
422 The International Arab Journal of Information Technology, Vol. 18, No. 3A, Special Issue 2021

An Ensemble-based Supervised Machine Learning

Framework for Android Ransomware Detection

Shweta Sharma1, Rama Krishna Challa1, and Rakesh Kumar2

1Department of Computer Science and Engineering, National Institute of Technical Teachers Training

and Research Chandigarh, India
2Department of Computer Science and Engineering, Central University of Haryana, India

Abstract: With latest development in technology, the usage of smartphones to fulfill day-to-day requirements has been increased.

The Android-based smartphones occupy the largest market share among other mobile operating systems. The hackers are

continuously keeping an eye on Android-based smartphones by creating malicious apps housed with ransomware functionality

for monetary purposes. Hackers lock the screen and/or encrypt the documents of the victim’s Android based smartphones after

performing ransomware attacks. Thus, in this paper, a framework has been proposed in which we (1) utilize novel features of

Android ransomware, (2) reduce the dimensionality of the features, (3) employ an ensemble learning model to detect Android

ransomware, and (4) perform a comparative analysis to calculate the computational time required by machine learning models

to detect Android ransomware. Our proposed framework can efficiently detect both locker and crypto ransomware. The

experimental results reveal that the proposed framework detects Android ransomware by achieving an accuracy of 99.67% with

Random Forest ensemble model. After reducing the dimensionality of the features with principal component analysis technique;

the Logistic Regression model took least time to execute on the Graphics Processing Unit (GPU) and Central Processing Unit

(CPU) in 41 milliseconds and 50 milliseconds respectively.

Keywords: Smartphone security, android, ensemble learning, ransomware, and dimensionality reduction.

Received February 20, 2021; accepted March 7, 2021

https://doi.org/10.34028/iajit/18/3A/5

1. Introduction

Besides food, clothing, and shelter; the Internet has

emerged as the basic need for human beings over the

past few years. The Internet can be accessed from

personal computers to smartphone devices for sending

emails, online shopping, online banking, interacting

with family and friends through social media, and so on.

Nowadays, smartphones with 12 GB RAM and 256 GB

internal memory are available in the market to achieve

the same task as a personal computer does [24].

However, out of all mobile Operating Systems (OS),

Android OS dominates the market with approx. 75%

global market share [24]. Android users install

applications (commonly known as apps) in their

smartphones which are written in JAVA language by the

app developers [18]. Android has an open architecture

[10]; thus the source code is available to the public and

anybody can write and deploy the apps on third-party

app stores such as APKPure.

Hackers take advantage of this open platform of

Android OS to insert malicious code with ransomware

functionality in genuine apps. Ransomware is a type of

malware which locks the screen (locker ransomware)

and/or encrypts the documents (crypto ransomware) on

users’ device [4]. Figure 1 shows the process of

ransomware apps infecting Android devices after over-

claiming permissions from users. After infecting the

devices, hackers demand ransom from the victim in the

form of crypto-currency to unlock the phone and

decrypt the documents.

Figure 1. Ransomware targeting Android smart-phone.

The number of ransomware attacks on smart-phones

is rapidly increasing as compared to other types of

malware attacks. A total number of 4,339 ransomware

samples have been detected during the first quarter of

2020 alone where the majority of ransomware are

targeting the Android devices [24]. During this

pandemic, there are several fake COVID-19 apps with

ransomware functionality are available on the third-

party app stores. For example, COVID19 Tracker and

dubbed black rose lucy ransomware [24].

A lot of research work [2, 8, 27] has been done for

the detection of generic Android malware using

machine learning techniques. However, few researchers

in the literature (discussed in the next section) worked

on detection of Android ransomware. In this

experimental work, we develop a framework to extract

significant novel features of Android ransomware and

perform detection using machine learning techniques.

https://doi.org/10.34028/iajit/18/3A/5

An Ensemble-based Supervised Machine Learning Framework for Android ... 423

Machine learning techniques require Graphics

Processing Unit (GPU) for faster computation to train

the dataset. Owing to the fact that the power cost of CPU

to train the dataset is much lower than the GPU. Thus,

CPU can be used in several situations where the time

difference between CPU and GPU to train the dataset is

relatively small. However, we perform a comparison of

three different machine learning techniques (Logistic

Regression, Neural Networks, and Support Vector

Machine) to detect Android ransomware on two

different platforms available on the cloud (i.e., CPU and

GPU).

