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Abstract: This paper describes a new fault-tolerant routing algorithm for 3-D tori using the concept of
“ probability vectors’ . To compute these vectors, a hode determines first its faulty set, which represents the set of
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reached through a minimal path due to a faulty node or link. The probability vectors are used by all the nodes to
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1.Introduction

3-D tori are one of the most common networks for
multicomputers due to their desirable properties, such
as ease of implementation and ability to reduce
message latency by exploiting communication bcdlity
found in many pardld applications. 3-D torus; as a
member of the k-ary n-cube networks family; possess a
3-dimensond grid structure with k nodes in each
dimension such that every node is connected to its
neighbouring nodes in esch dimenson by direct
channels. The three most popular and widely studied
instances of k-ary n-cubes are the hypercube (where
k=2), the 2D torus (where n=2), and the 3D torus
(where n=3). The hypercube has been used in early
multicomputers such as the iPSC/2 [20] and iPSC/860
[24] while the torus has been adopted in recent systems
like the IJMachine [19], CRAY T3D [14] and CRAY
T3E[3].

A routing agorithm specifies how a message selects
a path to cross from source to destination, and has
great impact on network performance. Routing in fault-
free networks has been extensively studied in the past
[9, 10, 12, 17, 18, 22]. As the network size scales up
the probability of processor and link falure aso
increases. It is therefore essential to design fault-
tolerant routing algorithms that alow messages to
reach their destinations even in the presence of faulty
components (links and nodes). Exigting fault-tolerant
routing agorithms, discussed mainly in the context of
the hypercube topology [4, 6, 13, 15, 16, 21], have
assumed that a node knows either only the status of its
neighbours (such a modd is called loca-information-
based) [4,6,13] or the status of dl nodes (globa-

information-based) [5, 23]. Locakinformation-based
routing yieds sub-optima routes (if not routing
failure) due to the insufficient information upon which
the routing decisons are made. Global-information-
based routing can achieve optima or near optima
routing, but often a the expense of high
communication overhead to maintain up-to-date
network-wide fault information. The main chalenge is
therefore to devise a simple and efficient way of
representing limited globa fault information that
alows optima or near-optimal fault-tolerant routing.

There have recently been a number of studies
reported in the literature that have described limited-
globak-information-based fault-tolerant routing
agorithms. Most of these agorithms, however, have
been developed for the hypercube [1, 7, 16, 25, 26]. As
areault, little work has considered the other versions of
the k-ary n-cubes, such as 3-D tori. In fact, most of the
existing research on k-ary n-cubes has dedt with the
practical and implementation issues associated with
fault-tolerant routing [9, 10, 11, 12]. There has been
hardly any study that investigates the topological
properties of 3-D torus for the provison of efficient
fault-tolerant routing agorithms.

Recently, the probability vectors have been
proposed as a new framework for designing efficient
limited-global information-based fault-tolerant routing
algorithms [1, 2]. The authors in [2] have shown how
the concept of probability vectors could be used to
design a fault-tolerant routing for the hypercube
networks, that has been shown to outperform existing
algorithms, such as the safety vectors [25]. The study
in[1, 2] have aso argued that one of the main features
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of the probability vectorsis their generality in that they
could be applied to wide range of network topologies.
This paper demonstrates how the probability vectors
could be adapted to develop an efficient fault-tolerant
algorithm for the well-known 3-D tori. The new
algorithm uses the “probability vectors’ to
consderably reduce the storage requirement for
maintaining fault information, compared to globa-
Information-based algorithms [5, 23]. In the proposed
algorithm, each node A starts by determining the set of
faulty or unreachable neighbours. Then each node A
calculates its probability vector

A A A
P = (R . Pag2g) . The I eement, P*, of the
probability vector represents the probability that a
destination node at distance | from A cannot be reached
from A using a minimal path due to faulty nodes and
links. An extensive analysis is performed in this study
to assess the performance of the proposed agorithm.
The results presented here reved that the new
agorithm performs near optimal routing for practical
values of the numbers of faulty nodes. Moreover, the
results reveal that the agorithm exhibits good
performance levels in terms of the achieved routing
distances and percentages of reachability even when
there exist alarge number of faulty nodes.

The remainder of the paper is organised as follows.
Section 2 reviews some background information
(preliminaries and notation) that will be useful for the
subsequent sections. Section 3 presents the proposed
fault-tolerant algorithm for the 3D torus. Section 4
presents an analytical study of the proposed algorithm.
Section 5 conducts a performance evaluation of the
new agorithm through simulation experiments.
Section 6 concludes this study.

