
The International Arab Journal of Information Technology, Vol. 18, No. 4, July 2021 513

Architecture Style Selection using Statistics of

Quality Attributes to Reduce Production Costs

Hamidreza Hasannejad Marzooni1, Homayun Motameni2, and Ali Ebrahimnejad3
1Department of Computer Engineering, Babol Branch, Islamic Azad University, Babol, Iran

2Department of Computer Engineering, Sari Branch, Islamic Azad University, Sari, Iran
3Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran

Abstract: As time goes by and software systems grow in complexity and size, there is an increasing need for software

architecture as an important tool in software design. Designing an appropriate architecture is necessary in producing a high-

quality software, which also suits stakeholders. In order to design the desired high-quality software program, style-based

architectures can be used. That is, with the selection of appropriate style architecture, we will get an ideal architecture for

design. With the same attitude in this research, using a statistical computational algorithm, we have attempted to select the

appropriate software architecture style to meet stakeholders’ requirements. In meeting Non-Functional Requirements (NFRs) of

stakeholders, increase of one NFR does not increase the others necessarily, and they may be at odds with each other, thus the

best quality for all cannot be achieved. In the designing stage of an ideal software, we must take into account the production and

maintenance costs as well as a trade-off between stakeholders’ desired needs. The proposed algorithm structure involves a

method using Gamma Probability Distribution Function (PDF). In a way that, a statistical estimate for each present style is

created, and finally in the design of the software, the best style (based on the mentioned statistical estimate) is used for meeting

the stakeholder’s needs. The method not only creates NFRs in the software program, but also gives importance to production

and maintenance costs. This requires that the qualitative data of the problem be converted into quantitative data. It will be fully

described in the introduction to the algorithm. In order to verify the validity of the proposed algorithm, the resulted architecture

style ranking will be compared with the results of alternative methods namely Analytic Hierarchy Process (AHP) and A

Lightweight Value-based Software Architecture Evaluation (LiVASAE). The results confirm the applicability of the proposed

algorithm and moreover it has less time complexity with respect to other methods.

Keywords: Software architecture style, non-functional requirements, curve fitting, gamma method.

Received September 13, 2019; accepted June 18, 2020

https://doi.org/10.34028/18/4/3

1. Introduction

Since not so long ago, discussions have revolved around

technology and its effect on life, to the extent that life

without technology is seen unacceptable by humans.

Although mankind has kept up with the speed of

technology, technology has in some cases turned into a

disruptor or destroyer causing havoc on the positive

quality of life. All-round improvement in the quality of

life in today's advanced societies is seen as a main issue.

Given the considerable advances in information

technology and the use of various software programs,

one of the existing methods for improving the quality of

life is this very technology, to the extent that it has

brought sciences as different as architecture and

construction, meteorology and crisis management,

financial issues, factories and industries control system,

vehicles’ central control system, medical sciences and

more under its direct control, bringing us to this

conclusion that life without information technology will

be impossible.

Given the special importance of software programs

in human life, the science of software engineering is an

essential need [40], which should be incorporated

throughout the life cycle of producing a software

program including analysis, architecture development,

design, implementation, verification and maintenance

phases [35, 41]. Modern societies also depend crucially

on complex software systems which provide help in

maintaining and satisfying stakeholders' goals and their

inevitably changing needs. Therefore, the existence of a

software program in the form of software architecture is

a necessity in order to meet such demands.

Providing a complex, large-scale, distributed

software engineering environment, the ability to quickly

evaluate and improve software engineering practices

can be a key differentiator of the market. Practices that

shorten the development cycle, cost-effectively improve

quality, and align the software with customer needs,

leaving a direct impact on the business value provided

by the company [47]. Therefore, software architecture

is a basis for any kind of software system and a

necessary mechanism for raising the software quality

and gaining access to quality attributes [15]. The most

important factor in ensuring the quality of software

program is its architectural sustainability [42, 43];

throughout the life cycle of software production, its

architecture endures. The architecture should be

https://doi.org/10.34028/18/4/3

514 The International Arab Journal of Information Technology, Vol. 18, No. 4, July 2021

designed so that it leads to maintaining customer value

in the short and long terms, thus bringing more

architectural technical Debt (DBT) to the software

structure.

Several methods have been proposed for better

designing of software architecture, some of which will

be referred to below. This paper presents a formal linear

programming optimization model for the Non-

Functional Requirements (NFRs) framework with

regard to operationalization selection. Affleck et al. [3]

used a formal linear programming optimization model

for the NFRs framework with regard to the choice of

operation. Decisions about software architecture depend

on system failures. In his paper, Quaglia [37]

investigated software diversity based on software

diversity in the field of advanced simulation systems

with the aim of improving the time taken to produce

simulation outputs. They suggested using High-Level

Architecture (HLA).

Sievi-Korte et al. [44] presented a paper in which the

potential of Genetic Algorithms (GAs) is examined in

the design of automated software architecture, assuming

that the software architecture is made of certain patterns.

For software development, the theory of constraints can

also be used. The algorithm was provided by Ribeiro et

al. [39] So far, various methods for providing the quality

features of the software provided, such as the Jelinski

Moranda (JM) model, are often used in software

reliability [30]. Fieberg and Conn [18] also used the

hidden Markov method, which presents the parameters

of the Non-Homogeneous Poisson Process model

(NHPP) to identify the software development defect

detection process. The use of a Markov switching

process allows us to identify non-uniform variations in

the extent to which defects are found. This would better

reflect the industrial application development

environment [38]. The paper describes a systematic

review of academic and industrial literature regarding

architectural patterns and architectural tactics for micro

services by Lefranc [29].

Moreover, software rejuvenation can be used for

software maintenance. “Software rejuvenation” is a

proactive technique intended to reduce the probability

of future unplanned outages due to aging. Castelli et al.