The contributions of this paper are:

a) Extracting novel features of Android ransomware,

b) Reducing the dimensionality of features.

c) Implementing an ensemble learning model to detect

Android ransomware.

d) Finding best machine learning model for detection of

Android ransomware.

e) Detect both locker and crypto ransomware.

f) Comparative analysis of the proposed framework on

GPU and CPU to compute computational time.

g) Comparing the proposed framework with existing

frameworks.

In the earlier version of the paper [23], the

dimensionality reduction technique was not applied to

the extracted features and individual machine learning

models were employed to detect Android ransomware.

In this paper, we implement Principal Component

Analysis (PCA) technique to reduce the dimensions of

the features which will eventually reduce the

computation time required by machine learning models.

An ensemble model (i.e., Random Forest) has also been

implemented in this paper to further improve the

accuracy rate of detecting Android ransomware. A

significant reduction of computation time required by

machine learning models after implementing the PCA

technique has also been observed in this paper.

The rest of the paper is arranged as follows: section

2 presents the existing literature on Android

ransomware detection. Section 3 presents the proposed

framework for the detection of Android ransomware.

Section 4 presents the experimental results of the

proposed framework. Section 5 concludes the paper.

2. Literature Review

Saracino et al. [20] extracted system calls, installation

of new apps, apps requesting admin privileges, apps

producing large processes, apps running in the

foreground, SMS, contact list, user activity to check

whether a user is active or idle. They performed the

detection of various malware such as Rootkits, Trojans,

Ransomware, Spyware, and Botnet using k-Nearest

Neighbors (kNN) classifier. Mercaldo et al. [15]

extracted the JAVA Bytecode feature where each

instruction was parsed and transformed to Calculus of

Communicating Systems (CCS) by applying a

transform operator. They used mu-calculus logic and

applied Concurrency Workbench of New Century

model for the detection of Android ransomware.

Maiorca et al. [14] extracted the Dalvikbytecode

feature present in the dex files. They analyzed invoke-

type instructions which belonged to system Application

Program Interface (API) packages. They applied (RF)

classifier on extracted features for the detection of

Android ransomware. Gharib and Ghorbani [12]

extracted text (encrypt, lock, porn, threat, monetary),

images (nudity, logos), API methods, permissions,

system and API calls sequence. They applied Support

Vector Machine (SVM), RF, AdaBoost, Neural

Networks, and Naive Bayes (NB) on extracted features

for the detection of Android ransomware.

Ferrante et al. [11] extracted n-grams opcodes (n=2)

present in the smali files. They monitored memory,

system calls, network traffic logs, and CPU usage. They

applied Decision Trees (DT), NB, and Logistic

Regression (LR) on extracted features to detect

ransomware apps.

Su et al. [26] extracted text, window properties,

system commands, and permissions present in resource

files, layout files, decompiled code, and manifest files

respectively. They applied SVM, DT, RF, LR, and

ensemble method on extracted features to detect

ransomware apps. Scalas et al. [21] analyzed system

API packages, classes, and methods present in the dex

files. They applied RF classifier on extracted features

for the detection of Android ransomware. Abdullah et

al. [1] monitored system calls of Android OS and

applied DT, NB, and RF to detect Android ransomware.

Asano et al. [6] compared the performance of GPU

and CPU in the area of image processing where they

found that due to small local memory in GPU; it can’t

execute machine learning models which use shared

arrays. Panigrahi et al. [19] executed pattern matching

algorithms (Bloom Filter and Wu-Manber) in GPU and

CPU to detect Personal Computer (PC) malware where

they found that the GPU takes less time to execute the

pattern matching algorithms as compared to CPU.

Sharma et al. [23] extracted permissions, intents, text

in users’ native language from strings and images,

locking, encryption, and encoding methods misused by

Android ransomware. They applied LR, SVM, and

Neural Networks on extracted features for the detection

of Android ransomware. They found the computational

time required by machine learning models on GPU and

CPU to detect Android ransomware.

 Discussion: Sharma et al. [23] didn’t implement any

dimensionality reduction technique to reduce the

required computation time to run the machine

learning models on GPU and CPU. Also, Su et al.