2. Preliminaries and Notation

The 3-D torus, Qs'f, is an undirected graph with K3
vertices (nodes). Each node A is labeled in the form
A=a, ,a;,8, where O£ a; < k. Two nodes A= &, ,a; ,a
and B= b, ,b; by are joined by a link if, and only if,
there exists i,0 £ i < 3, suchthat a; =b, =1 (mod k)
and a; =b; for i* j. For the sake of clarity, we will
omit writing mod k in similar expressions in the
remainder of our discussion. Qg has a degree of 6 and
diameter 3g / 2(}. The shortest path between nodes A
and B isequal to their Lee distance given by

2
d . (AB)= é w; , where
i=0
w=mn (|a, - bl k- |a - b))
O£i<3
The two neighbours of a node A, dong the i
dimension are denoted as A" and Al-). Therefore,
node A has six neighbours, two neighbours along each
dimensioni, 0 £i < 3. The Hamming distance between

two nodes A and B, denoted H (A, B), is the number of
dimensions at which their labels differ. A path between

nodes A and B is an optimal or minimal path, if its
length is equal to d, (A B), i.e. the path has the

minimum distance between Aand B. When a ! b, a

neighbour A(®) is called a preferred neighbour of A

for the routing from A to B if d. (A'®) B)=d_ (A, B) -
1. We say inthis case that i+ isapreferred direction. A
minima path can be obtained by performing a
preferred direction move at every routing step. If a; *

b, aneighbour A'® suchthat d. (A"*,B) 3 d. (A B)
is cdled a gpare neighbour. Neighbours other than
preferred or spare are called disturb neighbours. For

routing from Ato B, a disturb neighbour A(®) of A
corresponds to the case & = h and therefore the i digit
is disturbed. Routing through a disturb neighbour
increases the total routing distance by at least two over
the minimum distance. Routing through a spare
neighbour increases the total routing distance by at
least one over the minimum distance. With respect to

routing from node A to node B, anode T is called a

preferred transit nodeif d, (T,B) < d, (A B).

We make the following assumptions for the purpose
of the present study. Similar assumptions have been
made in earlier related works, e.g. [9, 22, 25].

a. A faulty 3-D torus contains faulty nodes and/or
links. The fault pattern remains fixed for the
duration of calculating the probability vectors.

b. Each node can determine the status of its own links
and the status of its neighbouring nodes.

3. The Proposed Probability-Based Fault-
Tolerant Routing Algorithm

Our proposed fault-tolerant routing algorithm uses the
concept of probability vectors.  The
probability vector of a node A is denoted by

A A A A
P o=(R Pak/2¢) Where R represents the

probability that a destination node at Lee distance |
cannot be reached from node A using a minimal path
due to faulty nodes and links. To caculate its
probability vector, node A starts by determining the
faulty set Fa, which comprises those neighbouring
nodes that are either faulty or unreachable from A due
to faulty links. After determining F,, node A then

calculates its probability vector P* = (HA,....,ng(,za)

through 3gk/ 2{]-1 exchanges of information with its

neighbours (defined below). The probability vectors
are used ly al the nodes to perform efficient fault-
tolerant routing in the network.

Definition 1: The faulty set F, of anode A is defined
as Fp = J fa . where f, isgivenby

O£i<3
) i A(ii)
A

A

if A™ isfaultyorlink(A A™)isfaulty o)
%f Otherwise

The 1™ eement PlA of the probability vector, PA,

denotes the probability that a destination at Lee
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distance | from A is not minimally reachable, i.e.
reachable using a minimal path, from A. Since rode A

has |FA| faulty or unreachable immediate neighbours,
and only one of the 6 edges incident from A constitutes
aminimal path to a specific destination at L ee distance
one, the first element of the probability vector, P, is
given by

F
A

In order to compute the other elements PA I3 2, let

RA" be the probability that a destination at Lee
distance | from A is minimaly reachable via its
neighbour A0*) . The probability PA, 13 2, satisfies
the relations:

=< i+
P*£Q @- R"'), where
i=0
i0 if node A™ isfaulty
A g L iy _
A GLICREER)
I h=1 6
When node A has to route a message M towards its
destination B it applies the probability vectors-based
routing algorithm, referred to here as “PV_Routing”,
outlined in Figure. 1. If the route is through a preferred

neighbour, A | then the associated least expected
routing distance is given by
Pr=1(- RY)+(+2RS"™

Otherwise )]

where F’,_Al(i Y isthe probability that a minimal path via

the preferred neighbour A to a destination at Lee
distance | is faulty. On the other hand, if the route is

through a spare or disturb neighbour, AU*) | then the
least expected routing distance is computed as

= (1+2(1- Ry + (1 +4)pAIY
The following text is an outline of the proposed
PV_Routing fault-tolerant algorithm that node A uses

to determine a path to route a message towards its
destination B.

