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Abstract: With latest development in technology, the usage of smartphones to fulfill day-to-day requirements has been increased. 

The Android-based smartphones occupy the largest market share among other mobile operating systems. The hackers are 

continuously keeping an eye on Android-based smartphones by creating malicious apps housed with ransomware functionality 

for monetary purposes. Hackers lock the screen and/or encrypt the documents of the victim’s Android based smartphones after 

performing ransomware attacks. Thus, in this paper, a framework has been proposed in which we (1) utilize novel features of 

Android ransomware, (2) reduce the dimensionality of the features, (3) employ an ensemble learning model to detect Android 

ransomware, and (4) perform a comparative analysis to calculate the computational time required by machine learning models 

to detect Android ransomware. Our proposed framework can efficiently detect both locker and crypto ransomware. The 

experimental results reveal that the proposed framework detects Android ransomware by achieving an accuracy of 99.67% with 

Random Forest ensemble model. After reducing the dimensionality of the features with principal component analysis technique; 

the Logistic Regression model took least time to execute on the Graphics Processing Unit (GPU) and Central Processing Unit 

(CPU) in 41 milliseconds and 50 milliseconds respectively. 
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1. Introduction 

Besides food, clothing, and shelter; the Internet has 

emerged as the basic need for human beings over the 

past few years. The Internet can be accessed from 

personal computers to smartphone devices for sending 

emails, online shopping, online banking, interacting 

with family and friends through social media, and so on. 

Nowadays, smartphones with 12 GB RAM and 256 GB 

internal memory are available in the market to achieve 

the same task as a personal computer does [24]. 

However, out of all mobile Operating Systems (OS), 

Android OS dominates the market with approx. 75% 

global market share [24]. Android users install 

applications (commonly known as apps) in their 

smartphones which are written in JAVA language by the 

app developers [18]. Android has an open architecture 

[10]; thus the source code is available to the public and 

anybody can write and deploy the apps on third-party 

app stores such as APKPure. 

Hackers take advantage of this open platform of 

Android OS to insert malicious code with ransomware 

functionality in genuine apps. Ransomware is a type of 

malware which locks the screen (locker ransomware) 

and/or encrypts the documents (crypto ransomware) on 

users’ device [4]. Figure 1 shows the process of 

ransomware apps infecting Android devices after over-

claiming permissions from users. After infecting the 

devices, hackers demand ransom from the victim in the  

 

form of crypto-currency to unlock the phone and 

decrypt the documents. 

 
Figure 1. Ransomware targeting Android smart-phone. 

The number of ransomware attacks on smart-phones 

is rapidly increasing as compared to other types of 

malware attacks. A total number of 4,339 ransomware 

samples have been detected during the first quarter of 

2020 alone where the majority of ransomware are 

targeting the Android devices [24]. During this 

pandemic, there are several fake COVID-19 apps with 

ransomware functionality are available on the third-

party app stores. For example, COVID19 Tracker and 

dubbed black rose lucy ransomware [24]. 

A lot of research work [2, 8, 27] has been done for 

the detection of generic Android malware using 

machine learning techniques. However, few researchers 

in the literature (discussed in the next section) worked 

on detection of Android ransomware. In this 

experimental work, we develop a framework to extract 

significant novel features of Android ransomware and 

perform detection using machine learning techniques. 
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Machine learning techniques require Graphics 

Processing Unit (GPU) for faster computation to train 

the dataset. Owing to the fact that the power cost of CPU 

to train the dataset is much lower than the GPU. Thus, 

CPU can be used in several situations where the time 

difference between CPU and GPU to train the dataset is 

relatively small. However, we perform a comparison of 

three different machine learning techniques (Logistic 

Regression, Neural Networks, and Support Vector 

Machine) to detect Android ransomware on two 

different platforms available on the cloud (i.e., CPU and 

GPU). 

The contributions of this paper are: 

a) Extracting novel features of Android ransomware, 

b) Reducing the dimensionality of features. 

c) Implementing an ensemble learning model to detect 

Android ransomware. 

d) Finding best machine learning model for detection of 

Android ransomware. 

e) Detect both locker and crypto ransomware. 

f) Comparative analysis of the proposed framework on 

GPU and CPU to compute computational time. 

g) Comparing the proposed framework with existing 

frameworks. 