[14] analysed a rejuvenation policy based on prediction,

demonstrating that it can further increase system

availability and reduce downtime cost. This will instead

increase stakeholders' trust. Building trust from the

quality attributes would encourage the developer to

induce these quality attributes in the development life

cycle and produce a system whose foundation will be

the stakeholders [8]. In architecture design, recognizing

stakeholders' needs, the conditions of a problem and

managing the concepts of architecture throughout the

software life cycle play key roles in a project's success

[5]. With designing an appropriate architecture,

dependence of the software's quality on the code of a

program decreases significantly, since the software's

quality depends on the architecture model which faces

model-based development [33]. Requirement

Management (RM) is a fundamental activity which

reduces errors, delay in software preparation and

overrun costs [17]. The quality attributes of a software

system are, to a large extent, determined by the

decisions taken early in the development process. Best

practices in software engineering recommend the

identification of important quality attributes during the

requirements elicitation process, and the specification of

software architectures so as to satisfy these

requirements. Over the last few years, the software

engineering community has studied the relationship

between quality attributes and the use of particular

architecture styles and patterns [36].

These generally include points, strategies and

methods which can be useful in designing and selecting

the appropriate structure for software architecture.

Software reuse has been recognized as an attractive

idea with an obvious payoff to achieve a faster, better

and cheaper software program. One important

component in designing reusable object-oriented

software is design patterns. Design patterns describe a

commonly recurring structure of communicating

components that solve a general design problem in a

particular context. An important property of design

patterns is that they are independent of a particular

application domain and programming paradigm. As a

result, design patterns facilitate the reuse of software

architecture, even when other forms of reuse are

infeasible [2]. For instance, Béjar et al. [10] proposed

an architecture style, a pattern, for Spatial Data

Infrastructures (SDIs). This style provides a tool and a

shared vocabulary to help system architects design these

infrastructures, and facilitates the exchange of

knowledge about them.

The new complicated requirements demand solution

to newly arisen problems. Kalistratov [26] addressed the

problem of wireless monitoring of the Megacities

through simulating the propagation of a radio signal.

Hadizadeh and Tanghatari [21] considered the problem

of increasing processor efficiency using new parallel

processing design of MIPS-Based Series. Jahanirad and

Karam [24] used the Built-in Self-Test (BIST) based

approach to test new configurations parallel proposed

processing chips. These complicated new multi-

processor, multi-task usages of software call for modern

software styles, the efficiency of which should be

evaluated using new functional and NFRs as the metric

of evaluation. In this respect, style selection would be of

ultimate importance to them.

There are several frameworks and middleware which

result in savings in software implementation and

production process. Some of them have been variously

presented and used for certain systems and their

capabilities have been proven [1]. The accurate

selection of a set of such frameworks can prevent

applying unwelcome changes when completing the

Architecture Style Selection using Statistics of Quality Attributes to Reduce ... 515

desirable architecture known as software architecture

style. This research mainly attempts to select an

appropriate style when designing a software system

with a determining role in leading to success. This study

aims to present a style-based software architecture

model and hence, investigates how the financial

software architecture style of a relatively big

meteorological organization involving 390 people as the

case study is selected. In this case study, the appropriate

software architecture style is carried out on Data

Centred (DC), Data Flow (DF), Virtual Machines (VM),

Remote Procedure Call (RPC), Object-Oriented (OO)

and Layered (L) styles using the proposed algorithm.

Some quality attributes of these styles, which will be of

importance in this system, have been obtained using

estimation questionnaire method and its completion by

experts. The questionnaire output is used in the

proposed algorithm in order to compare these styles

with stakeholders' requirements and the selection of a

model based on an ideal style [13]. In fact, an ideal style

refers to a style relatively meeting the stakeholders'

needs. Various algorithms have been presented in this

regard, each of which suffering from certain shortages

and defects mentioned in the second section.

This research presents a new algorithm based on

mathematical reasoning and a statistical method, which

selects a style able to meet stakeholders' NFRs with

minimum amount of money spent within the shortest

possible time. This introduces a simple, yet effective,

method for selecting an optimum software architecture

style, meeting the stakeholders’ requirements with the

least operation cost. It is itself an easy-to-design and -

implement method (similar to AHP- and matrix-based

methods) having low time complexity (like Modelling

and Formal Methods) with low implementation cost,

while achieving results comparable with what is

obtained using complex methods. The paper has been

arranged as follows. the studied methods are briefly

described in section 2, the proposed algorithm is

described step-by-step (and draft questionnaires are

presented) in section 3, the Gamma distribution function

and parameters estimation method are shortly described

in section 4, discussions on the results of applying the

proposed algorithm and compare with other methods are

in section 5 and finally the section 6 covers the

conclusions.

2. Related Works

One of the main subjects in designing a software

architecture based on styles selection is the appropriate

style. The term architecture style was first introduced by

Perry and Wolf [34]. Garlan and Shaw [20] introduced

software architecture styles and drew comparisons

between them by providing several examples. Different

research projects have presented different methods for

the analysis and selection of styles. Bosch et al.

presented an algorithm called arch designer, in which

the prioritization and assignment of quality attribute

weights have been used as criteria in selecting the most

appropriate software architecture model or style [12]. In

this algorithm, when the number of candidate styles and

that of NFRs increases, the size of matrix grows. As a

result, the number of calculations increases and leads to

a reduction in efficiency.

Furthermore, Jabali et al. [23] used AHP algorithm

based on the density of data for selecting a software

architecture style or model, in which the implementation

has not been conducted and the results have not been

tabulated. Wang and Yang [46] also presented an

algorithm based on AHP for style selection. Chun Yong

Chong et al. [15] offered a fuzzy AHP-based algorithm

in an effort to identify quality attributes and rank them

based on their priorities. Kim et al. [27] proposed a

Lightweight Technique for Software Architecture

Evaluation (LiVASAE) based on arithmetic mean and

AHP. AHP has a hierarchical one-way structure. This

means that when ranking and selecting the best choice,

the criteria list is assumed to remain unchanged. If the

choice is to affect the criteria list, for example, by

introducing new attributes of a candidate style, the

output of calculations and as a prior results and ranking

of the selected appropriate style will no longer be valid,

so the problem needs to be reconsidered from the

scratch. Considering such complexity, time and costly

process of AHP-based algorithms, their applicability in

real use is under question.