Algorithm PV_Routing (M: message; A,SB: node)

/* Called by node Ato route the message M initiated at
sour ce node Stowards its destination node B */

if A=Sthen M.Route _distance=0;

| = Lee distance between A and B;

if M.Route_distance= |+(k-2) x no_faulty _nodesthen
{

M.Route_distance= M.Route_distance + 1;

if Bisareachable neighbour then deliver M to B; exit;
/* destination reached */

Let A" be a reachable preferred neighbour with
(i4)
least A value;

Pr=1(1- R') +( +2R™ . * |east expected

distance through A %
Let AY*) beareachable spare neighbour with least

(%)
P% value;

Sp= (1+2)@- R +(1+ 4R, px

1+1 |east

expected distance through A */

if $ A™ and (($ A" and Pr £gp) or ($AYY))
then send M to A" ;

dseif $ AU®) and (GA™and pr > gp) or ($

A1)} ) then send M to AY*) ;

elsefailure /* destination unreachable */
} else Detect_Looping
end. /* algorithm */

Example 1: Consider the 3D torus with k = 3 and five
faulty nodes shown in Figure 1 (faulty nodes are drawn
in dark color). Table 1 shows the corresponding faulty
set and probability vectors associated with each node
A. To route a message from the source node (200) to
the destination node (222), first node (200) has two
preferred neighbours (220) and (202), but since node
(220) is faulty, the proposed routing agorithm will
route to node (202) as an intermediate node. Node
(202) has one spare neighbour (long cycle neighbour)
(212), but the agorithm routes the message via the
preferred dimension to its destination node (222).

Notice from the description of the proposed
PV_Routing dgorithm that looping can be detected if
the routing distance exceeds the specified limit (Lee
distance plus f(k-2) where f is the number of faulty
nodes). Snce each faulty node may cause a derouting
and an increase in the routing distance by a vaue
ranging between 1 and k2, the maximum increase in
the routing distance should not exceed f(k-2). The
agorithm can be improved to minimize the effects of
looping. Since looping occurs when a destination is not
reachable from a source we can add the destination
node to the faulty set of the node that detected the
looping. When looping occurs (3¢ /2C-1) exchanges
of information between al neighbours is then initiated
to propagate the new information among reachable
nodes in the whole 3-D torus.

00 001 00
042
01 011,
\ 7\ 022
Ry |021 N
100 105N 102-
Kl
110 1NN S -
B ) >
2 ZQJ,’\/ I 202~
N/ | |
210 ] 20— ’I 21
220 %f/ 222

Figure 1. An example of a 3-D torus with five faulty nodes.
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Table 1. The faulty sets and probability vectors for a3-D toruswith 5 faulty nodes.

NodeA | (000) (001) | (002) (010) (011) | (012) (020) (021) | (022)
FA | {100 {011} 0O {011,110} | Faulty | {011} | {120,220} | {011} | {}

RA 0.167 0.167 | 0.000 0.333 Faulty | 0.167 0.333 | 0.167 | 0.000

pA 0.086 0.050 | 0.029 0.151 Faulty | 0.49 0.113 | 0.066 | 0.039

NodeA | (100) (101) (102) (110) (111) (112) | (120) | (121 | (122)

FA | Fauty | {100} | {100} Faulty | {011,110} | {110} | Faulty | {120} | {120}

PlA Faulty 0.167 0.167 Faulty 0.333 0.167 | Faulty | 0.167 0.167

P Faulty | 0.066 0.050 | Faulty 0116 | 0.066 | Faulty | 0.077 | 0.058

Node A (200) (201) | (202) (210) (11) | (212 (220) (221) | (222)

FA | {100220y | 0O {110,220} | {011} 0 Faulty | {220} | {220}

RA 0.333 0.000 | 0.000 0.333 | 0167 | 0.000 | Faulty | 0.167 | 0.167

pA 0.097 0.039 | 0.028 0130 | 0.065| 0.039 | Faulty | 0.058 | 0.043

4. Performance Analysis ﬁ |)h

y R={- (9 ()

This section analyses some performance properties of
the proposed PV_routing agorithm in terms of the
achieved minimum and average routing distances for
various sizes of the 3-D torus networks. In the
remainder of the paper, we assume that there are f
faulty nodes in the network, and that al the N nodes
are equally likely to be faulty. Furthermore, we assume
that the source and destination nodes are non-faulty.
Let us now start by deriving a lower bound on the
probability of minimum distance routing using the new
agorithm.

