
The International Arab Journal of Information Technology, Vol. 17, No. 2, March 2020 225

Fault Tolerance Based Load Balancing Approach

for Web Resources in Cloud Environment

Anju Shukla, Shishir Kumar, and Harikesh Singh
Department of Computer Science and Engineering, Jaypee University of Engineering and Technology, India

Abstract: Cloud computing consists group of heterogeneous resources scattered around the world connected through the

network. Since high performance computing is strongly interlinked with geographically distributed service to interact with

each other in wide area network, Cloud computing makes the architecture consistent, low-cost, and well-suited with

concurrent services. This paper presents a fault tolerance load balancing technique based on resource load and fault index

value. The proposed technique works in two phases: resource selection and task execution. The resource selection phase

selects the suitable resource for task execution. A resource with least resource load and fault index value is selected for task

execution. Further task execution phase sets checkpoints at various intervals for saving the task state periodically. The

checkpoints are set at various intervals based on resource fault index. When a task is executed on a resource, fault index value

of selected resource is updated accordingly. This reduces the checkpoint overhead by avoiding unnecessary placements of

checkpoints. The proposed model is validated on CloudSim and provides improved performance in terms of response time,

makespan, throughput and checkpoint overhead in comparison to other state-of-the-art methods.

Keywords: Scheduler, checkpoint manager, cloud computing, checkpointing, fault index, high performance computing.

Received June 6, 2018; accepted July 2, 2019

https://doi.org/10.34028/iajit/17/2/10

1. Introduction

Cloud computing provides collaboration and sharing of

resources especially in three major forms:

Infrastructure as a Service (IaaS), Platform as a Service

(PaaS), and Software as a Service (SaaS) [15].

Technologies, grid and cloud differ from each other in

terms of architecture, applications and uses as shown

in Table 1. Cloud users have their own private resource

provided by the service provider while grid computing

follows the distributed architecture in which task is

assigned to remote resources for completing its

execution. Due to distributed nature of applications in

cloud environment, developer must deal with several

issues like load balancing, access control, fault

occurrence, communication and task scheduling [6].

Load balancing is the technique to distribute the

load among servers optimally. The key concern of

optimization is to minimize response time, execution

time, overhead, and maximize throughput. Broadly,

load balancing techniques can be classified in two

categories [6]. Static Load Balancing (SLB) and

Dynamic Load Balancing (DLB), SLB algorithm uses

earlier information of the network state for assigning

task to any resource while DLB distributes the

workload at runtime among the available resources.

Sometimes when tasks executes on a resource, fault

occurs and process doesn’t finished due to several

reasons: voluntarily leave or join characteristic of

cloud resources, resource heterogeneity, interactive

parallel applications, resource sharing etc., these

situations are managed through fault tolerance

techniques to provide the estimated quality results.

Fault tolerance is the characteristic that allows the

system to continue properly when fault occurs [3].

Two major techniques i.e., job replication and

checkpointing are used to deal with fault conditions. In

job replication, several copies of the task make

available on different resources. In cloud environment,

task is referred as cloudlet associated with length,

input-output files, id, deadline etc., the major drawback

of this technique is that task executes from the

beginning on another resource, it increased total

execution time of tasks. In checkpointing, the state of

task saves periodically to avoid task execution from the

very beginning. Many check pointing based fault

tolerance techniques face several limitations like-

analysis of checkpoint interval, resource selection,

communication and checkpoint overhead etc.

Table 1. Comparison between grid computing and cloud
computing.

Criteria Grid computing Cloud computing

Architecture Distributed architecture Client server architecture

Application

type
Batch applications Interactive applications

Reachability Decentralized Centralized

Uses
Describe large volume of

data and information

Used to store data and

information on remote servers

Service
provider

Research institutes and

universities organize their

service around the world

Individual companies

Resource

Management

Managed by providers and

users

Managed by cloud providers

only

Technology Open source Proprietary

226 The International Arab Journal of Information Technology, Vol. 17, No. 2, March 2020

Most of the existing work considers resource load as

a main criteria to select a resource. Due to these

limitations, this paper introduces a fault tolerance

based load balancing approach for distributed tasks in

cloud environment. Proposed algorithm selects the

suitable resource based on Resource load (Resi-load)

and Fault Index Value (FI-Val) for cloudlet execution.