[26] worked only on detecting locker ransomware

and ignored crypto ransomware detection. In

literature, Asona et al. [6] Panigrahi et al. [19]

424 The International Arab Journal of Information Technology, Vol. 18, No. 3A, Special Issue 2021

compared the performance of GPU and CPU in the

area of image processing and PC malware. However,

there is no comparative analysis of machine learning

models on GPU and CPU to compute the

computational time for detection of Android

ransomware.

Figure 2. Flowchart of the proposed framework.

3. Proposed Framework

The proposed framework includes several steps as

shown in Figure 2. These steps are discussed in the

following:

 Step 1: Data Preprocessing

The datasets required for the experimental purpose have

been collected from RansomProber [9] which contains

malicious (ransomware) samples and AndroZoo [3]

which contains benign samples. The raw dataset

collected in the form of Android Package Kits (APKs)

contains 2,721 ransomware samples and 2,000 benign

samples [22]. The APK is a file format used by the

Android OS to transmit and install apps on the

smartphones. The following types of tools are used to

perform reverse engineering to disassemble all APKs

into a readable format:

 The APKTool is a command line tool for

disassembling the APKs into Dalvik Executable

(dex) files, AndroidManifest.xml files, resource

folders, and smali files.

 The dex2jar tool is a command line tool for

creating JAVA Archive (JAR) files from dex files.

 The Java Decompiler tool is a graphical utility for

extracting the JAR files and parsing the JAVA

source code.

After performing data pre-processing, there are total

number of 2,076 ransomware apps and 2,000 benign

apps left for analysis.

 Step 2: Feature Extraction

After performing data pre-processing in previous step,

the objective of this step is to extract following features

from ransomware apps:

 Permissions: all apps in Android OS must be

permitted by the Permission system during

installation. Android developers declare

permissions in AndroidManifest.xml file by

<uses−permissions> tag. Thus, if an application

wants access to contacts, microphone, location, or

any other API, then Android OS will give a

message to the user to either allow or deny the

access. But malicious apps ask for unnecessary

permissions from Android users to hijack the

Android devices [13]. For example, ransomware

illegally ask for

KILL_BACKGROUND_PROCESSES

permission to stop the antivirus process to prevent

itself from being detected [25].

 Intents: intents are abstract objects in Android

which are used by an app to make an action on

another app (e.g., showing a map, taking a photo,

sending a message). Intents are used as a glue to

co-ordinate the interactions between activities,

services, and broadcast receivers. Just like

permissions, Android developers declare intents

in AndroidManifest.xml file by <action> tag. But

malicious apps illegally use Intents for obnoxious

operations. For example, ransomware use

DEVICE_ADMIN_ENABLED intent to gain

device administrative rights [25].

 Text: the resource directory inside each Android

app contains layout (for user interface) and values

folder (string values in form of text). Android

developers define text with <TextView> tag and

labels of buttons with <string> tag. But

ransomware misuse this directory to display text

on the screen to threaten users after locking the

device and display various steps to pay ransom via

crypto-currency to unlock the phone and/or get the

data back. The text can be displayed in users’

native language. The Natural Language

Processing (NLP) steps such as segmentation,

Tokenization, Lemmatization, and stop words

removal have been performed on extracted text in

English, Chinese, and Russian language.

 Images: besides layout and values, the resource

directory also contains drawable folder to store

bitmap graphic files in different resolutions.

Android developer use it to display static images

in Android apps. But ransomware misuse this

Random Forest

(Ensemble)

Data

Pre-processing

Machine

Learning

Manifest.xml

files

Permissions

Intents

Support Vector

Machine

Resource

folders

Text

Images

Locking

Encryption

Encoding

Ransomware

apps

Benign apps

Neural

Networks

RansomProber

 AndroZoo

 JAVA files

Logistic

Regression

Feature

Extraction

Dataset

collection

Dimensionality

Reduction

Principal

Component

Analysis

An Ensemble-based Supervised Machine Learning Framework for Android ... 425

directory to display fake images to threaten the

users. Thus, Optical Character Recognition (OCR)

technique has been used to extract text written in

images. Just like string text, the NLP steps has

been performed on extracted text from images in

English, Chinese, and Russian language.