In the earlier version of the paper [23], the 

dimensionality reduction technique was not applied to 

the extracted features and individual machine learning 

models were employed to detect Android ransomware. 

In this paper, we implement Principal Component 

Analysis (PCA) technique to reduce the dimensions of 

the features which will eventually reduce the 

computation time required by machine learning models. 

An ensemble model (i.e., Random Forest) has also been 

implemented in this paper to further improve the 

accuracy rate of detecting Android ransomware. A 

significant reduction of computation time required by 

machine learning models after implementing the PCA 

technique has also been observed in this paper. 

The rest of the paper is arranged as follows: section 

2 presents the existing literature on Android 

ransomware detection. Section 3 presents the proposed 

framework for the detection of Android ransomware. 

Section 4 presents the experimental results of the 

proposed framework. Section 5 concludes the paper. 

2. Literature Review 

Saracino et al. [20] extracted system calls, installation 

of new apps, apps requesting admin privileges, apps 

producing large processes, apps running in the 

foreground, SMS, contact list, user activity to check 

whether a user is active or idle. They performed the 

detection of various malware such as Rootkits, Trojans, 

Ransomware, Spyware, and Botnet using k-Nearest 

Neighbors (kNN) classifier. Mercaldo et al. [15] 

extracted the JAVA Bytecode feature where each 

instruction was parsed and transformed to Calculus of 

Communicating Systems (CCS) by applying a 

transform operator. They used mu-calculus logic and 

applied Concurrency Workbench of New Century 

model for the detection of Android ransomware. 

Maiorca et al. [14] extracted the Dalvikbytecode 

feature present in the dex files. They analyzed invoke-

type instructions which belonged to system Application 

Program Interface (API) packages. They applied (RF) 

classifier on extracted features for the detection of 

Android ransomware. Gharib and Ghorbani [12] 

extracted text (encrypt, lock, porn, threat, monetary), 

images (nudity, logos), API methods, permissions, 

system and API calls sequence. They applied Support 

Vector Machine (SVM), RF, AdaBoost, Neural 

Networks, and Naive Bayes (NB) on extracted features 

for the detection of Android ransomware. 

Ferrante et al. [11] extracted n-grams opcodes (n=2) 

present in the smali files. They monitored memory, 

system calls, network traffic logs, and CPU usage. They 

applied Decision Trees (DT), NB, and Logistic 

Regression (LR) on extracted features to detect 

ransomware apps. 

Su et al. [26] extracted text, window properties, 

system commands, and permissions present in resource 

files, layout files, decompiled code, and manifest files 

respectively. They applied SVM, DT, RF, LR, and 

ensemble method on extracted features to detect 

ransomware apps. Scalas et al. [21] analyzed system 

API packages, classes, and methods present in the dex 

files. They applied RF classifier on extracted features 

for the detection of Android ransomware. Abdullah et 

al. [1] monitored system calls of Android OS and 

applied DT, NB, and RF to detect Android ransomware. 

Asano et al. [6] compared the performance of GPU 

and CPU in the area of image processing where they 

found that due to small local memory in GPU; it can’t 

execute machine learning models which use shared 

arrays. Panigrahi et al. [19] executed pattern matching 

algorithms (Bloom Filter and Wu-Manber) in GPU and 

CPU to detect Personal Computer (PC) malware where 

they found that the GPU takes less time to execute the 

pattern matching algorithms as compared to CPU. 

Sharma et al. [23] extracted permissions, intents, text 

in users’ native language from strings and images, 

locking, encryption, and encoding methods misused by 

Android ransomware. They applied LR, SVM, and 

Neural Networks on extracted features for the detection 

of Android ransomware. They found the computational 

time required by machine learning models on GPU and 

CPU to detect Android ransomware. 

 Discussion: Sharma et al. [23] didn’t implement any 

dimensionality reduction technique to reduce the 

required computation time to run the machine 

learning models on GPU and CPU. Also, Su et al. 

