

information that is undesired in open systems.

Furthermore, Sichman et al.’s social reasoning model

is also constraining, since it examines only the agents’

task dependency that is beneficial only when the

agents fulfill an intricate task. In our model, an

updated version of the external description sharing

limited information is proposed. The agent builds its

Neighboring Dependency Model (DM) by using this

updated external description and a social reasoning

technique that allows the agents to perceive their goal

dependencies during constrained resource sharing.

After the nomination of the participants, the

nominated agent for collaboration with other agents

acting in the same neighborhood, should determine its

neighbors and obtain additional information to

comprehend its dependency relationships. Each agent

shares part of its information with its neighbors by

means of its external description, and stores the

information it has obtained from its neighbors. The

external description enables the agent to examine its

dependency relationships and form its DM. Section

3.3.1 introduces the external description and section

3.3.2 describes the social reasoning technique.

3.2.1. External Description

The agent external description is a data structure

accessible by all agents in a neighborhood. This

external description contains the shared and acquired

information. It produces an abstraction level for

diverse agents and it is stored separately from the

agent internal architecture (see Figure 3). Explicitly,

the external description, adopted from [8], is

expressed as:

398 The International Arab Journal of Information Technology, Vol. 18, No. 3A, Special Issue 2021

𝐸𝑥𝑡𝐴𝑔𝑡𝑖
≝ ⋃ 𝐸𝑥𝑡𝐴𝑔𝑡𝑖

𝑛

𝑗=1

(𝐴𝑔𝑡𝑗)

Where 𝐸𝑥𝑡𝐴𝑔𝑡𝑖
 defines the external description of 𝐴𝑔𝑡𝑖

(our model uses only this definition of external

dependency, the rest of proposed DM is new) and the

𝐸𝑥𝑡𝐴𝑔𝑡𝑖
(𝐴𝑔𝑡𝑗) expresses the entry used to store 𝐴𝑔𝑡𝑗’s

information. Therefore, the agent discloses limited

information and it is not necessary to share its plan, or

decision-making process. 𝐸𝑥𝑡𝐴𝑔𝑡𝑖
(𝐴𝑔𝑡𝑗) is defined as:

𝐸𝑥𝑡𝐴𝑔𝑡𝑖
(𝐴𝑔𝑡𝑗) ≝ {𝐺𝐴𝑔𝑡𝑗

, 𝛿𝐴𝑔𝑡𝑗

𝑡 , 𝑆𝐴𝑔𝑡𝑗
, 𝑁𝐴𝑔𝑡𝑗

, 𝐴𝑃𝐴𝑔𝑡𝑗
, 𝑇𝑃𝐴𝑔𝑡𝑗

}

 Goals 𝐺𝐴𝑔𝑡𝑗
 defines the set of goals that 𝐴𝑔𝑡𝑗 desires

to fulfill. Each Agent can realize different goals

concurrently.

𝐺𝐴𝑔𝑡𝑗
= {𝐺1, 𝐺2, . . , 𝐺𝑛}

 Task 𝛿𝐴𝑔𝑡𝑗

𝑡 is the task 𝐴𝑔𝑡𝑗 performs at timeslot 𝑡,

representing the following timeslot. In particular,

CTCM is focused only on the tasks involving the

usage of the shared resource. The Agent’s tasks are

defined using Δ𝐴𝑔𝑡𝑗
(𝐺𝑘), including all tasks that 𝐴𝑔𝑡𝑗

has to perform to fulfill the goal 𝐺𝑘.

Δ𝐴𝑔𝑡𝑗
(𝐺𝑘) = {𝑇𝛥𝐴𝑔𝑡𝑗

(𝐺𝑘), 𝛿𝐴𝑔𝑡𝑗

𝑡 , 𝑃𝛥𝐴𝑔𝑡𝑗
(𝐺𝑘)}

𝑇𝛥𝐴𝑔𝑡𝑗
(𝐺𝑘) defines the set of already performed tasks

for goal 𝐺𝑘. 𝑃𝛥𝐴𝑔𝑡𝑗
(𝐺𝑘) defines the set of pending tasks

required to perform later, and 𝛿𝐴𝑔𝑡𝑗

𝑡 defines the task to

be performed in the next timeslot 𝑡. In our model, the

tasks are represented as a Boolean. The false value

indicates that the task does not need the use of a shared

resource and true value otherwise.