 Locking: android offers apps with locking

functionality to let users’ lock the screen. Android

developers declare various methods in JAVA files

to enable this functionality. But attackers misuse

this functionality by writing malicious code of

ransomware. Ransomware overrides these

methods to lock the smartphone screen

automatically after installation. For example,

ransomware illegally use the onKeyUp,

onKeyDown, TimerTask, and startActivity

methods to prevent users’ to escape lock screen.

 Encryption: android provides apps with

encrypting functionality for users’ to protect

personal data. Android developers declare various

methods in JAVA files to enable this functionality.

But ransomware overrides these methods to

encrypt users documents. For example,

ransomware illegally use the Cipher.getInstance,

Cipher.init, Cipher.doFinal, AesCrypt,

CipherOutputStream methods to prevent users to

get the data.

 Encoding: android provides character encoding

functionality (UTF-8 and Base 64) in JAVA files

such that the users’ can read contents written in

other languages than English. But ransomware

overrides the Base64.encodeToString,

Base64.decode, set Content Type, Url Encoded

Form Entity, set Content Encoding JAVA

methods to display threatening messages in users’

native language.

Table 1 shows that total number of 1045 features of

Android ransomware have been extracted in this step.

Table 1. Feature extraction of Android ransomware.

Files/Folders Features Total (Feature wise)

Android

Manifest.xml

Permissions 330

Intents 26

Values and
Layout

Text 606

Drawable Images 66

classes-

dex2jar.jar.src

Locking 4

Encryption 8

Encoding 5

Total 1045

 Step 3: Dimensionality Reduction of Features

The features extracted in Step 2 are high-dimensional

features. Thus, reducing the dimensions of the features

will eventually reduce the computation time required by

machine learning models. Therefore, PCA technique

which is a dimensionality reduction technique is

employed to reduce the higher dimensional features to

low dimensional features. PCA converts the large

number of features in a smaller set without losing any

information [5].

As shown in Figure 3, approx. 90% variance is

achieved by first 20 components which implies that 20

principal components cover maximum information as

obtained by total number of original features (i.e., 1045)

of Android ransomware.

Figure 3. Cumulative variance achieved by number of principal

components of Android ransomware.

PCA combines the features in such a way that the

new features or principal components contain maximum

amount of variance (information). For example, Figure

4 shows that 20 PCA features (or principal components)

of Android ransomware covers all information as

obtained by total number of original features of Android

ransomware. Here, the first component covers the

maximum information of Android ransomware,

followed by the second component which covers the

maximum remaining information of Android

ransomware, and so on.

Figure 5 shows a 2-dimensional scatter plot of PCA

components of Android ransomware. The scatter plot

contains transformed features (i.e., combinations of

original features) of Android ransomware which is

obtained by PCA.

Figure 4. Percentage of variance by each PCA feature of Android

ransomware.

Figure 5. Scatter plot of PCA features of Android ransomware.

426 The International Arab Journal of Information Technology, Vol. 18, No. 3A, Special Issue 2021

 Step 4: Detection of Android Ransomware

This is the final step in which supervised machine

learning models are employed on extracted features to

detect Android ransomware. The existing literature [11,

12, 26] reveals that classification models, namely,

Logistic Regression (LR), Neural Networks, Support

Vector Machine (SVM), and Ransom Forest (RF) have

been used by the researchers to detect Android

ransomware with high accuracy. These supervised

models are employed and trained on significant features

in our experimental work which are described in the

following:

 Logistic Regression: this machine learning model

is used when the outcome to predict is

dichotomous (binary classification) [16]. For

example, the goal of this experimental work is to

classify whether an app is ransomware or benign

based on multiple features. The output in LR is

calculated as shown in Equation (1).

𝑦 =
1

1 + 𝑒−𝑧
(𝑊𝑇𝑋 + 𝑏)

Where:

W is n-dimensional vector, X is the input,

b is the real number, T is the transpose,
1

1+𝑒−𝑧
 is a sigmoid function

 Artificial Neural Networks: a neural network is a

superset of LR with several network layers in

which sigmoid function is used in the final

layer.Neural networks contain artificial neurons

(which are actually LR) to perform computations

such as detection of ransomware apps. The first

layer is the input layer in which the number of

nodes is always equal to the number of features.