[26] worked only on detecting locker ransomware 

and ignored crypto ransomware detection. In 

literature, Asona et al. [6] Panigrahi et al. [19] 
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compared the performance of GPU and CPU in the 

area of image processing and PC malware. However, 

there is no comparative analysis of machine learning 

models on GPU and CPU to compute the 

computational time for detection of Android 

ransomware. 

Figure 2. Flowchart of the proposed framework.

3. Proposed Framework 

The proposed framework includes several steps as 

shown in Figure 2. These steps are discussed in the 

following: 

 Step 1: Data Preprocessing 

The datasets required for the experimental purpose have 

been collected from RansomProber [9] which contains 

malicious (ransomware) samples and AndroZoo [3] 

which contains benign samples. The raw dataset 

collected in the form of Android Package Kits (APKs) 

contains 2,721 ransomware samples and 2,000 benign 

samples [22]. The APK is a file format used by the 

Android OS to transmit and install apps on the 

smartphones. The following types of tools are used to 

perform reverse engineering to disassemble all APKs 

into a readable format: 

 The APKTool is a command line tool for 

disassembling the APKs into Dalvik Executable 

(dex) files, AndroidManifest.xml files, resource 

folders, and smali files. 

 The dex2jar tool is a command line tool for 

creating JAVA Archive (JAR) files from dex files. 

 The Java Decompiler tool  is a graphical utility for 

extracting the JAR files and parsing the JAVA 

source code. 

After performing data pre-processing, there are total 

number of 2,076 ransomware apps and 2,000 benign 

apps left for analysis. 

 Step 2: Feature Extraction 

After performing data pre-processing in previous step, 

the objective of this step is to extract following features 

from ransomware apps: 

 Permissions: all apps in Android OS must be 

permitted by the Permission system during 

installation. Android developers declare 

permissions in AndroidManifest.xml file by 

<uses−permissions> tag. Thus, if an application 

wants access to contacts, microphone, location, or 

any other API, then Android OS will give a 

message to the user to either allow or deny the 

access. But malicious apps ask for unnecessary 

permissions from Android users to hijack the 

Android devices [13]. For example, ransomware 

illegally ask for 

KILL_BACKGROUND_PROCESSES 

permission to stop the antivirus process to prevent 

itself from being detected [25]. 

 Intents: intents are abstract objects in Android 

which are used by an app to make an action on 

another app (e.g., showing a map, taking a photo, 

sending a message). Intents are used as a glue to 

co-ordinate the interactions between activities, 

services, and broadcast receivers. Just like 

permissions, Android developers declare intents 

in AndroidManifest.xml file by <action> tag. But 

malicious apps illegally use Intents for obnoxious 

operations. For example, ransomware use 

DEVICE_ADMIN_ENABLED intent to gain 

device administrative rights [25]. 

 Text: the resource directory inside each Android 

app contains layout (for user interface) and values 

folder (string values in form of text). Android 

developers define text with <TextView> tag and 

labels of buttons with <string> tag. But 

ransomware misuse this directory to display text 

on the screen to threaten users after locking the 

device and display various steps to pay ransom via 

crypto-currency to unlock the phone and/or get the 

data back. The text can be displayed in users’ 

native language. The Natural Language 

Processing (NLP) steps such as segmentation, 

Tokenization, Lemmatization, and stop words 

removal have been performed on extracted text in 

English, Chinese, and Russian language. 

 Images: besides layout and values, the resource 

directory also contains drawable folder to store 

bitmap graphic files in different resolutions. 

Android developer use it to display static images 

in Android apps. But ransomware misuse this 
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directory to display fake images to threaten the 

users. Thus, Optical Character Recognition (OCR) 

technique has been used to extract text written in 

images. Just like string text, the NLP steps has 

been performed on extracted text from images in 

English, Chinese, and Russian language. 

 Locking: android offers apps with locking 

functionality to let users’ lock the screen. Android 

developers declare various methods in JAVA files 

to enable this functionality. But attackers misuse 

this functionality by writing malicious code of 

ransomware. Ransomware overrides these 

methods to lock the smartphone screen 

automatically after installation. For example, 

ransomware illegally use the onKeyUp, 

onKeyDown, TimerTask, and startActivity 

methods to prevent users’ to escape lock screen. 