The correlation coefficient is another method that has

been drawn upon in various papers for evaluating

architectural models or styles. However, the problem

with all these methods may involve the long distance

and parallelism of the attributes. For example, the

correlation coefficient between DM attributes and a

candidate style may be around 1, but each of DM

attributes can be 100 times of the style's attributes [6, 7,

16, 28].

Fiondella and Gokhale [19] used Uncertainties in

model parameters for importance assessment of a

software system. Using methods based on the

investigation of a model can also guide us in selecting

architecture styles. In order to reach that goal, the

optimal model is investigated for each style and the best

one is selected. Thus, we can find a very large transfer

matrix for each style. Jegourel et al. [25] proposed an

algorithm based on a statistical estimation method for

preventing the instability in the transfer matrix and

ultimately reducing its size. In addition, SAT-based

learning model has been proposed as a preventive

method by Ivančić et al. [22] in order to avoid

abnormalities. These methods also reduce the size of the

transfer matrix. Thus, there are various algorithms for

selecting an appropriate architecture style. There are

various ways to check and improve the quality of

software. For example, formal methods have become

the recommended methodology in critical software

engineering. In formal confirmation, a system must be

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Gokhale%2C+Swapna+S

516 The International Arab Journal of Information Technology, Vol. 18, No. 4, July 2021

identified with a specific formula such as Petri Net

networks, automata, and process algebras that require

formal expertise and may be complicated especially

with large systems. Mkaouar et al. [32] proposed a

model for a real-time work model using the Linear No-

Threshold model (LNT) language, describing how to

use it to integrate a formal confirmation phase into an

Architecture Analysis and Design Language (AADL) -

based development process. It can be compared with the

proposed algorithm. The reason for comparing both of

these methods is the use of statistical parameters.

Each architecture analysis and selection method

contain both advantages and disadvantages that is

reflected briefly in Table 1. Since each method does

have a known algorithm structure, thus advantages and

disadvantages of each are recognizable.

Table 1. Related works.

Structure of Algorithm Presented by Disadvantages Advantages

AHP-based

Chun et al. [15]

Kim et al. [27]
Jabali et al. [23]

High time

complexity
High Sensitivity to

criteria list

High memory needs

Easy to
design and

apply

Matrix-based
Bosch and

Bengtsson [12]

Modelling

and

Formal Method

Fiondella and

Gokhale [19]

Jegourelc et al.
[25]

Ivančić et al. [22]

Mkaouar et al.

[32]

Costly in designing

stage

Low time

complexity

Considering behaviour and structure of each method

based on Table 1. Those with AHP-based and Matrix-

based structures have higher time complexity and

memory needs and are dependent on the input NFRs, but

their design and usage are easier. But if the modelling

and formal methods used for analysis and selection of

architecture, albeit their complex and high cost, time

complexity order will reduce. Therefore, each of the

different structures assumes known advantages and

disadvantages.

3. Newly Proposed Method

As mentioned earlier, this research aims to select a

software architecture style out of candidate styles using

Gamma probability function. The Gamma probability

function will be briefly described along with input

attributes, with the probability function being first fitted

based on some expert opinions on the quality attributes

of each architecture style.

Then, for each style and given the stakeholders'

qualitative requirement, the percentile corresponding to

the experts' opinion is obtained and its chart is given. At

the end, the style with a lower percentile chart is chosen.

The lower this percentile, the cheaper and partly faster

it will be. Evidently, we can achieve the stakeholders'

qualitative level by employing an average programming

team that reach the minimum levels of the selected style.

Figure 1 briefly displays the steps of implementing the

appropriate architecture style selection.

Figure 1. Schematic diagram of the proposed algorithm for selecting
software architecture style.

 Step 1: At first, a questionnaire concerning the

stakeholders' needs will be prepared, with the

stakeholders in different levels giving each

requirement a value from 1 to 8 according to Table 2.

Table 2. Questionnaire of Desired Model (DM).

Non-functional

requirement

N
e
g
a

tiv
e

R
e
la

tiv
ely

 n
e
g
a

tiv
e

N
o
 e

ffe
c
t

L
o

w
 M

e
d

iu
m

H
ig

h

R
e
la

tiv
ely

 h
ig

h

V
e
r
y
 h

ig
h

1 2 3 4 5 6 7 8

Performance

.....

Reliability

 Step 2: At this step, the stakeholders are given a

weight for their every requirement based on their

field of activity in regard to each NFR. To obtain the

desired model, all stakeholders' requirements should

be taken into account. Each quality attribute is of

different importance from the stakeholders' point of

view. For instance, a quality attribute like security,

from one stakeholders' view, may be of high

importance, preoccupying his/her mind, while from

another one's view, it may be of no or little

START

END

Completion of system's

NFRs questionnaire by

different levels of
stakeholders

Calculation of percentile related to each style and drawing

percentile chart corresponding to DM in all quality attributes for
each style

Calculation of Gamma

probability function for

each attribute in each

style based on experts'

opinion

Completion of quality

attributes questionnaire
related to different styles

by experts

Calculation of NFRs

using Geometric mean

and creating the desired

model (DM)

Analysis of percentile chart related to quality attributes in

different styles and selection of the best style for the optimal

model

https://www.google.com/search?biw=1360&bih=643&sxsrf=ALeKk02shseuNB-STY8FmPAeXbCCBCPD3g:1623237247521&q=architecture+analysis+and+design+language&spell=1&sa=X&ved=2ahUKEwil3Zj8tYrxAhUDSxoKHTS6DvkQirwEKAB6BAgBEC4

Architecture Style Selection using Statistics of Quality Attributes to Reduce ... 517

importance. Thus, software components can give rise

to several kinds of architectural mismatches when

assembled together in order to form a software

system [9]. Quality attributes can be converted into

quantitative ones using a variety of methods. One of

these methods is the interval scale which has been

used in [4] and is shown in Table 3.