The final layer is the output layer which tells

whether the app is ransomware or benign. The

layers present between input and output layers are

hidden layers which are generally a black-box that

uses association and activation functions and

calculated values are then sent to the output layer.

In this experiment, the Rectified Linear Unit

(ReLU) activation function shown in Equation (2)

is used in 5 hidden layers and Sigmoid function

shown in Equation (3) is used in the final output

layer.

ReLU=max(0,x)

𝑂 =
1

1 + 𝑒−𝑧

Where:

X is the input to the neurons,
1

1+e−z is a sigmoid function

 Support Vector Machine: LR draws different

decision boundaries near to the data points whereas

SVM finds a maximum margin in the data points

such that the distance between the hyperplane [7].

The maximum margin classifier can be calculated as

shown in Equation (4):

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
1

2
||𝑤||2𝑤ℎ𝑒𝑟𝑒 𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) ≥ 1, ∀𝑖

Where:

x is the input,

w is the weight vector to the hyperplane,

𝑤. 𝑥𝑖 + 𝑏is the output of a linear SVM

 Random Forest: in comparison to above

implemented individual machine learning models

(LR, Neural Networks, SVM); the ensemble model

makes prediction by combining decisions of

individual machine learning models. For example,

RF is an ensemble machine learning model which

performs Bootstrap Aggregation (Bagging) of

different decisions trees to make predictions (such as

classification of Android apps as ransomware or

benign) [17].The branching of nodes in decision trees

has been calculated using Entropy as shown in

Equation (5):

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ −𝑝𝑖 ∗ 𝑙𝑜𝑔2(𝑝𝑖)𝑐
𝑖=1

Where:

𝑝𝑖 is the probability of an outcome

4. Experimental Results

The proposed framework discussed in the previous

section is implemented on GPU and CPU with Python

3.6. The experiments for the detection of Android

ransomware have been performed on GPU and CPU on

Google Colaboratory which is a cloud service provided

by Google. In our experimental work, 70% of the data

has been used to train the model and 30% of data has

been used for testing. These models are evaluated on

four parameters, namely- Accuracy, Precision, Recall,

and F-Score as shown in Equations (6), (7), (8), and (9)

respectively.

Accuracy =
TP + TN

TP + TN + FP + FN

 Precision =
TP

TP+FP

Recall =
TP

TP+FN

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

Where, TP is the True Positives values in which

ransomware apps are correctly classified as

ransomware. TN is the True Negatives values in which

benign apps are correctly classified as benign. FP is the

False Positives values in which the benign apps are

wrongly classified as ransomware. FN is the False

 (1)

(2)

 (4)

 (5)

 (6)

 (7)

 (8)

 (9) (3)

An Ensemble-based Supervised Machine Learning Framework for Android ... 427

Negatives values in which ransomware samples are

wrongly classified as benign.

Table 2 shows the values of the performance metrics

obtained after implementing the proposed framework to

detect Android ransomware. The results show that all

classification models employed in our research work

effectively detect ransomware apps with a marginal

difference. The RF model achieves the highest value of

accuracy, precision, recall, and F-score to detect

Android ransomware, followed by LR, Neural

Networks and SVM model. The RF model gives best

results because RF is an ensemble model which

combines a set of decision trees to perform better than

the individual machine learning models [17]. The LR

model performs better than the Neural Network model

for binary classification because neural networks

require large amount of training data as compared LR to

give better detection accuracy. Also, the SVM model

performs best with unstructured and semi-structured

data. However, in our experimental work, the data is

stored in a structured manner with pre-defined

independent variables.

Table 2. Experimental results of the proposed framework.