4.1. A Lower Bound on the Probability of
Minimum Distance Routing

For any two nodes at Lee distance |, 1£ | £ 38/ 2(],

and Hamming distance h, 1£ h£ 3, the 3D torus is
known [8] to embed afamily p of 6 node-digoint paths
of the following lengths:

h paths of length I,

6 — 2h paths of length 1+2, and

h paths of length [+4

Assume there exists a “hypothetical” routing

algorithm R that attempts to route aong a non-faulty
path from the family p of shortest possible lengths
before considering other paths. The following theorem
provides a lower bound on the probability of minimum
distance routing achieved by the algorithm R.

Theorem 1. For any source A and destination B at Lee
distance |, 1£ | £ 3gk/ 2{}, and Hamming distance h,

1£ h £ 3, the routing algorithm R routes from Ato B
on a path of length at most | + 4 with probability of at

least 1- R xR, xR, ,, Where

6-2h

P., = (- @- q)'*?) 5

Rua=l- @™  @©
f f
3N ()
Proof: Let B, 1£ | £3gk/ 2], be the probability that
al node-digoint pathsin p of length | are faulty. Such
apath isfaulty if at least one of its | nodes (other than
the source node) is faulty. A node is faulty with
probability g= f /N sincethere aref faulty nodes and
all the N nodes in the network are equally likely to be
faulty. Therefore a path of length | from p is faulty

with  probability  1- - q)',

R=-a-9') Smiar andyss yields the
expressions for B,,and B,,. Therefore at least one
of the 6 paths of p is non-faulty with probability
1- R xR, xR, O
The PV_Routing agorithm attempts to route
through a neighbour that has the highest probability of
minimum distance routing. The new algorithm keeps
al options open and may sdlect from any of the
possible paths. As a result, it does not have any
preference for a particular family of paths as does
algorithm R in Theorem 1. It is therefore expected that
PV_Routing will perform at least as good as algorithm
R. In other words, the probability that PV_Routing
routes from a source A to a destination B at Lee
distance | on a minimum distance path with at least the
probability 1- B xR, XP,,.
Claim 1: PV_Routing routes messages between a
given pair of nodes at Lee distance |, 1£ | £ 3gk/ 2{},

and Hamming distance h, 1£h£3, on a minimum

and hence
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distance path with a least
1- I:)I XPI+2 ><I:)I+4'

This claim is verified experimentaly by anaysing
the performance of the proposed agorithm in order to
measure the path lengths against the number of faulty
nodes in the network. To this end, simulation
experiments have been carried out over an 3-D torus

QS with 512 nodes with different random distributions

of faulty nodes. We started our experiments with a
non-faulty 3-D torus and then the number of faulty
nodes was increased gradualy up to 70% of the
network size with random fault distribution. Paths from
every node A to all destinations at Lee distance 6 and
Hamming distance 3 (as an average Lee and Hamming
distances) were selected. Figure 2 shows both the
calculated (based on clam 1) and the measured
probability of minimum distance routing against the

number of faulty nodes in the QSwhen the Lee

distance is 1=6 and the Hamming distance is h=3.
Other simulation experiments have been carried out

over the QSwith a fixed number of faulty nodes 153

(30% of the nodes) with different random distributions.
A tota of 300,000 source-destination pairs were
randomly selected. Table 2 contains both the calculated
and measured probabilities of minimum distance
routing for different Lee and Hamming distances. Both
Figure 3 and Table 2 confirm that the probability of
minimum distance routing for PV_Routing is dways
better than the corresponding probability for the
hypothetical routing algorithm R. This shows that the
probability that PV_Routing routes from a source Ato
adestination B at Lee distance | on a minimum length

pathisat least 1- BB, 5B ., -

the probability

| —=&— Calc_Prob —&— Measu_Prob |

o N S

A
0.2 \S\E\

A Y L A

Faults

Probability

Figure 3. The calculated and measured probability of minimum
distance routing against the number of faulty nodes in the 3D
torus g ¢ .

4.2. The Average Routing Distancein the 3-D
Torus

In order to evaluate the average routing distance of
PV_Routing, we define a hypothetical class of
probabilistic routing agorithms. We then evaluate the
performance of these algorithms with the am of
deriving bounds on the performance of PV_Routing.