 Strategies SAgtj defines a set of strategies Agtj

establishes to fulfill its goals. Agent’s strategies

determine its self-interest and collaboration level for

each goal. The collaboration level is determined by

two variables, 𝑀𝑖𝑛𝐺𝑘

𝐴𝑔𝑡𝑗
 and 𝑀𝑎𝑥𝐺𝑘

𝐴𝑔𝑡𝑗
.

𝑆𝐴𝑔𝑡𝑗
≝∪𝑘=0

𝑛 𝑆𝐴𝑔𝑡𝑗
(𝐺𝑘)

𝑆𝐴𝑔𝑡𝑗
(𝐺𝑘) ≝ { 𝑀𝑖𝑛𝐺𝑘

𝐴𝑔𝑡𝑗, 𝑀𝑎𝑥𝐺𝑘

𝐴𝑔𝑡𝑗}

𝑀𝑖𝑛𝐺𝑘

𝐴𝑔𝑡𝑗
 defines a criterion set by Agtj to specify the

minimum number of tasks, 𝑇𝑔𝑘
 , that must be performed

for Gk before timeslot 𝑡′. 𝑀𝑖𝑛𝐺𝑘

𝐴𝑔𝑡𝑗
 depends on the Agtj

internal state and preferences and it defines the timeslot

from which Agtj will be able to coordinate with other

agents in the same neighborhood when performing task

to fulfil Gk Thus, if Agtj achieves Tgk number before/at

timeslot 𝑡′, it is highly possible to be cooperative.

Particularly, a smart phone with sufficient battery

charge shows a cooperative behavior compared to when

it gets insufficient battery charge. Moreover, setting

𝑀𝑖𝑛𝐺𝑘

𝐴𝑔𝑡𝑗
 allows to agent to find out its dependency

relationships (described in section 3.2).

𝑀𝑖𝑛𝐺𝑘

𝐴𝑔𝑡𝑗 = {𝑇𝑔𝑘
, 𝑡𝑘

′ }

𝑀𝑎𝑥𝐺𝑘

𝐴𝑔𝑡𝑗
 specifies the maximum number of tasks,

requiring access to a shared resource 𝑅𝑒𝑠𝑖, the agent

desires to perform during its access to Resj before

timeslot 𝑡′′(representing the last timeslot that 𝐴𝑔𝑡𝑗 is

able to use 𝑅𝑒𝑠𝑖 for 𝐺𝑘).

𝑀𝑎𝑥𝐺𝑘

𝐴𝑔𝑡𝑗 ≝ {(Λ𝐺𝑘 ,
𝑡𝑘

′′): Λ𝐺𝑘
≤ |Δ𝐴𝑔𝑡𝑗

(𝐺𝑘)|}

To illustrate the concept of 𝑆𝐴𝑔𝑡𝑗
 and its 𝑀𝑖𝑛𝐺𝑘

𝐴𝑔𝑡𝑗
 and

𝑀𝑎𝑥𝐺𝑘

𝐴𝑔𝑡𝑗
 , suppose that a smartphone needs electrical

power to charge its battery. 𝑀𝑖𝑛𝐺𝑘

𝐴𝑔𝑡𝑗
 value is set to the

minimum power amount necessary to operate

normally and 𝑀𝑎𝑥𝐺𝑘

𝐴𝑔𝑡𝑗
value is set to the maximum

power amount needed to completely charge the

battery. These two values allow the smartphone to

better perceive its requirements and to comport more

rationally.

 Neighborhood NAgtj defines the number of

neighborhoods of which 𝐴𝑔𝑡𝑗 is a member.

 Priority: Each agent computes two priorities APAgtj

(for resource access). And TPAgtj (transferred

priority to Agtj from other agents when the

collaboration). These priorities are deeply described

in section 4.

3.3.2. Identify Dependency Relationships

In order to identify a candidate team for possible

collaboration, each agent has to understand the

resource dependency nature. Also, the resource

dependency nature helps the agents to discover their

own dependency relationships which play an

important role in the collaborative team construction

process.