To develop the desired model, qualitative needs are

calculated for each stakeholder using the above-

mentioned method. We then obtain the numerical

average, which is the attribute's value in the Desired

Model (DM). As mentioned earlier in this paper, in

order to design a software system for a big organization,

a questionnaire based on the quality attributes in Table

2 was filled in by the members of this company. The

DM was calculated after averaging. It is also possible to

give a certain weight to each attribute's value of

importance from the personnel's viewpoint based on

their field of activity; however, giving weight has not

been considered for this example. After the

questionnaires are received, the Geometric mean for

each attribute in each style is used. Finally, the obtained

value of each attribute is rounded to 1.0, which is seen

in the estimated DM (Table 3).

Table 3. Questionnaire of Desired Model (DM).

NFR

P
e
r
fo

r
m

a
n

ce

S
e
c
u

rity

M
o

d
ific

a
tio

n

R
e
u

sa
b

ility

S
c
a

la
b

le
 P

o
r
ta

b
ility

R
e
lia

b
ility

DM 8 5 7 8 6 4 6

 Step 3: In order to quantitatively calculate the NFRs

of the candidate styles, a scale-interval-based

questionnaire is used, with 10 chosen software

engineers having been provided with a table for the

candidate styles like Table 4. After the questionnaires

are received, the Geometric mean is used for each

NFR in each style. At the end, the obtained value of

each attribute is rounded to 1.0, the value of the

quality attributes for the existing styles being

observed in Table 4.

Table 4. Questionnaire for NFRs-Styles strength assessment.

Non-functional

requirement

N
e
g
a

tiv
e

R
e
la

tiv
e
ly

 n
e
g
a

tiv
e

N
o

 e
ffec

t

L
o

w
 M

e
d

iu
m

H
ig

h

R
e
la

tiv
e
ly

 h
ig

h

V
e
r
y
 h

ig
h

1 2 3 4 5 6 7 8

Performance

.....

Reliability

 Step 4: At this step, a Gamma statistical function

fitting is calculated for each attribute of each style

based on experts' opinions.

 Step 5: After the Gamma function is calculated, the

percentile corresponding to the given quality

attribute in the DM can be calculated and extracted.

 Step 6: At the last step of this algorithm, the

appropriate software architecture style satisfying the

stakeholders' requirements with minimum cost is

selected after the results and the chart are examined.

In addition to giving a brief description of the Gamma

statistical function, the steps of implementing the

algorithm will be explained in detail.

4. Gamma Distribution

As mentioned previously, after the DM is calculated and

the questionnaire is completed by the experts, the fitting

for each style should be carried out through the Gamma

probability distribution function [45]. The Gamma

probability distribution function is one of the continuous

probability distributions used in the problems related to

optimization, with a shape parameter , a scale

parameter  and a Gamma function Γ(𝛼) obtained using

Equation (1). If  is a natural number, then the Gamma

distribution is equal to the sum of the random variable

 with the exponential distribution based on parameter

1/β.

Γ(𝛼) = ∫ 𝑡𝛼−1𝑒−𝑚
∞

0
𝑑𝑚

However, in order to increase the accuracy of the

results, the 3-parameter Gamma distribution for the

starting point was used according to Equation (2), with

the Gamma probability distribution function being fitted

to each quality attribute of each style (e.g., reliability in

OO style) based on Equation (2) in the fourth step of the

algorithm. i.e., the calculation of the Gamma probability

distribution function. It should be noted that since the

Gamma distribution covers only the positively skewed

data, an appropriate change of variable has been used to

estimate the probability function, the attributes of which

have been shown in Table 5.

Table 5. Input attributes of 3-parameter Gamma distribution for the

starting point.

Input attribute Description

X Qualitative variable of the case study

maxX Reported maximum value in the case study

minX Reported minimum value in the case study

Delta

Positively skewed data are equal to the reported minimum
distance to the drawing point of Gamma function and

negatively skewed data are equal to the reported maximum

distance to the drawing point of data

α Shape parameter of Gamma probability density function

β Scale parameter of Gamma probability density function

S Skewness of observational data

𝑃𝐷𝐹𝐺𝑎𝑚𝑚𝑎(X;α,β,𝑋𝑚𝑖𝑛,𝑋𝑚𝑎𝑥,Delta,S)

=

{

βα(𝑋−𝑋𝑚𝑖𝑛+𝐷𝑒𝑙𝑡𝑎)

(α−1)𝑒−𝛽(𝑋−𝑋𝑚𝑖𝑛+𝐷𝑒𝑙𝑡𝑎)

Γ(𝛼)
;

𝑆 ≥ 0 𝑎𝑛𝑑 𝑋 > (𝑋𝑚𝑖𝑛 − 𝐷𝑒𝑙𝑡𝑎)

βα(𝑋𝑚𝑎𝑥+𝐷𝑒𝑙𝑡𝑎−𝑋)
(α−1)𝑒−𝛽(𝑋−𝑋𝑚𝑖𝑛+𝐷𝑒𝑙𝑡𝑎)

Γ(𝛼)
;

𝑆 < 0𝑎𝑛𝑑 𝑋 > (𝑋𝑚𝑎𝑥 + 𝐷𝑒𝑙𝑡𝑎)

0 ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1)

(2)

518 The International Arab Journal of Information Technology, Vol. 18, No. 4, July 2021

𝑆 = 𝐸 [(
𝑋−𝜇

𝜎
)
3
] =

∑ (𝑋𝑖
3)𝑁

𝑖=1
𝑁

−3𝜇𝜎2−𝜇3

𝜎3
,

𝜇 =
∑ 𝑋𝑖
𝑁
𝑖=1

𝑁
 , 𝜎 = √

∑ (𝑋𝑖 − 𝜇)
2𝑁

𝑖=1

𝑁 − 1

In addition, the cumulative probability function for the

function above is as follows:

𝐶𝐷𝐹𝐺𝑎𝑚𝑚𝑎(X;α,β,𝑋𝑚𝑖𝑛,𝑋𝑚𝑎𝑥,Delta,S) =

∫ 𝑃𝐷𝐹𝐺𝑎𝑚𝑚𝑎(X;α,β,𝑋𝑚𝑖𝑛 ,𝑋𝑚𝑎𝑥,Delta,S)𝑑𝑥
𝑋

−∞

And attributes are estimated as follows:

Y = {
X-(Xmin-Delta); S ≥ 0

(Xmax + Delta)-X ; S < 0

𝐴 = 𝐿𝑛(𝑋) − 𝐿𝑛(𝑋) = 𝐿𝑁 (
∑ 𝑋𝑖
𝑁
1

𝑁
) − (

∑ (𝐿𝑛(𝑋𝑖))
𝑁
1

𝑁
) ;

�̂� =
1

4𝐴
(1 + √1 +

4𝐴

3
) ; �̂� =

𝑋

�̂�
 ;

Delta = Inverse_Gamma(
1

𝑁+1
; �̂�, �̂�)

Equation (5) is a recursive one used for calculating

Delta, by which new values of �̂�, �̂� and Delta can be

regarded as attributes of the intended variable

probability function with approximation for one

recursive calculation, where N indicates the number of

questionnaires completed by experts. In order to

calculate Inverse-Gamma function, the estimation using

numerical calculations methods is used.

In the fifth step of the algorithm, given the

probability function for each quality attribute related to

each programming style, the percentile corresponding to

the expected qualitative level in the DM of each quality

attribute (called Z) can be obtained for the probability

function of each style and quality attribute using

Equation (6).

Percentile(z;α,β,Xmin,Xmax,Delta,S)

= 100 ∗

{

1 ;S<0,𝑧>(Xmax+Delta)

0;S≥0,z<(Xmin−Delta)

CDFGamma(z−Xmin+Delta;α,β,Xmin,Xmax,Delta,S)
;

S≥0,z≥(Xmin−Delta)
1−CDFGamma(Xmax+Delta−z;α,β,Xmin,Xmax,Delta,S)

;

z≤(Xmax+Delta)

It should be noted, however, it is likely that the desired

qualitative level in the DM in one or several NFRs are

not fulfilled by the highest level of a similarly intended

quality attribute in one programming style. In this case,

the number 100 is reported for the corresponding

percentile. Moreover, if the desired qualitative level in

the DM in one or several NFRs can be fulfilled for the

lowest level of a similarly intended quality attribute in

one programming style, the number 0 is reported for the

corresponding percentile.

5. Analysis of Exam Results

This research firstly carried out probability function

fitting on the experts' opinions about the quality

attributes of each architecture style. Then, the

percentiles corresponding to each DM were calculated

based on the probability functions obtained from those

opinions (the 20th percentile of a software quality

attribute means this attribute in a certain software style

has a low quality; this hypothetical software has a low

reliability in comparison to other object-oriented

programs). Now, if it is assumed that the experts have

given the reliability of the object-oriented style a score

of 8 from 6 to 8, it can be assumed that the case study

has obtained a score of 6.2 with a low quality in terms

of reliability in the hypothetical object-oriented style.

Now, with a special mixture of the percentiles of

software styles quality attributes, we want to satisfy

users' need to their desired software qualitative levels

DM. It should be noted that the lower the percentile

number corresponding to each quality attribute in a

style, the lower the costs of producing software program

with this style will necessarily be. In other words, if a

style automatically ensures the high quality of an

attribute, a certain level of quality in the DM, with a

lower cost (or using an average programming team with

a lower wage); percentiles lower than a quality attribute,

can be fulfilled. At this step, the chart of the calculated

percentiles for the DM in each style has been shown in

Figure 2.

Figure 2. The Intended Percentile for fulfilling stakeholders' needs.

Data Flow and Layered styles rank second and RPC

and VM styles achieve the lowest corresponding to the

DM's expected NFRs. To test the validity of the

proposed algorithm (Gamma distribution), Case Study

is evaluated using the LiVASAE Technique algorithm

and the results are shown in Table 6.

Table 6. Input attributes calculate ROI of styles according to the

LiVASAE technique.

NFR DM DC DF VM RPC OO L

Modification 7 5.25 7.25 4.875 5 7.625 7.375

Reusability 8 5.375 7.375 5.25 5.75 7.875 6

Performance 8 7.125 6.875 7.5 7.625 7.625 7.5

Scalability 6 6.375 6.875 5 5.25 7.25 6.375

Reliability 6 7.5 6.25 5.875 5.875 7.625 7.125

Portability 4 5.125 5.5 6.25 5.375 7.375 6.5

Security 5 7 6.375 7.125 6.5 6.875 7.375

322560 344870.5 553819.6 251094.9 236230.9 1283343 722628.3

----- 1.069167 1.716951 0.778444 0.732363 3.978619 2.240291

In Table 6, according to the ROI, the LiVASAE

Technique considers the OO style as the best choice to

meet the needs of the stakeholders. Table 6 and Figure

2 show a comprehensive comparison between three

algorithms based on the response rate of styles for the

(3)

(4)

(5)

(6)

Architecture Style Selection using Statistics of Quality Attributes to Reduce ... 519

case study. Kim et al. [27] used the Arithmetic mean

method to calculate the NFRs of different architectures

(styles), Jabali et al. [23] used ordinary AHP algorithm

while we used Gamma distribution method to smooth

out the NFRs of each style. According to Table 7, the

results show the validity of the proposed algorithm, with

the exception that the proposed algorithm is better seen

by using the probability distribution functions

(uncertainty) for each of the NFRs.