 Encryption: android provides apps with 

encrypting functionality for users’ to protect 

personal data. Android developers declare various 

methods in JAVA files to enable this functionality. 

But ransomware overrides these methods to 

encrypt users documents. For example, 

ransomware illegally use the Cipher.getInstance, 

Cipher.init, Cipher.doFinal, AesCrypt, 

CipherOutputStream methods to prevent users to 

get the data. 

 Encoding: android provides character encoding 

functionality (UTF-8 and Base 64) in JAVA files 

such that the users’ can read contents written in 

other languages than English. But ransomware 

overrides the Base64.encodeToString, 

Base64.decode, set Content Type,   Url Encoded 

Form Entity, set Content Encoding JAVA 

methods to display threatening messages in users’ 

native language. 

Table 1 shows that total number of 1045 features of 

Android ransomware have been extracted in this step. 

Table 1. Feature extraction of Android ransomware. 

Files/Folders Features Total (Feature wise) 

Android 

Manifest.xml 

Permissions 330 

Intents 26 

Values and 
Layout 

Text 606 

Drawable Images 66 

classes-

dex2jar.jar.src 

Locking 4 

Encryption 8 

Encoding 5 

Total 1045 

 Step 3: Dimensionality Reduction of Features 

The features extracted in Step 2 are high-dimensional 

features. Thus, reducing the dimensions of the features 

will eventually reduce the computation time required by 

machine learning models. Therefore, PCA technique 

which is a dimensionality reduction technique is 

employed to reduce the higher dimensional features to 

low dimensional features. PCA converts the large 

number of features in a smaller set without losing any 

information [5].  

As shown in Figure 3, approx. 90% variance is 

achieved by first 20 components which implies that 20 

principal components cover maximum information as 

obtained by total number of original features (i.e., 1045) 

of Android ransomware.  

 

Figure 3. Cumulative variance achieved by number of principal 

components of Android ransomware. 

PCA combines the features in such a way that the 

new features or principal components contain maximum 

amount of variance (information). For example, Figure 

4 shows that 20 PCA features (or principal components) 

of Android ransomware covers all information as 

obtained by total number of original features of Android 

ransomware. Here, the first component covers the 

maximum information of Android ransomware, 

followed by the second component which covers the 

maximum remaining information of Android 

ransomware, and so on. 

Figure 5 shows a 2-dimensional scatter plot of PCA 

components of Android ransomware. The scatter plot 

contains transformed features (i.e., combinations of 

original features) of Android ransomware which is 

obtained by PCA.  

 
Figure 4. Percentage of variance by each PCA feature of Android 

ransomware. 

 

 

Figure 5. Scatter plot of PCA features of Android ransomware. 
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 Step 4: Detection of Android Ransomware 

This is the final step in which supervised machine 

learning models are employed on extracted features to 

detect Android ransomware. The existing literature [11, 

12, 26] reveals that classification models, namely, 

Logistic Regression (LR), Neural Networks, Support 

Vector Machine (SVM), and Ransom Forest (RF) have 

been used by the researchers to detect Android 

ransomware with high accuracy. These supervised 

models are employed and trained on significant features 

in our experimental work which are described in the 

following: 

 Logistic Regression: this machine learning model 

is used when the outcome to predict is 

dichotomous (binary classification) [16]. For 

example, the goal of this experimental work is to 

classify whether an app is ransomware or benign 

based on multiple features. The output in LR is 

calculated as shown in Equation (1). 

𝑦 =
1

1 + 𝑒−𝑧
(𝑊𝑇𝑋 + 𝑏) 

Where: 

W is n-dimensional vector, X is the input, 

b is the real number, T is the transpose, 
1

1+𝑒−𝑧 
  is a sigmoid function 

 Artificial Neural Networks: a neural network is a 

superset of LR with several network layers in 

which sigmoid function is used in the final 

layer.Neural networks contain artificial neurons 

(which are actually LR) to perform computations 

such as detection of ransomware apps. The first 

layer is the input layer in which the number of 

nodes is always equal to the number of features. 

The final layer is the output layer which tells 

whether the app is ransomware or benign. The 

layers present between input and output layers are 

hidden layers which are generally a black-box that 

uses association and activation functions and 

calculated values are then sent to the output layer. 