In CTCM, the autonomous agent shares a resource

in their neighborhood. All neighbors require the

shared resource usage to fulfil their goals but none of

them cannot monitor the resource. Thus, the neighbors

are resource-dependent.

To identify the type of dependencies the agent has

with its neighbors, each agent compares its local

information to the information of the neighbors’

external description. The existing approaches model

the behavior of an agent statically as cooperative or

competitive for resource sharing and ignore their goal

dependencies [28]. Nevertheless, additional kinds of

dependencies exist between agents’ goals, moreover,

these dependencies are not static and can change

depending on the shared resource availability and the

progress of their goal fulfillment. By way of

illustration, the passengers in public transportation

comport always competitively, but in an emergency

circumstance, they behave cooperatively.

Consequently, each agent must understand its goal

dependencies during its operation in the MAS. Figure

 (3)

 (4)

 (5)

 (6)

 (7)

 (8)

 (9)

 (10)

Multi-Agents Collaboration in Open System 399

5 shows different types of dependency relationships

and the criteria used to select the adequate type of

dependencies.

Start

Overlap Dependancy

Yes

Cascade Dependancy

Yes

Yes

No Yes

Conflict DependencyYes

No

Sequential

Dependency
Yes

No

Friendship

Dependency
Parallel Dependency

No

No

Competition

Dependency

No

1jArea 

i jMin Mini jG G

i jMin Min
iG jT G 

i jMax Max
0

i iG GT T 



 



Figure 5. Identify dependency relationships algorithm.

There are seven different types of possible

dependencies between agents’ goals contrary to the

existing resource allocation techniques in MAS that

define only two (competitive and cooperative

behaviors). The additional proposed goal dependency

relationships describe the agents’ behavior during

constraint resource sharing. Sometimes, the agent has

distinct goals that impact its behavior (for instance,

self-interested, collaborative, or adjusting its self-

interest level).

 Cascade Dependency: the agent, which is a member

of multiple neighborhoods, cascades the request of

constrained resources to another neighborhood

having the identical resource.

 Overlap Dependency: this type of dependency exist

between the agents that are members of the same

neighborhood and perform tasks with the same 𝑀𝑖𝑛

for different goals. Possessing the same 𝑀𝑖𝑛 means

that these agents need to use an equal amount of the

constrained resource before timeslot 𝑡′.

 Conflict Dependency: this type of dependency exists

between the agents that need the same constrained

resource but to achieve different goals, however,

their strategies forbid cooperation and coordination.

 Sequential Dependency: there is a dependence

between the agents’ goals. This dependence

necessitates a sequence in goal fulfillment.

 Parallel Dependency: two agents perform the same

tasks to fulfill distinct goals and possess distinct

strategies without sequential or conflict

relationships. Thus, these agents can, but not must,

use the resource simultaneously.

 Competition Dependency: two agents possess the

same goals and perform the same tasks but possess

different strategies. Thus, each agent wants to make

full use of the constrained resource in the minimum

time amount.

 Friendship Dependency: the agents possess

identical goals, perform identical tasks, possess

identical strategies, and coordinate together to

fulfill each other’s goals.

3.4. Evaluate Dependency Model

Nominated agents from the ‘Identify Collaboration

Requirements’ phase (see Figure 4), reassess their

selected tasks before the collaboration starts. In this

phase, each agent tries to reduce its demand. This

process includes two sub-process as shown in Figure

1, which are: Calculate Priority and Evaluate External

Description.

3.4.1. Calculate Priority

Here the agent calculates its priority to use the

constrained resource, in comparison to the priorities of

the other agents. In CTCM, the agent has two different

values for the priority values: AP APAgti (Access-

Priority) and TPAgti (Transferred Priority).

Access-Priority: APAgti is calculated by summing the

priorities of all 𝐴𝑔𝑡𝑖’s goals depending on the task

𝛿𝐴𝑔𝑡𝑖

𝑡 performed in timeslot 𝑡. A unique priority is

computed depending on the number of pending tasks

|𝑃Δ𝐴𝑔𝑡𝑖
(𝐺𝑘)| and the time period spent by the agent in

the neighborhood, DurationAgti A lower priority

indicates that the agent possesses less pending tasks to

perform in the remaining time. In case the agents

cooperate and consider their dependencies, the agent

with low priority gets a slight chance to use the

constrained resource in comparison to others having

higher priorities.