2. Related Work

Load balancing has concerned the interest of

researchers in the last decade. Various load balancing

techniques have been designed to enhance the

efficiency of the high performance computing

framework [12, 13, 14, 15, 20].

Singh and Kumar [19] presented the Web Server

Queueing (WSQ) algorithm for load balancing in

distributed environment. Presented model is compared

with Remaining Capacity (RC) and server content

based queue (QSC) algorithms, and performs better in

both homogeneous and heterogeneous environment.

Hao et al. [7] presented a load balancing mechanism

based on deadline control. Resource broker analyzed

the existing load for categorizing the resources in

normal loaded, under loaded and overloaded resource

list. Prediction of change in state from under loaded or

normal loaded to overload is also done by calculating

the surplus capacity of resources.

Patel et al. [17] presented modified load balancing

algorithm presented by Hao et al. [7] for recovery from

deadline failure. When a gridlet doesn’t finish in

deadline, result of partial executed gridlet is saved and

resubmitted to other suitable resource to reduce

execution time of gridlets.

Pao and Chen [16] proposed dispatching algorithm

for load balancing of web server. The server with less

capacity always serves fewer requests because it does

not have sufficient processing power. The presented

architecture uses remaining capacity of Domain Name

System (DNS) server and mail server to manage the

load in distributed system.

Arabnejad and Barbosa [1] presented a budget based

task scheduling algorithm for load balancing.

Algorithm works in two phases: task selection phase

and processor selection phase. For selecting the task,

priority is assigned by computing the rank. For

balancing the load, worthiness of all processor is

calculated and selects the processor with highest

worthiness value.

Garg and Singh [5] presented a task scheduling

algorithm to deal with faults. For improving execution

time of tasks, Computation for fault tolerance and

recovery overhead is done. Resources capacity is

recalculated based on genetic algorithm in presence of

failures. Result shows reduced execution time and

improved task reliability.

Various authors focused on predicting execution

time for optimize various performance metrics [2, 11].

Chang et al. [4] presented a resource selection based

task scheduling algorithm for load balancing. Task

scheduler is in-charge of transmitting tasks to

resources depending on scheduling algorithm.

Resources are categorized into L discrete levels (r1,

r2….rl) from smallest to largest. Each task has a

resource requirement Ri and a closeness factor

(0<C<1). The fittest resource is selected based on

Predicted Execution Time (PET) which results in

reduced makespan and increased system throughput.

Various authors suggested solutions for adaptive

load balancing in dynamic environment [8, 9, 10, 18].

Lee et al. [10] presented two scheduling algorithms to

perform adaptive load balancing between clusters. Two

algorithms differ with each other by mechanism of

cluster selection. Balance threshold is used to adapt the

changes of environment when load changes. The major

contribution of work is load balancing and reduction in

makespan.

To overcome these issues, a fault tolerance based

load balancing approach for high performance

computing is proposed in cloud environment. In the

proposed approach, a least loaded and fault index value

resource is selected for load balancing. The major

advantage of the proposed approach over the other

state-of-the-art methods include reduction in response

time, makespan, communication and checkpoint

overhead, increase in system throughput.

2.1. Contributions

Most of the research work of dynamic load balancing

is done by optimizing metrics like- resource capacity,

resource utilization, drop rate, resource cost, resource

selection criteria, queueing analysis, deadline control

and recovery. Due to dynamic nature of cloud

environment, fault tolerance is an essential metric of

concern for concurrent and distributed applications.

Unfinished tasks need to transfer to another suitable

resource for completing execution. A mechanism is

required for fault notification and further execution of

partial executed task. The major contributions of the

proposed work are as follows:

 A fault tolerance model is proposed for partially

executed tasks (cloudlets) due to resource failure

based on checkpoint.

 The fault tolerance model proposed a mechanism to

determine checkpoint interval to reduce overall

execution time and checkpoint overhead of cloudlet.

 A resource selection mechanism is also proposed for

cloudlet execution. As in literature [4, 7, 18, 19],

only Resi-load should not be the criteria to select a

resource for rescheduling of cloudlet. There may be

a possibility that under loaded resource may also

lead to execution failure. With this perspective, an

algorithm is proposed to update the indexing of

resource based on Resi-load and FI-Val to avoid the

fault in the future scenario.