Table 2 Calculated and measured probability of minimum distance
routing for a fixed number of faulty nodes (30% faulty nodes) in

the 3-D torus Q38 .

LeeDigt, | Hamming CalF?rL:)lt?.tEd Mgarligeo'
Dist.

1 1 0.954 1

2 1 0.852 0.922
2 2 0.885 0.970
3 1 0.714 0.888
3 2 0.751 0.925
3 3 0.783 0.962
4 1 0570 0.877
4 2 0.604 0.889
4 3 0.636 0.942
5 2 0.467 0.894
5 3 0.495 0.908
6 2 0.351 0.885
7 2 0.258 0.873
8 2 0.187 0.877
8 3 0.200 0.878
9 3 0.144 0.862
10 3 0.103 0.865
11 3 0.073 0.870
1 3 0.052 0.892

Definition 2: A routing agorithm is caled a
Probabilistic Routing Algorithm (or PRA for short) if
the routing decisions are based on maximising the
probability of minimum distance routing when
selecting a node from the faulty-free neighbours.

The following assumptions are made to simplify
the analysis of the PRA agorithm and to derive bounds
on the performance of the PV_Routing agorithm.

a In sdecting the next move, the neighbours are
considered in the following order: preferred on the
first dimension, preferred on the second dimension,
preferred on the third dimension, spare on the first
dimension, spare on the second dimenson, and
spare on the third dimension.

b. After f gpare routing moves, the message is
discarded to avoid looping.

Lemma 1. PV_Routing isa PRA.

Proof: Since the PV_Routing agorithm decisions are

based on maximisng the probability of minimum

distance routing when selecting a node from the faulty-

free neighbours, and it satisfies the above conditions

(a.) and (b.), then PV_Routing isaPRA. O
The PV_Routing algorithm routes messages

depending on the probabilistic vdue R* used as a
base of the routing decisions to destinations at Lee
distance |. The maximum number of spare moves a
path is expected to pass through usng PV_Routing isf.
The total path length in such a case is the Lee distance
between source and destination plus 2f. If the path
exceeded f spare moves then looping must have
occurred and the message is then discarded.
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We now derive an expression for the average
routing distance in the PRA algorithm. Since the 3D
torus has symmetric network topology, we will focus,
without loss of generdlity, our discusson on a
particular source node, S. We will use the following
notation during the derivation:

1,155 - Probability of making exactly s spare
moves when routing between the source node S and
a destination with Lee distance components (, I,
I3), where | =l +l, +1,,and |}, I, and |; arethe Lee
distance across the first, second, and third
dimension, respectively.

D, : average routing distance to a destination at Lee
distance | from the fixed source node S

.1, |, - @verage routing distance to a destination
with Lee distance components (I, I,, I3).
W 1,1, ratio of the number of nodes with Lee

distance components (l;, I, |3) to the number of
nodes at Lee distance | =1, + |, + |5 from the fixed
source node S.

N, : number of nodes at Lee distance | from the
fixed source node S.

lemma2: W , isgiven by

2
—_— I, >0xorl, >0 xor |, >
N : 2 3
i
W, |2\3:|Ni I, =0o0rl, =0o0rl; =0 (8)
] |
i
|Ni I, >0andl,>0and |, >0

il b =11, =0,I, =0,s =
i1 l,=0,1, =11, =0,s =0
r1 I, =0,1,=1,1, =1, s = 0
|
i(1- p)tt ,>0,1,=0/,=0,5=0
I:j(l- p)lat I, =0l,>0,/,=0,s=0
CEN D lLb,=0Jl,=0l, >0,s =0
:(1' p)P\1-1,|2,|3,o + p(l— p)P\1,|2-1,|3,o tp 2(1 - p)Pu\z 1,15 |1 > 0, Iz > 0!'3 >0,s=0
:,:O l,b=11,=0ll, =0,s >0
,:_0 I, =0/, =1,1, =0, >0
i0 I, =01, =0,I, =1s >0
|
T (1- p) Ph—l.O.O,s + p(l- p) P|1+1,0.o.s—1 P 2(1 - p) Ph,l.o.s—l
P J}. +p3(1' p)P|101s-1 1<l,<&l/20l,=0/l,=0,s >
[ PO P . ~
:I:(l' p)P\l—l,O,O,s + p(l- p)P|J,1,o,s—1 + p?(Ll- p)P\1,0,1,s—1 I, =&/20l,=0l;,=0,s >0
|
1 (l - p) PO,\Z-l,O,S + p(l - p) P1,|2‘s-1 +p 2(1 - p) Po,\2+1,0‘s-1
i _ . ~ _
i + p3(1- PPy, ass I, =0,1<1Il,<&/20,=0,s >0
-:-(1' p)Po,o,\3-1,s + p(1- p)Pl,O,Iz‘s-l + p2(1- p)Po,1,\3,s-1
j:j + p3(1- P)Poo,ersa I, =0,l, =0,1<l, < & /20Qs >0
(1= P)Posaos* P PIPuiosa® PP PIPorass =00, = &/2Ql; = 0,5 >0
i(1- P.. s+ p(- P .1+ p2(l- P .
i Sp) - Liply, p( pi -1, p( P)Pi i, -1, P 0<1,,12,1, < &/20s> 0
P+ p (- PI)Psr,a, 0t P (- PIPLLeag, 0 ¥ P *(1- PP, u,1s 1b
|
:I:(l‘ PP 1, s F P - PIP s p2(l- P)PiL i, -10s I, =1, =1;=&/20s >0 (10)
|
I
1