𝐴𝑃𝐴𝑔𝑡𝑖
= ∑

|𝑃𝛥𝐴𝑔𝑡𝑖
(𝐺𝑘)|

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝐴𝑔𝑡𝑖

𝑛

𝑘=1

Transferred Priority: Agtj's Transferred-Priority, TPAgtj

records the Access-Priorities of other agents that are

transferred to Agti. An agent transfers its priority in

two cases:

1. It has Sequential Dependency, thus the agent failure

to fulfill its goals implies all dependents agents will

also fail to fulfil their goals.

2. During the collaboration, the agent with the

highest priority receives the transferred priorities

from other agents in the team to be able to use the

shared resource. At this step, TPAgtj= 0 (see Figure

6).

The Transferred Priority belongs to the interval [0,

MaxTP] where 𝑀𝑎𝑥𝑇𝑃 depends on the application and

defines the maximum value of Transferred-Priority.

𝑀𝑎𝑥𝑇𝑃 contributes in distributing the transferred

priorities among agents possessing high priorities and

avoiding the aggregation of transferred priorities into a

unique agent.

 (11)

400 The International Arab Journal of Information Technology, Vol. 18, No. 3A, Special Issue 2021

Start

End

 

1
i

i

n
i k

Agt

k Agt

P Agt G
P

Duration




0
iAgtTP 

Figure 6. Calculate priority algorithm.

3.4.2. Evaluate External Description

After the priorities calculation, each selected agent

𝐴𝑔𝑡𝑖 identifies its 𝐸𝑥𝑡𝐴𝑔𝑡𝑖
 for Friendship, Cascade, and

Sequential Dependencies to discover a potential

demands reduction before initiating the collaboration

(see Figure 7).

Start

Yes

No

End

Yes

No

t

jAgt Agt

jAgt null

Re Rei i

t t

s sDem Cap

 jNext Agt

 

 

 

j

j

j

Analyze Friendship Agt

Analyze Cascade Agt

Analyze Sequential Agt







Figure 7. Evaluate external description algorithm.

As previously explained, in presence of the

Friendship dependency between two agents 𝐴𝑔𝑡𝑖 and

𝐴𝑔𝑡𝑗, 𝐴𝑔𝑡𝑖 transfers its priority to 𝐴𝑔𝑡𝑗 in three cases

(Figure 8):

• No agent in 𝐴𝑔𝑡𝛿
𝑡 having Friendship dependency

with 𝐴𝑔𝑡𝑖

• 𝐴𝑔𝑡𝑖 priority is less than 𝐴𝑔𝑡𝑗 priority

• 𝑇𝑃𝐴𝑔𝑡𝑗
< 𝑀𝑎𝑥𝑇𝑃.

No End

Yes

     
     

 

: ,

: ,

i i

k i

j

t

j i j Agt Agt

t

k i k Agt Agt

Agt

t Agt Agt Friend Agt Agt AP AP

Agt Agt Friend Agt Agt AP AP

TP Max TP





    

    

 

t

j i j jAgt Agt Agt AgtTP AP TP TP  

Figure 8. Analyze-friendship algorithm.

In presence of the Cascade dependency between

two agents Agtj and Agtj, Agtj demands Agtj to cascade

the resource request to another neighborhood. 𝐴𝑔𝑡𝑗

assesses its neighborhoods, and accordingly it chooses

whether or not to modify its task in the actual

neighborhood and perform the task in the new

neighborhood (Figure 9).

No End

Yes

 
 

: ,

_

t

j i jt Agt Agt Cascade Agt Agt

Cascade Collaboration true

 

 

 
Res Res 1

,

j

i i

t

Agt

t t

t

j

false

Dem Dem

Update Agt Agt

 

 

t

Figure 9. Analyze-cascade algorithm.