Machine

Learning

Model

TP TN FP FN Accuracy Precision Recall F-Score

Random

Forest

(Ensemble

Model)

634 585 0 4 0.9967 1.0 0.9937 0.9968

Logistic

Regression
634 584 1 4 0.9959 0.9984 0.9937 0.9960

Neural

Network
631 583 2 7 0.9926 0.9968 0.9890 0.9929

Support

Vector

Machine

631 582 3 7 0.9918 0.9952 0.9890 0.9921

4.1. Comparative Analysis of Proposed

Framework on GPU and CPU

After measuring the performance metrics, this section

calculates the computational time taken by classification

models (LR, Neural Network, and SVM) to detect

Android ransomware on GPU and CPU. The

computational time taken by individual machine

learning model to detect Android ransomware is shown

in Figure 6 which shows that GPU takes less

computation time as compared to CPU due to parallel

processing. Also, the results show that the LR takes the

least time (177 milliseconds in GPU, 235 milliseconds

in CPU), followed by SVM (712 milliseconds in GPU,

803 milliseconds in CPU), and Neural Network model

(5600 milliseconds in GPU, 6238 milliseconds in CPU).

This reveals that the time difference to execute LR (58

milliseconds) and SVM model (91 milliseconds) on

GPU and CPU is minimal. Thus, LR and SVM model

can be executed on CPU to save the power cost to train

the dataset. On the other side, the time difference to

execute Neural Network model (638 milliseconds) on

GPU and CPU is large because this model is more

difficult to train due to back-propagation and number of

hidden layers used. This suggests that the Neural

Network model should be executed in GPU for faster

computation.

Figure 6. Computational time taken by machine learning models

without PCA technique in GPU and CPU to detect Android

ransomware.

After implementing PCA technique in individual

machine learning model, the computational time

required to detect Android ransomware has been

significantly reduced. Figure 7 shows that after

implementing PCA technique; LR takes the least time

(41 milliseconds in GPU, 50 milliseconds in CPU),

followed by SVM (42 milliseconds in GPU, 52

milliseconds in CPU), and Neural Network model (756

milliseconds in GPU, 1120 milliseconds in CPU). This

reveals that the time difference to execute LR (9

milliseconds) and SVM model (10 milliseconds) on

GPU and CPU is minimal. Thus, LR and SVM model

can be executed on CPU to save the power cost to train

the dataset. On the other side, the time difference to

execute Neural Network model (364 milliseconds) on

GPU and CPU is large because this model is more

difficult to train due to back-propagation and number of

hidden layers used. This suggests that the Neural

Network model should be executed in GPU for faster

computation.

Figure 7. Computational time taken by machine learning models

with PCA technique in GPU and CPU to detect Android

ransomware.

4.2. Comparison of Proposed Framework with

the Existing Frameworks

This section compares the accuracy of the best machine

learning model (i.e., ensemble learning RF model) of

the proposed framework with the existing frameworks

177 712

5600

235 803

6238

0

2000

4000

6000

8000

Logistic
Regression

Support
Vector

Machine

Neural
Network

Ti
m

e
(i

n
 m

ill
is

ec
o

n
d

s)

GPU CPU

41 42

756

50 52

1120

0

200

400

600

800

1000

1200

Logistic
Regression

Support Vector
Machine

Neural Network

Ti
m

e
(i

n
 m

ill
is

ec
o

n
d

s)

GPU CPU

428 The International Arab Journal of Information Technology, Vol. 18, No. 3A, Special Issue 2021

to detect Android ransomware. Figure 8 shows that the

proposed framework achieved the best accuracy

(99.67%) to detect Android locker and crypto

ransomware as compared to the existing Systemcall-

based [1], DNA-DROID [12], API-based [21], and R-

PackDroid [14] frameworks.

Figure 8. Comparison of the proposed framework with existing

frameworks to detect Android ransomware.

5. Conclusions

This paper proposed a framework to classify Android

ransomware and benign apps by using supervised

machine learning models. The proposed framework

extracted novel features by performing static analysis to

recognize unknown ransomware apps. The proposed

framework is implemented on GPU and CPU for

comparative analysis of computational time taken by

machine learning models to detect Android

ransomware. The analysis revealed that the LR and

SVM model can be implemented on CPU to save the

power cost of GPU; but Neural Network model should

be implemented on GPU for faster computation. The

results showed that the proposed framework with

ensemble RF model gave the best results with 99.67%

accuracy as compared to the existing frameworks for the

detection of locker and crypto Android ransomware.

The experimental results showed that the machine

learning models with PCA technique took less

computational time as compared to machine learning

models without PCA technique. After implementing

PCA technique; the LR model took minimum

computation time (41 milliseconds in GPU, 50

milliseconds in CPU) and RF model delivered the best

results as compared to other baseline models in terms of

accuracy, precision, recall, and F-score to detect

Android ransomware. The proposed framework can be

deployed in an artificial intelligence based anti-malware

to detect ransomware apps in Android based

smartphones in real-time scenario.