Fault Tolerance Based Load Balancing Approach for Web Resources in Cloud Environment 227

3. Proposed Fault Tolerance Based Load

Balancing Model

Figure 1 shows the architecture of proposed fault

tolerance model. The proposed algorithm is an

improved version of Enhanced Gridsim with Deadline

Control (EGDC) [7] and Enhanced GridSim with Load

Balancing Based on Deadline Failure Recovery

(EGDFR) [17] briefly explained in section related

work. The proposed model works in two phases:

resource selection and task execution. In resource

selection phase, user submits cloudlet to cloud broker

with deadline constraint. Cloud broker submits

cloudlet to scheduler to select the suitable resource for

execution. Two factors are considered for resource

selection Resi-load and FI-Val. A resource with least

Resi-load and FI-Val is selected for cloudlet execution.

Figure 1. Proposed fault tolerance load balancing model.

To provide fault tolerance load balancing,

intermediate results of executing cloudlets are saved at

various intervals. Checkpoint intervals are decided

based on FI-Val of a resource. Checkpoint manager

gets the FI-Val of resource from fault manager and sets

checkpoints accordingly. At each cloudlet execution,

fault value of resource is updated. Checkpoint manager

submits job to resource for execution. If deadline

failure occurs, execution starts from the previous

successful saved checkpoint. The uniqueness of

proposed model is that checkpoints are set at the time

of cloudlet scheduling rather than at the time of

cloudlet execution.

3.1. Algorithm

Various notations and terminologies are used in

proposed algorithm that is listed in Table 2. The

detailed description of the proposed approach is

presented here:

 Step 1: user submits tasks to cloud broker with

deadline constraint defined by user. Broker

determines load due to received cloudlet form

Equation (1):

loadi = length/deadline

 Step 2: each resource has some initial load. Due to

incoming cloudlet, resource state may become

underloaded, overloaded or normalloaded.

Scheduler finds the suitable resource by performing

two tasks:

 Arrange the underloaded resource list in

ascending order of Resi-load.

 Arrange the sorted underloaded list in ascending

order of FI-Val of resource.

After executing these two steps scheduler gets the

resource with least Resi-load and FI-Val. Load of

selected resource is updated by using Equations (2),

(3), and (4) respectively.

Table 2. Notations and Terminologies.

Parameters Definitions

Cloudlet
Tasks associated with length, input-output files, id,

deadline etc.,

ct Cloudlet execution time

Resi_load Load of ith resource

Rb Underloaded threshold value

Rh Normalloaded threshold value

PE Number of CPU units (in MIPS)

M Number of PE’s

Ci Capacity of ith resource

CPE Available computing speed (MIPS)

FI_Val Fault index value of resource

F_cloudlet Finished cloudlet

U_cloudlet Unfinished cloudlet

Chk_t Checkpoint time

Chk_ID Checkpoint ID

MI Million Instructions

TET Total Execution Time

N Number of checkpoints

Chk_oh Checkpoint overhead

𝐶𝑖 = ∑ 𝑃𝐸𝑖 ∗ 𝐶𝑃𝐸𝑖𝑚
𝑖=1

Factori = loadi / Ci;

Resi_load = Resi_load + Factori

After load updation, Resi_load is compared with rb and

rh respectively. If selected resource is under loaded or

normal loaded, then received cloudlet is assigned to

selected resource otherwise cloudlet is added in

unassigned cloudlet list for selecting another suitable

resource and resource is added into overloaded

resource list. Algorithm 1 shows selection and

updation load of selected resource.

 Step 3: scheduler selects the resource that has least

load and FI-Val for cloudlet execution.

 Step 4: scheduler arranges all cloudlets in ascending

order of cloudlet length as shown in Algorithm 2

 Step 5: scheduler requests to checkpoint manager to

set checkpoints at various intervals determined by

FI-Val of the selected resource.