In presence of the Sequential dependency between

two agents Agtj and Agtj, Agtj wants Agtj to achieve its

goal faster. 𝐴𝑔𝑡𝑖 transfers its 𝐴𝑃𝐴𝑔𝑡𝑖
 and 𝑇𝑃𝐴𝑔𝑡𝑖

 to

𝐴𝑔𝑡𝑗 to enhance 𝐴𝑔𝑡𝑗’s chance to use the shared

resource. Then, 𝐴𝑔𝑡𝑖 modifies its task and updates

Demt
Resj In case the agent has more than one

Sequential dependencies with a set of agents, it selects

one among them randomly. If there is a Sequential

dependencies chain between agents, this algorithm is

executed recursively (see Figure 10). In case the agent

chooses to rest in the actual neighborhood, it calls

Algorithm 5 and starts cooperation in the new

neighborhood. In a successful collaboration, the agent

modifies its task in the original neighborhood and

decreases Demt
Resj.

Multi-Agents Collaboration in Open System 401

Start

No

End

YesNo

Yes

  

    

: ,

: , ,

t

j i j

t

k j k k i

t Agt Agt Sequential Agt Agt

Agt Agt Sequential Agt Agt Sequential Agt Agt





  

   

t  ,j kt Sequential Agt Agt

 
Re Re 1

,

j j i i

i

i i

Agt Agt Agt Agt

t

Agt

t t

s s

t

i

TP TP AP TP

false

Dem Dem

Update Agt Agt



  



 

t

 kAnalyze Friendship Agt  jAnalyze Friendship Agt

Figure 10. Analyze-sequential algorithm.

The remaining dependencies type such as Overlap,

Conflict, Parallel, and Competition Dependencies are

necessary for the course of the decision-making

process.

3.5. Cascade Collaboration

This stage represents the 5th step in CTCM where each

agent belonging to several neighborhoods evaluates its

priorities and dependencies and decides to change its

tasks and cascades the resource claim to a different

neighborhood (Figure 11).

Start

No

End

Yes

No

Yes

jAgt null  Re kSelectNeighborhood s

Re kj sAgt Area

 is taken by Re
j

t

Agt kt s

t Evaluate Priority - Dependancy Factors

 jNext Agt

Figure 11. Cascade collaboration algorithm.

As previously stated, an agent belongs to multiple

neighborhoods resulting in overlapped neighborhoods.

Depending on the selected task, the agent chooses the

neighborhood. The agents acting in each

neighborhood of multiple neighborhoods context are

classified into four categories (Table 1). These

categories are useful concepts if an agent wants to

assess its different neighborhoods and compare them

to its actual neighborhood.

Table 1. Multiple neighborhood categories and properties.

Category Category 1 Category 2 Category 3 Category 4

Properties

𝛿𝐴𝑔𝑡𝑖

𝑡 =1

&

𝑁𝐴𝑔𝑡𝑖
= 1

𝛿𝐴𝑔𝑡𝑖

𝑡 =0

&

 𝑁𝐴𝑔𝑡𝑖
= 1

𝛿𝐴𝑔𝑡𝑖

𝑡 =1

&

 𝑁𝐴𝑔𝑡𝑖
 >1

𝛿𝐴𝑔𝑡𝑖

𝑡 = 0

&

 𝑁𝐴𝑔𝑡𝑖
 >1

 Category 1 defines the set of agents performing

tasks in the following timeslot 𝑡 and belong to only

one neighborhood.

 Category 2 defines the set of agents which do not

perform any task in the following timeslot 𝑡 and

belong to only one neighborhood.

 Category 3 defines the set of agents performing

tasks in the following timeslot 𝑡 and belong to

multiple neighborhoods.

 Category 4 defines the set of agents which do not

perform any task in the following timeslot 𝑡 and

belong to multiple neighborhoods. These agents

can or not perform tasks in other neighborhoods. In

case an agent is performing task, it can modify the

task and decides to share the resource in this

neighborhood and forwards the collaboration

request.

Whenever the agent needs to choose to cascade the

collaboration request, it examines four factors in each

neighborhood of which it belongs:

• The Capt
Resj and Demt

Resj for the next timeslot 𝑡.

• The agents’ population in each category.

• Its Access-Priority.

• Its Dependency Relationships (in particular,

Friendship and Competition Dependencies) .