Proof: For agiven I, |, and 15, 0£1,1,,1; £ &/ 2],

and a fixed source node S = (X, X) in the 3D torus, if
I; 20, I, 2?0 and |5 ? 0 then there are eight possible
destination nodes with Lee distance components (14, I,,
I5) from S. These are: (X;H 1, XoH, Xz H3), (X1 H 1, Xo-15,
XagHs), (Xa-l1, XoHly, XaHls), Ki-li, Xo-lo, XaH3), (Kity,
XoHo, Xa-13), (Xt 1, Xo-lo, Xs-13), (Xi-11, XoH2 X3-13), and
(X1-11, Xo-15, Xs-13). If however 1,=0 or [,=0 or 15=0, then
there are four such possible destinations. If 1,>0 or 1,>0
or >0, then there are only two such possble
degtinations. Furthermore, the number of destinations
N, a a given Lee distance | from the source Sisgiven

by

| ek/2uek/2ud</2u

ja aal

N, ::, 1,=0 1,=0 1,=0

|, +1,+1, =1 andl > &/2()

I, +1, +1, =1 andl £ & /2
()
O

. -2
%6+12(I- 1)+83 i

i=0

Lemma 3: DI 1.1, 1S given by

f
=Q (,+1,+1,+29PR
s=0

P|1,|2,|3s:(1' p)R-1| st p(- p)P| Iyllps T
P°A- PR ast PA- PR, e

17273

+p*@- P)P, o1t P°A- PP, st

5|1,| ly

2 plalss

The probability R, |, s satisfies the following boundary
conditions, asin equation (10).
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Proof: Let D, be the average routing distance
between a given pair of nodes with Lee distance
components  (I,,1,,1;). Since each spare move
increases the routing distance by 2 hops, and since
messages are discarded after making f spare moves, we
canwrite D, , | as

f
ly é (I +1, +15 +25)P|1,|2,|3,s
s=0 |:|
To make s spare moves when routing a message at
Lee distance | from its degtination, we distinguish the
following cases based on the first made move:

Iy,

a. A preferred move on the first dimension leading to a
node with Lee distance components (I, - L1,,1,)
from dedtination, and the remaining route must
include s spare moves.

b. A preferred move on the second dimension leading
to a node with Lee distance components
(1,1, - L1;) from destination, and the remaining
route must include s spare moves.

c. A preferred move on the third dimension leading to
anode with Lee distance components (1,,1,,1; - 1)

from degtination, and the remaining route must
include s spare moves.
d. A spare move on the first dimension leading to a

node with Lee distance components (I, +1,1,,1;)
from dedtination, and the remaining route must
include s-1 spare moves.

e. A spare move on the second dimension leading to a
node with Lee distance components (I,,l, +11;)

from destination, and the remaining route must
include s-1 spare moves.
f. A spare move on the third dimension leading to a

node with Lee distance components (I,,l,,l; +1)

from degtination, and the remaning route must
include s-1 spare moves.
It can be easly verified that

I:):I.,O,O,O = 1’ I:)0,1,0,0 = 1’ I:)O,O,ZLO = 1’ I:):I.,O,O,s = O !