(1)

(2)

(3)

(4)

228 The International Arab Journal of Information Technology, Vol. 17, No. 2, March 2020

Algorithm 1. Resource selection and updation algorithm

Input: A list of underloaded resource (underloadedlist [i]),

Resi_load, factori

Output: Resource with least Resi_load and FI_Val

BEGIN

1. for (all underloaded list) do

2. Arrange list in ascending order of Resi_load

3. end for

4. for (all underloaded list) do

5. Arrange list in ascending order of FI_Val

6. end for

7. for (all underloaded list) do

8. //Select the first resource of list and update load due

to incoming cloudlet

9. Resi_load= Resi_load+factori

10. end for

11. for (all underloaded list) do

12. //Check state of selected resource

13. checkstate (resource r)

14. {

15. if(Resi_load <rb)

16. underloadedlist[i]);

17. else

18. if (Resi_load >rb) && (Resi_load <rh)

19. normalloadedlist[i]);

20. else

21. if (Resi_load>=rh)

22. add resource in overloadedlist

23. end if

24. end if

25. end if

26. end for

END

 Step 6: checkpoint manager requests to fault

manager to provide the FI-Val of selected resource.

 Step 7: fault manager maintains F-cloudlets and U-

cloudlets values for finished and unfinished

cloudlets respectively. Fault Rate (F-Rate) is

calculated using Equation (5). Algorithm 3 shows

computation of FI-Val of selected resource.

F_Rate =
U_cloudlet

F_ cloudlet+U_ cloudlet
∗ 100

 Algorithm 2. cloudlett sorting algorithm

Input: List of unassigned cloudlet (unasignedcloudletlist [])

Output: sorted unassignedcloudletlist []

BEGIN

1. for (all cloudletlength list) do

2. for(unassignedcloudletlist) do

3. Arrange cloudlets in ascending order of length

4. end for

5. end for

END

 Step 8: checkpoint manager gets the FI-Val of

resource from fault manager. If FI-Val of resource is

one then check point manager will set the

checkpoints at intervals of 1ms. Each checkpoint is

assigned a checkpoint number that is incremented at

each interval by 1ms.

 Step 9: the cloudlet is submitted to selected resource

with determined checkpoint interval.

Algorithm 3. Fault Index Value (FI_Val) Algorithm

Input: A list of underloaded resource (underloadedlist []),

F_Rate

Output: underloaded resource list (underloadedlist []) with

FI_Val

BEGIN

1. for (underloadedlist) do

2. if (F_Rate >=1) && (F_Rate< 10)

3. FI_Val=1;

4. end if

5. else

6. if (F_Rate >=10) && (F_Rate< 20)

7. FI_Val=2;

8. .

9. ..

10. else

11. if (F_Rate>=90) && (F_Rate)<=100)

12. FI_Val=10;

13. end if

14. end if

15. end if

16. end for

END

 Step 10: checkpoint manager saves the intermediate

results at each checkpoint interval and gets the

result of executed cloudlet.

 Step 11: If deadline failure occurs then checkpoint

manager gets notification from resource.

 Step 12: checkpoint manager informs to fault

manager to update the FI-Val and resubmits partial

executed cloudlet to scheduler with most recent

saved checkpoint.

 Step 13: scheduler resubmits cloudlet to next

suitable resource and recovery algorithm is executed

to resume cloudlet execution.

 Step 14: scheduler waits for in-transit messages

before starts execution on next underloaded

resource. When all messages are recovered, then

cloudlet resumes for execution.

 Step 15: based on execution status of cloudlet,

Scheduler receives the results that are displayed to

the user.

4. Simulation and Results

To verify the effectiveness of the proposed model,

work is simulated on CloudSim simulator and results

are compared with EGDC and EGDFR. Makespan,

Average Response Time (ART), throughput,

communication overhead and Checkpoint overhead

(Chk-oh) are the major metrics considered for

comparison. Simulation is performed using windows 7

on Intel Pentium (B940/2 GHz) with 4 GB Random

Access Memory (RAM) and 500 Mega Byte (MB). We

have considered two cases for simulation of proposed

algorithm.

(5)

Fault Tolerance Based Load Balancing Approach for Web Resources in Cloud Environment 229

 Case 1: simulation by varying no. of cloudlets.

 Case 2: simulation by varying number of PEs.

4.1. Case 1-Simulation By Varying Number of

Cloudlets

In this case, simulation is performed by varying

number of cloudlets (1000-7000) and kept PEs

constant. For simulation, 100 PEs (100*2*5=1000) are

considered. Values and ranges of other parameters that

are used in simulation are given in Table 3. The

threshold values for resource, machine and PE are 0.8,

0.75, and 0.6 respectively [7, 17, 19].