Table 7. Comparison of the results from LiVASAE technique,
ordinary AHP and proposed gamma method.

Gamma

distribution

Rank

Ordinary

AHP

Rank

LiVASAE

Technique

Rank

Style

1 1 1 OO

2 2 2 L

3 4 3 DF

4 3 4 DC

6 6 5 VM

5 5 6 RPC

Furthermore, the corresponding time complexity of

the methods is shown and compared with each other

according to Figure 3.

Figure 3. Time complexity of evaluated methods.

Considering the Figure 3, we can say that increasing

number of NFRs has the potential to improve

comparison of methods with each other. By different

number of NFRs, we can execute each algorithm and

based on the results, one can say that the AHP (proposed

method) has the highest (lowest) time complexity in

selection of software architecture style.

6. Conclusions

This paper examined a certain mixture of optimal

quality attributes in a relatively organization employing

390 people as the case study is selected. Six quality

attributes by the architect (modifiability, reusability,

performance, scalability, reliability and portability) in

six software styles (DC, DF, VM, RPC, OO, and L)

were investigated and probability functions were fitted

on them. The percentiles corresponding to each quality

attribute in the DM were calculated. Using the graphical

visual comparison and drawing the points on the chart,

the styles with the lowest percentiles (corresponding to

the lowest implementation cost) were able to satisfy

users' non-functional needs. The rankings of styles were

found to be respectively as follows: OO, L, DF, DC,

RPC, and VM.

The results show that OO-developed software is able

to satisfy users' needs with the smallest percentile

corresponding to its quality attributes. This means that

an ordinary object-oriented program, with a medium or

even weak level of quality, e.g. one written by a semi-

skilled programmer, is as efficient in satisfying users'

needs as a layered-based program developed by a skilled

programmer (having spent more time and money on it).

In other words, a certain combination of hypothetical

user's DM quality attributes may be fulfilled by a sub-

optimal OO-style program with minimal cost, instead of

a costly one developed in layered style, which is not

optimal regarding user’s DM.
Various papers have suggested novel strategies to

implement OO-style, e.g., Librecherr and Xiao [31]

extended the object-oriented programming paradigm to

a structure called adaptive programming. The Object-

Oriented style was tested on some case study [11].

It is of prime importance to survey the DM before

selection of style architecture, to select the most

applicable one. The suggested algorithm has the

following advantages and disadvantages:

1. 1st advantage: since this method reorders candidates

based on their correspondence with the DM, thus it

can be a tool in selection of a set of styles in designing

a multi-morphologic architecture. In other words,

similar styles (ranking in reordering) come in the

same set.

2. 2nd advantage: the method needs low memory and

less time complexity. In fact, in contradiction with

the Modelling, AHP and Matrix based methods, in

this method applying with the variation in order and

number of NFRs and also increased number of styles

and stakeholders, the subject space does not change

much. The Figure 3 in the previous section, shows

the time complexity against other methods and verify

this advantage.

3. 3rd advantage: it’s design is easy, in a way that

similar to AHP and Matrix based methods, it can be

executed with a few mathematical and statistical

relations and does not have complexity and design as

in the modelling method.

Main disadvantage: as other methods, the proposed

method is not free from disadvantages. The main

disadvantage is related to the time of study and

recognition of the subject. In other words, if a parameter

in the analysis time of the system and architecture

design is overlooked, at the end all design computations

must be repeated from their beginning. Since this

method is a selected one, with the changes in the DMs,

the measure for selection differs. So, the comprehension

of the subject and assessment of the stakeholders’

considered NFRs should be done with most care and

delicacy.

520 The International Arab Journal of Information Technology, Vol. 18, No. 4, July 2021

References

[1] Abowd G., Allen R., and Garlan D., “Formalizing Style

to Understand Descriptions of Software Architecture,”

ACM Transactions on Software Engineering and

Methodology, vol. 4, no. 4, pp. 319-364, 1995.

[2] Admodisastro N. and Palaniappan S., “A Code

Generator Tool for the Gamma Design Patterns,”

Malaysian Journal of Computer Science, vol. 15, no. 2,

pp. 94-101, 2002.

[3] Affleck A., Krishna A., and Achuthan N., “Non-

Functional Requirements Framework: A Mathematical

Programming Approach,” The Computer Journal, vol.

58, no. 5, pp. 1122-1139, 2015.

[4] Albin S., The Art of Software Architecture: Design

Methods and Techniques, John Wiley and Sons, 2003.

[5] Arcelli D., Cortellessa V., and Di Pompeo D.,

“Performance-Driven Software Model Refactoring,”

Information and Software Technology, vol. 95, pp.

366-397, 2018.

[6] Astudillo H., “Five Ontological Levels to Describe and

Evaluate Software Architecture,” Revista Facultad de

Ingeniería-Universidad de Tarapacá, vol. 13, no. 1, pp.

69-76, 2005.

[7] Babamir S. and Khabazian M., “Evaluation of

Qualitative Requirement Analysis in Software

Architecture,” in Proceedings of the International

Conference of IT Knowledge, Mashhad, 2007.

[8] Bedi P. and Gaur V., “Trust Based Prioritization of

Quality Attributes,” The International Arab Journal of

Information Technology, vol. 5, no. 3, pp. 223-229,

2008.

[9] Bernardo M., Ciancarini P., and Donatiello L.,

“Architecting Families of Software Systems with

Process Algebras,” ACM Transactions on Software

Engineering and Methodology, vol. 11, no. 4, pp. 386-

426, 2002.

[10] Béjar R., Latre M., Nogueras-Iso J., Muro-Medrano P.,

and Zarazaga F., “An Architectural Style for Spatial

Data Infrastructures,” International Journal of

Geographical Information Science, vol. 23, no. 3, pp.

271-294, 2010.

[11] Binder R., “Testing Object Oriented Software: A

Survey,” Software Testing, Verification and Reliability,

vol. 6, no. 34, pp. 125-252, 1996.