Poios =0and By, =0 foral s>0sincethe
source and destination nodes are both assumed to be
nonfaulty. For | =1 +1,+1,22 B ,,, is the

probability that a degtination with Lee distance
components (1,,0,0) is minimaly reachable. This
probability is equd to (1- p)'l'1 as this requires dl
I, -1 preferred intermediate nodes to be non-faulty.
Usng dmilaa aguments the  probabilities
Poi,.00:Fooi,o @d B, , ae obtaned For
O<lI,l,,l; <&/2()and s>0, we therefore can

write B | |
Riis=@ P)R.1,,s+PA- P)R, 1+
pz(l' p)Rl,|2,|3.1,s + p3(1' p)Rl+1,|2,|3,s.1 (11)

+p*@- PR, ans1t p°(- PR, s 1

as

When the destination isat Lee distance g /2{} on
one, two or three dimensions, then the firss move can
only be a preferred move on that dimenson, as in
eguation (12). The results of Lemmas 2 and 3 are used
to obtainthe following theorem.

Theorem 2: For the PRA dagorithm, the average
routing distance, D, , between a given pair of nodes a
Leedistance |l inthe 3-D torusis given by

X X X
= [o] [o] [o]
D | = a a a D |1,|2 ,|3 XW|1,|2 ,|3 1
|1=O|2=0|3:0

where |, +1, + 13 =land x=min( |, & /20

Claim 2 The average routing distance between two
nodes at Lee distance | for PV_Routing in the 3D
torusisat most D, .

This clam is intuitively judtified by the fact that
PV_Routing makes routing decisions based on
maximising the caculated probability of minimum
distance routing while the PRA agorithm selects the
first feasible move from the list: preferred on the first
dimenson, preferred on the second dimension,
preferred on the third dimension, spare on the first
dimension, spare on the second dimension, and spare
on the third dimenson. Since the PV_routing and
PRA algorithms are based on amilar probabilistic
nature, we expect them to perform dmilaly in
terms of the achieved average routing distance.

.i. (1' p)P|1-1,|2,|3,s + p(l- p)P|1,|2-1,|3,s + pz(l' p)PIl,Iz,I3-l,s

:|:+ ps (1' p)P|1,|2+1,|3,s-1 + p4(1' p)P|1,|2,|3+1,s-1

|, =& /20, 0<1,,1, < &/2Q

|
I - p) Poi,ns t p(- p)P|1,|2-1,|3,s + p?(L- p)P|1,|2,|3-1,s

|
P|1,|2,|3,s = _|'_+ p3 (1' p)P|l+1,|2,|3,s.1 + p4(1' p) P|1,|2,|3+1,s.1

|, =& /20, 0<I,1,<&/2Q

|
T 1- p) I:)|1-1,|2,|3,s + p(l- p)P|1,|2-1,|3,s + pz(l' p)P|1,|2,|3-1,s

i
it p’(- p)P|l+1,|2,|3,s-1 +p*(1- p)P|1,|2+1,|3,s-1

|, =& /20, 0<I,1, < &/2(

%CI‘_ P) Poas T p- p)P|1,|2-1,|3,s +p?(1- p)P|1,|2,|3-1,s L =1, =1, =&/2( (12
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To support this intuitive claim, we have compared
the results obtained using the above-derived
expressions against those obtained through simulation.

We have first solved the equationsrelated to w , | ,
P.is.s: Dy, ad D givenby Lemma2, Lemma3,
and Theorem 2. These calculations yield the average
routing distance vector D =(Dy D;,....,.Dng/2g) - We
then performed experiments of our PV_Routing
agorithm to measure experimentally the corresponding
average routing distances vector.

Table 3 show results for the calculated and
measured average routing distances, respectively, for
the average routing distances in PV_Routing for

different sizes of the 3-D torus Qs'f , where the number

of faulty nodes is 20% of the totd network size. The
experimental results and the andytical results are in
close agreement with those obtained using simulation,
demongtrating the accuracy of our above anaytical
derivation.

Table 3. The measured and calculated average routing distance for
afixed number of faulty nodes (20% faulty) in the 3-D torus of
different sizes.

k LeeDist | Measured | Calculated
1 1 1

3 2 2.082 2.043
3 3.112 3.014
1 1 1
2 2.210 2.203
3 3.240 3.277

5 4 4.246 4,233
5 5.270 5.354
6 6.279 6.347
1 1 1
2 2.317 2.232

7 3 3.478 3.408
4 4,568 4501
5 5.554 5573
6 6.660 6.643
7 7.680 7.693
8 8.787 8.754
9 9.792 9.726
1 1 1
2 2.323 2.235
3 3434 3.426
4 4551 4.602
5 5.791 5.709
6 6.791 6.785

9 7 7.840 7.875
8 8.905 8.954
9 10.075 10.012
10 11.954 11.083
11 12.157 12.159
12 13.122 13.096

5. Experimental Performance Analysis

This section obtains experimentally three additiona
performance measures on the proposed PV_routing
dgorithm, namey deviation from optimdlity,
unreachability, and looping. To this end, smulation

experiments have been carried out over a 3-D tours Q)

with 27 nodes with different random distributions of
faulty nodes. We have started the experiments with a

non-faulty 3D tours Q; and then the number of faulty

nodes was increased gradualy up to 75% of the

network size with random fault distributions. A total of

30,000 source-destination pairs where selected

randomly at each run. The first two sets of results

reported in Figures (4, 5). Before presenting the
results, we define the following variables, which will
be used to quantify some performance measures.