References

[1] Abdullah Z., Muhadi F., Saudi M., Hamid I., and

Foozy C., “Android Ransomware Detection Based

on Dynamic Obtained Features,” in Proceedings

of International Conference on Soft Computing

and Data Mining,Cham, pp. 121-129, 2020.

[2] Abuthawabeh M. and Mahmoud K., “Android

Malware Detection and Categorization Based on

Conversation-level Network Traffic Features,” in

Proceedings of the International Arab Conference

on Information Technology, Al Ain, pp. 42-47,

2019.

[3] Allix K., Bissyandé T., Klein J., and Traon Y.,

“Androzoo: Collecting Millions of Android Apps

for the Research Community,” in Proceedings of

the International Conference on Mining Software

Repositories, Texas, pp. 468-471, 2016.

[4] Andronio N., Zanero S., and Maggi F., “Heldroid:

Dissecting and Detecting Mobile Ransomware,”

in Proceedings of the International Symposium on

Recent Advances in Intrusion Detection, Kyoto,

pp. 382-404, 2015.

[5] Arivudainambi D. and Visu P., “Malware Traffic

Classification using Principal Component

Analysis and Artificial Neural Network for

Extreme Surveillance,” Computer

Communications, vol. 47, pp. 50-57, 2019.

[6] Asano S., Maruyama T., and Yamaguchi Y.,

“Performance Comparison of FPGA, GPU and

CPU in Image Processing,” in Proceedings of the

International Conference on Field Programmable

Logic and Applications, Czech Republic, pp. 126-

131, 2009.

[7] Buczak A. and Guven E., “A Survey of Data

Mining and Machine Learning Methods for Cyber

Security Intrusion Detection,” IEEE

Communications Surveys and Tutorials, vol. 18,

no. 2, pp. 1153-1176, 2016.

[8] Chakraborty T., Pierazzi F., and Subrahmanian V.,

“EC2 : Ensemble Clustering and Classification for

Predicting Android Malware Families,” IEEE

Transactions on Dependable and Secure

Computing, vol. 17, no. 2, pp. 262-277, 2017.

[9] Chen J., Wang C., Zhao Z., Chen K., Du R., and

Ahn G., “Uncovering the face of Android

Ransomware: Characterization and Real-time

Detection,” IEEE Transactions on Information

Forensics and Security, vol. 13, no. 5, pp. 1286-

1300, 2018.

[10] Faruki P., Bharmal A., Laxmi V., Ganmoor V.,

Gaur M., Conti M., and Rajarajan M., “Android

Security: A Survey of Issues, Malware

Penetration, and Defenses,” IEEE

Communications Surveys and Tutorials, vol. 17,

no. 2, pp. 998-1022, 2015.

[11] Ferrante A., Malek M., Martinelli F., Mercaldo

F., and Milosevic J., “Extinguishing Ransomware

-A Hybrid Approach to Android Ransomware

Detection,” in Proceedings of the International

Symposium on Foundations and Practice of

Security, Nancy, pp. 242-258, 2017.

[12] Gharib A. and Ghorbani A., “DNA-Droid: A Real-

Time Android Ransomware Detection

Framework,” in Proceedings of the International

99.67
98.31 98.1

97

95.49

93
94
95
96
97
98
99

100

A
cc

u
ra

cy
 (

%
)

https://ieeexplore.ieee.org/author/37692883300
https://ieeexplore.ieee.org/author/37325834400

An Ensemble-based Supervised Machine Learning Framework for Android ... 429

Conference on Network and System Security,

Cham, pp. 184-198, 2017.

[13] Kashefi I., Kassiri M., and Salleh M., “Preventing

Collusion Attack in Android,” The International

Arab Journal of Information Technology, vol. 12,

no. 6, pp. 719-727, 2015.

[14] Maiorca D., Mercaldo F., Giacinto G., Visaggio

C., and Martinelli F., “R-PackDroid : API

Package-Based Characterization and Detection of

Mobile Ransomware,” in Proceedings of the

International Symposium on Applied Computing,

Morocco, pp. 1718-1723, 2017.