[12] Bosch J. and Bengtsson P., “Assessing Optimal

Software Architecture Maintainability,” in

Proceedings of 5th European Conference on Software

Maintenance and Reengineering, Lisbon, pp. 168-175,

2001.

[13] Busch A., Fuch D., and Koziolek A., “PerOpteryx:

Automated Improvement of Software Architectures,”

in Proceedings of IEEE International Conference on

Software Architecture Companion, Hamburg, pp. 162-

165, 2019.

[14] Castelli V., Harper R., Heidelberger P.,

HunterS., Trivedi K., Vaidyanathan K., and

Zeggert W., “Proactive Management of

Software Aging,” IBM Journal of Research

and Development, vol. 45, no. 2, pp. 311-332,

2001.
[15] Chong C., Lee P., and Ling C., “Prioritizing and

Fulfilling Quality Attributes for Virtual Lab

Development Through Application of Fuzzy Analytic

Hierarchy Process and Software Development

Guidelines,” Malaysian Journal of Computer Science,

vol. 27, no. 1, pp. 1-19, 2014.

[16] Clements P., Bass L., Garlan D., Ivers J., Little R., Nord

R., and Stafford J., Documenting Software

Architectures, Addison Wesley, 2007.

[17] Ebad S., “Towards Measuring Software Requirements

Volatility: A Retrospective Analysis,” Malaysian

Journal of Computer Science, vol. 30, no. 2, pp. 99-

116, 2017.

[18] Fieberg J. and Conn P., “A hidden Markov Model to

Identify and Adjust for Selection Bias: An Example

Involving Mixed Migration Strategies,” Ecology and

Evolution, vol. 4, no. 10, pp. 1903-1912, 2014.

[19] Fiondella L. and Gokhale S., “Importance Measures

for Modular Software with Uncertain Parameters,”

Software Testing, Verification and Reliability, vol. 20,

no. 1, pp. 63-85, 2009.

[20] Garlan D. and Shaw M., Advances in Software

Engineering and Knowledge Engineering, World

Scientific Publishing Company, 1994.

[21] Hadizadeh A. and Tanghatari E., “Parallel

Processor Architecture with a New Algorithm for

Simultaneous Processing of MIPS-Based Series

Instructions,” Emerging Science Journal, vol. 1, no. 4,

pp. 226-232, 2018.

[22] Ivančić F., Yang Z., Ganai M., Gupta A., and Ashar P.,

“Efficient SAT-Based Bounded Model Checking for

Software Verification,” Theoretical Computer Science,

vol. 404, no. 3, pp. 256-274, 2008.

[23] Jabali F., Sharafi S., and Zamanifar K., “A

Quantitative Algorithm to Select Software Architecture

by Trade off between Quality Attributes,” Procedia

Computer Science, no. 3, pp. 1480-1484, 2011.

[24] Jahanirad H. and Karam H., “BIST-based Testing

and Diagnosis of LUTs in SRAM-based FPGAs,”

Italian Journal of Science and Engineering, vol. 1, no.

4, pp. 216-225, 2017.

[25] Jegourel C., Legay A., and Sedwards S., “Command-

Based Importance Sampling for Statistical Model

Checking,” Theoretical Computer Science, vol. 649,

pp. 1-24, 2016.

[26] Kalistratov D., “Wireless Video Monitoring of the

Megacities Transport Infrastructure,” Civil

Engineering Journal, vol. 5, no. 5, pp. 1033-1040,

2019.

[27] Kim C., Lee D., Ko I., and Baik J., “ALightweight

Value-based Software Architecture Evaluation.

Eighth,” in Proceedings of the International

Conference on Software Engineering Artificial

Intelligence, Networking, and Parallel Distributed

Computing, Qingdao, pp. 646-649, 2007.

https://ieeexplore.ieee.org/author/37283341900
https://ieeexplore.ieee.org/author/37401934600
https://ieeexplore.ieee.org/author/37343078900
https://ieeexplore.ieee.org/author/37273190200
https://ieeexplore.ieee.org/author/37324380600
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5288520
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5288520
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5389087
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Gokhale%2C+Swapna+S

Architecture Style Selection using Statistics of Quality Attributes to Reduce ... 521

[28] Kim J. and Garlan D., “Analyzing Architectural Styles

with Alloy,” in Proceedings of Workshop on the Role

of Software Architecture for Testing and Analysis,

Portland, pp. 70-80, 2006.

[29] Lefranc G., “NETE Review of Architectural Patterns

and Tactics for Micro Services in Academic and

Industrial Literature,” IEEE Latin America

Transactions, vol. 16, no. 9, pp. 2321-2327, 2018.

[30] Lian Y., Tang Y., and Wang Y., “Objective Bayesian

Analysis of JM Model in Software Reliability,”

Computational Statistics and Data Analysis, vol.

109, pp. 199-214, 2017.

[31] Lieberherr K. and Xiao C., “Customizing Adaptive

Software to Object-Oriented Software Using

Grammars,” International Journal of Foundations of

Computer Science, vol. 5, no. 2, pp. 179-208, 1994.

[32] Mkaouar H., Zalila B., Hugues J., and Jmaiel M., “A

Formal Approach to AADL Model-Based,”

International Journal on Software Tools for

Technology Transfer, vol. 22, no. 2, pp. 1-29, 2019.

[33] Pérez J., Ramos I., Carsí J., and Costa-Soria C.,

“Model-Driven Development of Aspect-Oriented

Software Architectures,” Journal of Universal

Computer Science, vol. 19, no. 10, pp. 1433-1473,

2013.

[34] Perry D. and Wolf A., “Foundations for the Study of

Software Architectures,” ACM Software Engineering

Notes, vol. 17, no. 4, pp. 40-52, 1999.

[35] Phillips D., Mazzuchi T., and Sarkani S., “An

Architecture System Engineering and Acquisition

Approach for Space System Software Resiliency,”

Information and Software Technology, vol. 94, pp.

150-164, 2018.