The agent estimates (based on these factors) its chance

to use the shared resource in every neighborhood.

Depending on these factors values, there are three

possible cases for an agent once it decides to cascade

the resource request:

• Case 1: The agent has access to the shared resource

in its current neighborhood, in spite of all its

neighbors are operating in other neighborhoods and

decide to act in this neighborhood.

• Case 2: The agent has access to the shared resource

if the actual constraints of the neighborhood are

stable.

• Case 3: The agent cannot access the shared

resource because of the actual constraints of the

neighborhood. In this case, comparable to case 2,

the agent with higher priority or dependency

relationships changes to another neighborhood.

402 The International Arab Journal of Information Technology, Vol. 18, No. 3A, Special Issue 2021

3.6. Make Decentralized Decision

The collaboration decision is mainly based on two

factors: the dependency relationships and priorities.

Decision-making is an iterative process. In each

iteration, the nominated agent with the smallest priority

executes the decision-making algorithm and completes

its task. The algorithm continues until 𝐷𝑒𝑚𝑅𝑒𝑠𝑖

𝑡 ≤

𝐶𝑎𝑝𝑅𝑒𝑠𝑖

𝑡 or all agents in 𝐴𝑔𝑡𝛿
𝑡 executed the process and

completed their tasks. In this process, the agents

possessing the smallest priorities have to modify their

tasks to reduce the demand. Nevertheless, these agents

should verify their dependency relationships before

making any decision (see Figure 12).

Start

No

Yes

End

Yes

Yes

No

No

Yes

No

t

jAgt Agt

jAgt null

 

   Re Re

:
k k k

j j i i

t

k Agt Agt Agt

t t

Agt Agt s s

t Agt Agt AP TP

AP TP Dem Cap

    

   

 jNext Agt t

 : ,t

k j kx Agt Agt Competition Agt Agt 

x

 : : ,t

p j py Agt Agt Friend Agt Agt 
j

t

Agt false 

y

Re Re

1
i i

t t

s s

Perform Task

Cap Cap 
j

t

Agt false 

 
Re Re 1

,

i i

t t

s s

t

i

Dem Dem

Update Agt Agt

 

Figure 12. Decentralized collaboration decision algorithm.

4. Conclusions

This paper defined the characteristics and requirements

of CTCM that allow a set of agents to create

cooperative teams in an open system by sharing

constrained resources to perform a set of tasks

concurrently in order to achieve several goals. The

proposed model CTCM is decentralized and allows a

set of agents to act in different overlapping

neighborhoods, to create collaborative teams by

applying a social reasoning technique, and to cooperate

in a decentralized way. CTCM represents an open-

system as a multi-neighborhood system where agents

act in several neighborhoods. This feature allows

agents to exploit the interaction with all their

neighbors, without restraining agents from having any

particular dependency relations. Moreover, CTCM

defines a new technique for obtaining information,

and a modified version of Sichman et al. [24] social

reasoning model that allows agents to proceed with

their decision factors from selecting exclusively

between a common goal or local goal. Instead of that

CTCM considers both goals (common and local)

while accessing constrained resources. In addition,

CTCM presents a novel collaborative Team

construction method that enables each agent to adjust

its self-interest level and collaboration, based on its

state and dependency relationships while trying to

achieve several goals concurrently. CTCM presents a

decentralized decision-making process that relaxes the

agent from making engagements and staying in the

neighborhood throughout the coordination process.

This paper presented the theoretical design of the

CTCM. As future work, we have to develop a

porotype to implement the different main components

of CTCM by describing the major modules at

Neighborhood and Agent layers. The prototype will be

used for CTCM evaluation at a different levels of

neighborhoods’ density and agents’ mobility.

References

[1] Bansal G., Nushi B., Kamar E., Lasecki W.,

Weld D., and Horvitz E., “Beyond Accuracy:

The Role of Mental Models in Human-AI Team

Performance,” in Proceedings of the AAAI

Conference on Human Computation and

Crowdsourcing, Skamania Lodge, pp. 2-11,

2019.