Table 3. Values of various parameters.

Type Parameter Range

Cloudlet

Number of cloudlets 1000-7000

Cloudlet length 2-8 (MI)

Deadline 1-10 (s)

Resource
Number of Resources 100

Resource threshold 0.8

Machine
Number of machines 2

Machine threshold 0.75

PE
Number of PE’s 5

PE threshold 0.6

Figure 2 shows the ART of EGDC [7], EGDFR [17]

and proposed model versus number of cloudlets. The

ART is the time difference between task submission

and first response generated by the task. As number of

cloudlets increases, system load increases and ART

also increases.

Figure 2. ART vs. no. of cloudlet.

The result shows that proposed model reduces upto

26% of the ART over other algorithms. The proposed

model provides 1.25s ART when number of cloudlet is

2000 rather than 1.7s at the other algorithms. The

reduction in ART is due to selection of least loaded

and non-faulty resource, and calculation of checkpoint

interval when assigning cloudlet to a resource for all

values of number of cloudlets, makespan of proposed

algorithm is always found less than EGDC and

EGDFR. It is analyzed that proposed model reduces up

to 29% of the makespan over other algorithms as

shown in Figure 3.

Figure 3. Makespan vs. no. of cloudlet.

The simulation result shows that proposed model

increased up to 13.11% of the throughput over other

algorithms when number of cloudlets is 1000 as shown

in Figure 4.

Figure 4. Throughput vs. no. of cloudlet.

Figure 5 shows the comparison of checkpoint

overhead of EGDFR and proposed algorithm. The

Chk-oh is calculated using Equation (6).

Chk_oh =
makespan with checkpoints−makespan without checkpoint

N

The simulation results shows that proposed model

reduces up to 14% of the overhead over other

algorithms. The proposed model provides 18.57%

checkpoint overhead when number of cloudlets is 7000

rather than 4.28 % at the other algorithms.

Figure 5. Checkpoint overhead vs. no. of cloudlet.

The Communication Overhead (Comm-oh) of

EGDC and proposed algorithm is also determined from

Equation (7). The Comm-oh is measured from

Communication Time (CT) that is the time difference

(6)

230 The International Arab Journal of Information Technology, Vol. 17, No. 2, March 2020

between latest checkpoint time on current resource and

arrival time of task on another suitable resource. The

proposed model provides up to 12% reduction in

communication due to effective selection of resource

and checkpoint interval.

𝐶𝑜𝑚_𝑜ℎ =
𝐶𝑇 𝑤𝑖𝑡ℎ 𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡𝑠−𝐶𝑇 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡𝑠

𝑁

4.2. Case 2- Simulation By Varying Number of Pes

In this case, simulation is conducted by varying

number of PEs (500-5000) and kept cloudlet constant

(5000) as shown in Table 4.

Table 4. Values of various Parameters.

Type Parameter Range

Cloudlet

Number of cloudlets 5000

Cloudlet length 2-8 (MI)

Deadline 1-10 (s)

Resource
Number of Resources 500-5000

Resource threshold 0.8

Machine
Number of machines 2

Machine threshold 0.75

PE

Number of PE’s 5

PE threshold 0.6

CPE 1-5 (s)

Figure 6 shows the ART of EGDC, EGDFR and

proposed model versus number of PEs. From the

simulation, it is analyzed that proposed model reduces

up to 21.12% of the ART over other algorithms. The

proposed model provides 12.2s ART when number of

PEs is 3000 rather than 15.2s at the other algorithms.

The reduction in ART is due to increased number of

PEs and appropriate selection of resource.

Figure 6. ART vs. no. of PEs.

The makespan of proposed algorithm is always

found less than EGDC and EGDFR. The simulation

result shows that the proposed model reduces up to

24% of the makespan over other algorithms as shown

in Figure 7. The proposed model provides 2.01s

makespan when number of PEs is 500 rather than 2.65s

at the other algorithms. The simulation result shows

that proposed model increased up to 25% of the

throughput over other algorithms when number of PEs

is 1000 as shown in Figure 8.

Figure 7. Makespan vs. no. of PEs.

Figure 8. Throughput vs. no. of PEs.