[36] Pinto M. and Fuentes L., “Modelling Quality Attributes

with Aspect-Oriented Architectural Templates,”

Journal of Universal Computer Science, vol. 17, no. 5,

pp. 639-669, 2011.

[37] Quaglia F., “Software Diversity-Based Active

Replication as An Approach for Enhancing the

Performance of Advanced Simulation Systems,”

International Journal of Foundations of Computer

Science, vol. 18, no. 3, pp. 495-515, 2007.

[38] Ravishanker N., Liu Z., and Ray B., “NHPP Models

with Markov Switching for Software Reliability,”

Computational Statistics and Data Analysis, vol. 52,

no. 8, pp. 3988-3999, 2008.

[39] Ribeiro S., Schmitz E., Alencar A., and Silva M.,

“Literature Review on the Theory of Constraints

Applied in the Software Development Process,” IEEE

Latin America Transactions, vol. 16, no. 11, pp. 2747-

2756, 2018.

[40] Salama M. and Bahsoon R., “Analyzing And

Modelling Runtime Architectural Stability for Self-

Adaptive Software,” Journal of Systems and Software,

vol. 133, pp. 95-112, 2017.

[41] Schaefer L., Rabiser R., Clarke D., Bettini L.,

Benavides D., Botterweck G., Pathak A., Trujillo S.,

and Villela K., “Software Diversity: State of the Art

and Perspectives,” International Journal on Software

Tools for Technology Transfer, vol. 14, no. 5, pp. 477-

495, 2012.

[42] Sharma A., Kumar M., and Agarwal S., “A Complete

Survey on Software Architectural Styles and Patterns,”

The International Conference on Eco-Friendly

Computing and Communication Systems, vol. 70, pp.

16-25, 2015.

[43] Sharma T. and Spinellis D., “A Survey on Software

Smells,” Journal of Systems and Software, vol. 138, pp.

158-173, 2018.

[44] Sievi-Korte O., Koskimies K., Mäkinen E.,

“Techniques for Genetic Software Architecture

Design,” The Computer Journal, vol. 58, no. 11, pp.

3141-3170, 2015.

[45] Venters C., Capilla R., Betz S., Penzenstadler B., Crick

T., Crouch S., Nakagawa E., Becker C., and Carrillo C.,

“Software Sustainability: Research and Practice from

A Software Architecture Viewpoint,” Journal of

Systems and Software, vol. 138, pp. 174-188, 2018.

[46] Wang Q. and Yang Zh., A Method of Selecting

Appropriate Software Architecture Styles, Quality

Attributes and Analytic Hierarchy Process. University

of Gothenburg, 2012.

[47] Woodward E., Bowers R., Thio V., Johnson K., Srihari

M., and Bracht C., “Agile Methods for Software

Practice Transformation,” IBM Journal of Research

and Development, vol. 54, no. 2, pp. 3-12, 2010.

F.,%20
F.,%20
F.,%20
F.,%20
F.,%20
https://ieeexplore.ieee.org/author/37398818300
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5288520
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5288520
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5438932

522 The International Arab Journal of Information Technology, Vol. 18, No. 4, July 2021

Hamidreza Hasannejad Marzooni

received B.S. degree in Mazandaran

University of Science and

Technology and M.S. degree in

Computer Engineering- Software

Engineering from Sari Islamic Azad

University 2011 and 2013.

Respectively. He is studying Computer Engineering-

Software Engineering in Babol Islamic Azad

University. His current research interests include

Software Architecture Styles, Numerical Analysis, and

Majority Voting.

Homayun Motameni serves as an

Professor at the Computer

Department, Sari Branch, Islamic

Azad University. He obtained his

PhD in Computer Engineering-

Software Engineering in the

Department of Computer at the

Islamic Azad University (Sciences and Research

Branch), Tehran, Iran. He received his M.S. degree in

Computer Engineering-Machine Intelligence from

Islamic Azad University-Science and Research Branch

and BS from the Shahid Beheshti of Tehran University

in Computer Engineering-Software Engineering, Iran.

He is on the editorial board of the Journal of Soft

Computing and Information Technology (JSCIT) and

Director-in-Charge of the journal of advances in

computer research (JACR). His research interests

include Software Engineering,

https://scholar.google.com/citations?view_op=search_a

uthors&hl=en&mauthors=label:formal_methods_petri

_netModel Checking, Requirements Engineering,

performance evaluation.

Ali Ebrahimnejad serves as an

Associate Professor at the

Mathematics Department,

Qaemshahr Branch, Islamic Azad

University. He obtained his PhD in

Applied Mathematics in the

Department of Mathematics at the

Islamic Azad University (Sciences and Research

Branch), Tehran, Iran. He received his BS from the

Mazandaran University, Iran. He is on the editorial

board of the International Journal of Fuzzy System

Applications (IJFSA), Annals of Fuzzy Mathematics

and Informatics (AFMI), International Journal of

Information and Decision Sciences (IJIDS), Iranian

Journal of Optimization (IJO), International Journal of

Strategic Decision Sciences (IJSDS) and International

Journal of Enterprise information Systems (IJEIS). His

research interests include operations research, network

flow, data envelopment analysis and fuzzy

optimization.

https://scholar.google.com/citations?view_op=search_authors&hl=en&mauthors=label:software_engineering
https://scholar.google.com/citations?view_op=search_authors&hl=en&mauthors=label:formal_methods_petri_net
https://scholar.google.com/citations?view_op=search_authors&hl=en&mauthors=label:formal_methods_petri_net
https://scholar.google.com/citations?view_op=search_authors&hl=en&mauthors=label:formal_methods_petri_net
https://scholar.google.com/citations?view_op=search_authors&hl=en&mauthors=label:model_checking
https://scholar.google.com/citations?view_op=search_authors&hl=en&mauthors=label:requirements_engineering
https://scholar.google.com/citations?view_op=search_authors&hl=en&mauthors=label:performance_evaluation