[15] Mercaldo F., Nardone V., and Santone A.,

“Ransomware inside out,” in Proceedings of the

International Conference on Availability,

Reliability, and Security, Salzburg, pp. 628-637,

2016.

[16] Milosevic N., Dehghantanha A., and Choo K.,

“Machine Learning Aided Android Malware

Classification,” Computers and Electrical

Engineering, vol. 61, pp. 266-274, 2017.

[17] Muppavarapu V., Rajendran A., and Vasudevan

S., “Phishing Detection using RDF and Random

Forests,” The International Arab Journal of

Information Technology, vol. 15, no. 5 pp. 817-

824, 2018.

[18] Nauman M. and Khan S., “Design and

Implementation of a Fine-Grained Resource

Usage Model for the Android Platform,” The

International Arab Journal of Information

Technology, vol. 8, no. 4, pp. 440-448, 2011.

[19] Panigrahi C., Tiwari M., Pati B., and Prasath R.,

Malware Detection in Big Data Using Fast Pattern

Matching: A Hadoop Based Comparison on

GPU,” in Proceedings of the International

Conference on Mining Intelligence and

Knowledge Exploration, Cham, pp. 407-416,

2014.

[20] Saracino A., Sgandurra D., Dini G., and Martinelli

F., “Madam: Effective and Efficient Behavior-

Based Android Malware Detection and

Prevention,” IEEE Transactions on Dependable

and Secure Computing, vol. 15, no. 1, pp. 83-97,

2016.

[21] Scalas M. Maiorca D., Mercaldo F., Visaggio C.,

Martinelli F., and Giacinto G., “On the

Effectiveness of System API-Related Information

for Android Ransomware Detection,” Computers

and Security, vol. 86, pp. 168-182, 2019.

[22] Sharma S. Kumar N., Kumar R., and Krishna

C., “The Paradox of Choice: Investigating

Selection Strategies for Android Malware

Datasets Using a Machine-learning Approach,”

Communications of the Association for

Information Systems, vol. 46, no. 1, pp. 619-637,

2020.

[23] Sharma S., Krishna R., and Kumar R., “Android

Ransomware Detection using Machine Learning

Techniques: A Comparative Analysis on GPU and

CPU,” in Proceedings ofInternational Arab

Conference on Information Technology, 6th of

October city, pp. 1-6, 2020.

[24] Sharma S., Krishna C., and Kumar R., “A Survey

on Analysis and Detection of Android

Ransomware,” Concurrency and Computation:

Practice and Experience, pp.1-25, 2021.

[25] Sharma S., Kumar R., and Krishna C. R.,

“Ransom Analysis: The Evolution and

Investigation of Android Ransomware” in

Proceedings of International Conference on IoT

Inclusive Life, Chandigarh, pp. 33-41, 2020.

[26] Su D., Liu J., Wang X., and Wang W., “Detecting

Android Locker-Ransomware on Chinese Social

Networks,” IEEE Access, vol. 7, pp. 20381-20393,

2018.

[27] Wang S., Yan Q., Chen Z., Yang B., Zhao C., and

Conti M., “Detecting Android Malware

Leveraging Text Semantics of Network Flows,”

IEEE Transactions on Information Forensics and

Security, vol. 13, no. 5, pp. 1096-1109, 2018.

Shweta Sharma is pursuing Ph.D.

from the Dept. of Computer Science

and Engineering at NITTTR

Chandigarh, India. She received

M.Tech from Central University of

Punjab, Bathinda. Her research areas

include Smartphone Security,

Malware Detection, and Machine Learning.

Rama Krishna Challa is a Professor

in the Dept. of Computer Science and

Engineering at NITTTR, Chandigarh,

India. He received his Ph.D. from IIT

Kharagpur and M.Tech. from

CUSAT Cochin. His research areas

include Wireless Communications

and Networks,and Cyber Security.

Rakesh Kumar is an Associate

Professor in the Dept. of Computer

Science and Engineering at CUH,

Mahendergarh, India. He received

his PhD from NIT, Kurukshetra and

M.Tech from GGSIPU. His research

areas include Wireless Networks,

Mobile Computing, and Cloud Computing.