In this experiment, the Rectified Linear Unit 

(ReLU) activation function shown in Equation (2) 

is used in 5 hidden layers and Sigmoid function 

shown in Equation (3) is used in the final output 

layer.  

ReLU=max(0,x) 

𝑂 =
1

1 + 𝑒−𝑧
 

Where: 

X is the input to the neurons, 
1

1+e−z is a sigmoid function 

 

 Support Vector Machine: LR draws different 

decision boundaries near to the data points whereas 

SVM finds a maximum margin in the data points 

such that the distance between the hyperplane [7]. 

The maximum margin classifier can be calculated as 

shown in Equation (4): 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
1

2
||𝑤||2𝑤ℎ𝑒𝑟𝑒 𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) ≥ 1, ∀𝑖  

Where: 

x is the input,  

w is the weight vector to the hyperplane, 

𝑤. 𝑥𝑖 + 𝑏is the output of a linear SVM 

 Random Forest: in comparison to above 

implemented individual machine learning models 

(LR, Neural Networks, SVM); the ensemble model 

makes prediction by combining decisions of 

individual machine learning models. For example, 

RF is an ensemble machine learning model which 

performs Bootstrap Aggregation (Bagging) of 

different decisions trees to make predictions (such as 

classification of Android apps as ransomware or 

benign) [17].The branching of nodes in decision trees 

has been calculated using Entropy as shown in 

Equation (5): 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ −𝑝𝑖 ∗ 𝑙𝑜𝑔2(𝑝𝑖)𝑐
𝑖=1    

Where: 

𝑝𝑖  is the probability of an outcome 

4. Experimental Results 

The proposed framework discussed in the previous 

section is implemented on GPU and CPU with Python 

3.6. The experiments for the detection of Android 

ransomware have been performed on GPU and CPU on 

Google Colaboratory which is a cloud service provided 

by Google. In our experimental work, 70% of the data 

has been used to train the model and 30% of data has 

been used for testing. These models are evaluated on 

four parameters, namely- Accuracy, Precision, Recall, 

and F-Score as shown in Equations (6), (7), (8), and (9) 

respectively.  

Accuracy =  
TP + TN

TP + TN + FP + FN
 

                         Precision =  
TP

TP+FP
   

Recall =  
TP

TP+FN
 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  

Where, TP is the True Positives values in which 

ransomware apps are correctly classified as 

ransomware. TN is the True Negatives values in which 

benign apps are correctly classified as benign. FP is the 

False Positives values in which the benign apps are 

wrongly classified as ransomware. FN is the False 

 (1) 

(2) 

 (4) 

 (5) 

 (6) 

 (7) 

 (8) 

 (9) (3) 
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Negatives values in which ransomware samples are 

wrongly classified as benign. 

Table 2 shows the values of the performance metrics 

obtained after implementing the proposed framework to 

detect Android ransomware. The results show that all 

classification models employed in our research work 

effectively detect ransomware apps with a marginal 

difference. The RF model achieves the highest value of 

accuracy, precision, recall, and F-score to detect 

Android ransomware, followed by LR, Neural 

Networks and SVM model. The RF model gives best 

results because RF is an ensemble model which 

combines a set of decision trees to perform better than 

the individual machine learning models [17]. The LR 

model performs better than the Neural Network model 

for binary classification because neural networks 

require large amount of training data as compared LR to 

give better detection accuracy. Also, the SVM model 

performs best with unstructured and semi-structured 

data. However, in our experimental work, the data is 

stored in a structured manner with pre-defined 

independent variables. 

Table 2. Experimental results of the proposed framework. 