- Total: total number of generated messages.
Routing_Distance: number of links crossed by a
message.

Lee Distance: Lee distance between the message

source and destination.

Fail_Count: number of routing failure cases.

Looping_Count. number of messages that cross a

number of links beyond a maximum threshold

before being discarded.

Using the above variables we propose the following
three performance measures as the basis for studying

the PV_Routing algorithm [21, 24].

Average percentage of deviation from optimality
1 o Routing_Distance Lee Distarce,

= : 100
Total Lee Distarce

Fail _Count,
Total

Percentage of unreachability = 100

Looping_ Count.
Total

The average deviation from optimality indicates
how close the achieved routing is to the minimal
distance routing. The percentage of unreachability
measures the percentage of messages that the
agorithm failed to deliver to degtination due to faulty
components. The percentage of loops indicates the
ratio of messages that failed to reach degtinations due
to network partitioning. We bdlieve that these three
measures give redistic indications on the performance
of a fault-tolerant routing agorithm and are sufficient
for the purpose of our current study.

Figure 3 reveds that PV_Routing achieves high
reachability with low percentage of deviaion from
optimaity. The deviation from optimality remains low
as long as this number of faulty nodes does not exceed
50% of the total number of nodes, then it grows almost
linearly with the number of faulty nodes. The proposed
agorithm is capable of routing messages using optimal
distance paths even when there are a large number of
faulty components. This is due to the fact that the
algorithm repeatedly chooses to route through areas of
the network with the least number of faults in the
neighbourhood by choosing to route to a preferred
neighbour with the least probability that a destination
at distance | from A is not minimaly reachable from A.
As a result, the algorithm tends to select paths that
diverge from aeas with high counts of faulty
components. The result also reveals that the percentage
of looping remains practicaly negligible when the
percentage of faulty nodesis less than 40%.

Percentage of looping = 100
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Figure 3. Percentage of deviation and unreachability in the
proposed PV_Routing algorithm.

Another experiment was conducted to evaluate the
performance behavior of our agorithm when the
network size increases. For the sake of illustration, we
have increased the value for k from 2 up to 9. For each
network sze, the algorithm has been tested by setting
the percentage of faulty nodes to 10% of the network
size, then to 20%, 30%, 40%, and 50% of the network
Sze. At each run, a total of 30,000 source-destination
pairs where selected randomly. The result presentedin
Fgure 4 shows that the performance properties of the
new fault-tolerant routing agorithm are not affected as
the network size is scaled up. This reveds that the new
algorithm possesses the nice property of maintaining
good peformance levels without imposng any
restriction on the system size.

6. Conclusions

3-D tori are one of the most common networks for
multicomputers due to their ease of implementation
and ability to exploit communication locaity found in
many paale applications. This study has first
introduced the concept of “probability vectors’, and
then used it to propose a new fault-tolerant routing
agorithm for 3D torus . As a first step in the new
agorithm, each node A determines its view of the
faulty set F, of neighbouring nodes which are either
faulty or unreachable from A. Equipped with these
faulty sets node A calculates its probability vectors,

PA, by exchanging fault information with its

reechable  neighbours. An  element  RA,

1£1 £3&/2{, of the vector represents the
probability that a destination node at distance | cannot
be reached from node A using a minima path due to a
faulty node or link along the path. Each node then uses
the probability vectors to perform an efficient fault-
tolerant routing in the network.
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Figure 4. Percentage of deviation, unreachability, and looping in
the proposed PV_Routing agorithm for different sizes of the 3-D
torus (each curve represents a specific percentage of faulty nodes).

An andytical study has been presented to derive
upper bounds on the average routing distance achieved
by the proposed adgorithm. An experimental
performance analysis of the proposed agorithm using
simulation experiments has also been reported. The
results have revealed that the new agorithm provides
good performance in terms of the routing distance and
percentage of reachability even when the number of
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faulty nodes in the network is large. The results have
aso reveded that the agorithm mantains good
performance levels as the network sizes scales up.
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