[2] Bistaffa F., Farinelli A., and Ramchurn S.,

“Sharing Rides with Friends: A Coalition

Formation Algorithm for Ridesharing,” in

Proceedings of the AAAI Conference on

Artificial Intelligence, Phoenix, pp. 4746-4752,

2015.

[3] Burton M., Brna P., and Pilkington R., “Clarissa:

A Laboratory for The Modelling of

Collaboration,” International Journal of

Artificial Intelligence in Education, vol. 11, no.

2, pp. 79-105, 2000.

[4] Chen G., Yang Z., He H., and Goh K.,

“Coordinating Multiple Agents Via

Reinforcement Learning,” Autonomous Agents

and Multi-Agent Systems, vol. 10, no. 3, pp. 273-

328, 2005.

[5] Dunin-Kȩplicz B. and Verbrugge R., Teamwork

in Multi-Agent Systems: A Formal Approach,

John Wiley and Sons, 2010.

[6] Eddy Y., Gooi H., and Chen S., “Multi-Agent

Multi-Agents Collaboration in Open System 403

System for Distributed Management of

Microgrids,” IEEE Transactions on Power

Systems, vol. 30, no. 1, pp. 24-34, 2014.

[7] Faruk M. and Sivakumar D., “Towards Self

Configured Multi-Agent Resource Allocation

Framework for Cloud Computing Environments,”

International Journal of Engineering Technology,

vol. 6, no. 2, pp. 920-928, 2014.

[8] Golpayegani F., Dusparic I., and Clarke S.,

“Using Social Dependence to Enable Neighbourly

Behaviour in Open Multi-Agent Systems,” ACM

Transactions on Intelligent Systems and

Technology, vol. 10, no. 3, pp. 1-31, 2019.

[9] Guarnieri P., “Interactive Intentionality and Norm

Formation,” Journal of Institutional Economics,

vol. 15, no. 4, pp. 579-593, 2019.

[10] Harrison D., “Better Together: Integrating

Artificial Intelligence into Team Cognition,”

School of Advanced Military Studies US Army

Command and General Staff College Fort

Leavenworth, 2019.

[11] Hausknecht M., Mupparaju P., Subramanian S.,

Kalyanakrishnan S., and Stone P., “Half Field

Offense: An Environment for Multiagent

Learning and Ad Hoc Teamwork,” in

Proceedings of AAMAS Adaptive Learning Agents

Workshop, Singapore, pp. 2-7, 2016.

[12] Hayano M., Hamada D., and Sugawara T., “Role

And Member Selection in Team Formation Using

Resource Estimation for Large-Scale Multi-Agent

Systems,” Neurocomputing, vol. 146, pp. 164-

172, 2014.

[13] Houhamdi Z. and Athamena B., “Collaborative

Team Construction in Open Multi-Agents

System,” in Proceedings of 21st International

Arab Conference on Information Technology, 6th

of October city, pp. 1-7, 2020.

[14] Huynh T., Jennings N., and Shadbolt N., “An

Integrated Trust and Reputation Model for Open

Multi-Agent Systems,” Autonomous Agents and

Multi-Agent Systems, vol. 13, no. 2, pp. 119-154,

2006.

[15] Janovsky P. and Deloach S., “Increasing Use of

Renewable Energy by Coalition Formation of

Renewable Generators and Energy Stores,” in

Proceedings of Multi-Agent Systems and

Agreement Technologies, Cham, pp. 140-147,

2017.

[16] Khan S., “Rational Agents: Prioritized Goals,

Goal Dynamics, and Agent Programming

Languages with Declarative Goals,” in

Proceedings of 9th International Conference on

Autonomous Agents and Multiagent Systems,

Toronto, pp. 1653-1654, 2010.

[17] Liemhetcharat S. and Veloso M., “Weighted

Synergy Graphs for Effective Team Formation

with Heterogeneous Ad Hoc Agents,” Artificial

Intelligence, vol. 208, no. 1, pp. 41-65, 2014.

[18] Meter P., List A., Lombardi D., and Kendeou P.,

Handbook of Learning from Multiple

Representations and Perspectives, Routledge,

2020.