Machine 

Learning 

Model 

TP TN FP FN Accuracy Precision Recall F-Score 

Random 

Forest 

(Ensemble 

Model) 

634 585 0 4 0.9967 1.0 0.9937 0.9968 

Logistic 

Regression 
634 584 1 4 0.9959 0.9984 0.9937 0.9960 

Neural 

Network 
631 583 2 7 0.9926 0.9968 0.9890 0.9929 

Support 

Vector 

Machine 

631 582 3 7 0.9918 0.9952 0.9890 0.9921 

4.1. Comparative Analysis of Proposed 

Framework on GPU and CPU 

After measuring the performance metrics, this section 

calculates the computational time taken by classification 

models (LR, Neural Network, and SVM) to detect 

Android ransomware on GPU and CPU. The 

computational time taken by individual machine 

learning model to detect Android ransomware is shown 

in Figure 6 which shows that GPU takes less 

computation time as compared to CPU due to parallel 

processing. Also, the results show that the LR takes the 

least time (177 milliseconds in GPU, 235 milliseconds 

in CPU), followed by SVM (712 milliseconds in GPU, 

803 milliseconds in CPU), and Neural Network model 

(5600 milliseconds in GPU, 6238 milliseconds in CPU). 

This reveals that the time difference to execute LR (58 

milliseconds) and SVM model (91 milliseconds) on 

GPU and CPU is minimal. Thus, LR and SVM model 

can be executed on CPU to save the power cost to train 

the dataset. On the other side, the time difference to 

execute Neural Network model (638 milliseconds) on 

GPU and CPU is large because this model is more 

difficult to train due to back-propagation and number of 

hidden layers used. This suggests that the Neural 

Network model should be executed in GPU for faster 

computation. 

 
Figure 6. Computational time taken by machine learning models 

without PCA technique in GPU and CPU to detect Android 

ransomware. 

After implementing PCA technique in individual 

machine learning model, the computational time 

required to detect Android ransomware has been 

significantly reduced. Figure 7 shows that after 

implementing PCA technique; LR takes the least time 

(41 milliseconds in GPU, 50 milliseconds in CPU), 

followed by SVM (42 milliseconds in GPU, 52 

milliseconds in CPU), and Neural Network model (756 

milliseconds in GPU, 1120 milliseconds in CPU). This 

reveals that the time difference to execute LR (9 

milliseconds) and SVM model (10 milliseconds) on 

GPU and CPU is minimal. Thus, LR and SVM model 

can be executed on CPU to save the power cost to train 

the dataset. On the other side, the time difference to 

execute Neural Network model (364 milliseconds) on 

GPU and CPU is large because this model is more 

difficult to train due to back-propagation and number of 

hidden layers used. This suggests that the Neural 

Network model should be executed in GPU for faster 

computation. 

 
Figure 7. Computational time taken by machine learning models 

with PCA technique in GPU and CPU to detect Android 

ransomware. 

4.2. Comparison of Proposed Framework with 

the Existing Frameworks 

This section compares the accuracy of the best machine 

learning model (i.e., ensemble learning RF model) of 

the proposed framework with the existing frameworks 
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to detect Android ransomware. Figure 8 shows that the 

proposed framework achieved the best accuracy 

(99.67%) to detect Android locker and crypto 

ransomware as compared to the existing Systemcall-

based [1], DNA-DROID [12], API-based [21], and R-

PackDroid [14] frameworks. 

 

Figure 8. Comparison of the proposed framework with existing 

frameworks to detect Android ransomware. 

5. Conclusions 

This paper proposed a framework to classify Android 

ransomware and benign apps by using supervised 

machine learning models. The proposed framework 

extracted novel features by performing static analysis to 

recognize unknown ransomware apps. The proposed 

framework is implemented on GPU and CPU for 

comparative analysis of computational time taken by 

machine learning models to detect Android 

ransomware. The analysis revealed that the LR and 

SVM model can be implemented on CPU to save the 

power cost of GPU; but Neural Network model should 

be implemented on GPU for faster computation. The 

results showed that the proposed framework with 

ensemble RF model gave the best results with 99.67% 

accuracy as compared to the existing frameworks for the 

detection of locker and crypto Android ransomware. 

The experimental results showed that the machine 

learning models with PCA technique took less 

computational time as compared to machine learning 

models without PCA technique. After implementing 

PCA technique; the LR model took minimum 

computation time (41 milliseconds in GPU, 50 

milliseconds in CPU) and RF model delivered the best 

results as compared to other baseline models in terms of 

accuracy, precision, recall, and F-score to detect 

Android ransomware. The proposed framework can be 

deployed in an artificial intelligence based anti-malware 

to detect ransomware apps in Android based 

smartphones in real-time scenario. 
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