[19] Petukhova V., Sharifullaeva F., and Klakow D.,

“Modelling Shared Decision Making in Medical

Negotiations: Interactive Training with

Cognitive Agents,” in Proceedings of

International Conference on Principles and

Practice of Multi-Agent Systems, Cham, pp. 251-

270, 2019.

[20] Russell N., Barros A., and Hofstede A.,

“Towards a Coordinative Theory for Flexible

Work Collaboration,” in Proceedings of the 38th

International Conference on Information

Systems, Seoul, pp. 1-21, 2017.

[21] Sacheli L., Aglioti S., and Candidi M., “Social

Cues to Joint Actions: The Role of Shared

Goals,” Frontiers in Psychology, vol. 6, pp.

1034, 2015.

[22] Santarra T., “Communicating Plans in Ad Hoc

Multiagent Teams,” University of

Californiasanta Cruz, 2019.

[23] Shah S., Ahmad J., and Rehman N., “Design and

Implementation of Inter-Operable and Secure

Agent Migration Protocol,” The International

Arab Journal of Information Technology, vol.

17, no. 4, pp. 461-470, 2020.

[24] Sichman S., Conte R., Castelfranchi C., and

Demazeau Y., “A Social Reasoning Mechanism

Based on Dependence Networks,” in
Proceedings of 11th European Conference on

Artificial Intelligence, New York, pp. 188-192,

1994.

[25] Sichman S. and Conte R., “Multi-Agent

Dependence by Dependence Graphs,” in

Proceedings of the 1st International Joint

Conference on Autonomous Agents and

Multiagent Systems: part 1, Bologna, pp. 483-

490, 2002.

[26] Sidner C., Bickmore T., Nooraie B., Rich C.,

Ring L., Shayganfar M., and Vardoulakis L.,

“Creating New Technologies for Companionable

Agents to Support Isolated Older Adults,” ACM

Transactions on Interactive Intelligent Systems,

vol. 8, no. 3, pp. 1-27, 2018.

[27] Skobelev P., “Multi-Agent Systems for Real

Time Resource Allocation, Scheduling,

Optimization and Controlling: Industrial

Applications,” in Proceedings of the

International Conference on Industrial

Applications of Holonic and Multi-Agent

Systems, Berlin, pp. 1-14, 2011.

[28] Wang H. and Chu X., “Distance-Constrained

Resource-Sharing Criteria for Device-to-Device

Communications Underlaying Cellular

Networks,” Electronics letters, vol. 48, no. 9, pp.

404 The International Arab Journal of Information Technology, Vol. 18, No. 3A, Special Issue 2021

528-530, 2012.

[29] Zhang I., Sharma N., Szekeres A., Krishnamurthy

A., and Ports D., “Building Consistent

Transactions with Inconsistent Replication,” ACM

Transactions on Computer Systems, vol. 35, no. 4,

pp. 1-37, 2018.

[30] Zhang Y., Volz T., Loerger R., and Yen J., “A

Decision-Theoretic Approach for Designing

Proactive Communication in Multi-Agent

Teamwork,” in Proceedings of the ACM

Symposium on Applied Computing, New York,

pp. 64-71, 2004.

[31] Zimmerling M., Mottola L., and Santini S.,

“Synchronous Transmissions in Low-Power

Wireless: A Survey of Communication Protocols

and Network Services,” arXiv, vol. 53, no. 6, pp.

1-39, 2020.

Zina Houhamdi received her Ph.D.

in Software Engineering in 2004.

She is a Professor at the Department

of Cybersecurity, College of

Engineering, Al Ain University,

United Arab Emirates. Her research

work has been published in several

academic journals and has been presented at scientific

conferences. Her main research interest is on Internet of

Thing, Artificial Intelligence, particularly in Multi-

Agent Systems Modelling, Testing and Applications.

She is published several papers in journals and

international peer-reviewed conferences.

Belkacem Athamena holds a Ph.D.

in System Analysis and Applications.

He is an Associate Professor at the

Department of Business

Administration, College of Business,

Al Ain University, United Arab

Emirates. His main research interest

is in system modeling and analysis,

multi-agent, fuzzy logic, software testing, Petri nets,

formal methods, data quality, and fault diagnosis. He

has published many refereed journal articles,

contributed chapters and presented papers at

conferences.