Figure 9 shows the comparison of Chk-oh of

EGDFR and proposed algorithm. The simulation

results shows that proposed model reduces up to 16%

of the overhead over other algorithms. The proposed

model provides 28.33 % checkpoint overhead when

number of cloudlets is 4000 rather than 11.66 % at the

other algorithms. The proposed model provides upto

17 % reduction in communication overhead in

comparison to other methods.

Figure 9. Checkpoint overhead vs. no. of PEs.

5. Conclusions and Future Work

Analysis of existing load balancing is carried out and

classification is done based on environment, resource

nature, scheduling and fault tolerance mechanisms and

various optimized metrics. Based on research findings,

a fault tolerance based load-balancing model has been

proposes for unfinished cloudlets due to deadline

constraint assigned by user. An algorithm for resource

selection has been implemented also based on dynamic

Resi_load and FI_Val. The comparative analysis of

proposed and existing approaches has been shown in

Table 5.

(7)

Fault Tolerance Based Load Balancing Approach for Web Resources in Cloud Environment 231

Table 5. Comparative analysis of Proposed and Existing
approaches.

Criteria EGDC [7] EGDFR [17] Proposed Model

Resource categorization

criteria
Resi_load Resi_load

Resi_load and

FI_Val

Cloudlets arrangement
Unsorted

manner
Sorted manner Sorted manner

ART (By varying
number of cloudlet)

3.44 3.15 2.82

ART (By varying

number of PEs)
14.83 13.36 12.53

Makespan(By varying
number of cloudlet)

8.84 8.37 7.8

Makespan (By varying

number of PEs)
13.65 12.81 12.56

The proposed model provides 22% and 13%

performance improvement in terms of throughput with

respect to EGDC [7] and EGDFR [17] respectively.

The proposed model can be enhanced by analyzing

upcoming load and distribute it more effectively.

References

[1] Arabnejad H. and Barbosa J., “A Budget

Constrained Scheduling Algorithm for Workflow

Applications,” Journal of Grid Computing, vol.

12, no. 4, pp. 665-679, 2014.

[2] Calheiros R., Masoumi E., Ranjan R., and Buyya

R., “Workload Prediction Using ARIMA Model

and its Impact on Cloud Applications

QoS,” IEEE Transactions on Cloud

Computing, vol. 3, no. 4, pp. 449-458, 2014.

[3] Cao Y., Li P., and Zhang Y., “Parallel Processing

Algorithm for Railway Signal Fault Diagnosis

Data Based on Cloud Computing,” Future

Generation Computer Systems, vol. 88, pp. 279-

283, 2018.

[4] Chang R., Lin C., and Chen J., “Selecting The

Most Fitting Resource for Task Execution,”

Future Generation Computer System, vol. 27, no.

2, pp. 227-231, 2011.

[5] Garg R. and Singh A., “Fault Tolerant Task

Scheduling on Computational Grid Using

Checkpointing under Transient Faults,” Arabian

Journal for Science and Engineering, vol. 39, no.

12, pp. 8775-8791, 2014.

[6] Hajlaoui J., Omri M., and Benslimane D., “A

Qos-Aware Approach for Discovering and

Selecting Configurable Iaas Cloud Services,”

Computer Systems Science and Engineering, vol.

32, no. 4, pp. 460-467, 2017.

[7] Hao Y., Liu G., Wen N., “An Enhanced Load

Balancing Mechanism Based on Deadline

Control on Gridsim,” Future Generation

Computer Systems, vol. 28, pp. 657-665, 2012.

[8] Jung G. and Sim K., “Agent-Based Adaptive

Resource Allocation on The Cloud Computing

Environment,” in Proceeding of 40th

International Conference on Parallel Processing

Workshops, Taipei, pp. 345-351, 2011.

[9] Kumar M. and Grover A., “Optimal Duty

Cycling with Sleep-Wake Schedule Between

Paired Nodes and Flexible Routing Across

Pairs,” International Journal of Computer

Applications, vol. 144, no. 8, pp. 20-24, 2016.

[10] Lee Y., Leu S., and Chang R., “Improving Job

Scheduling Algorithms in A Grid Environment,”

Future Generation Computer Systems, vol. 27,

no. 8, pp. 991-998, 2011.

[11] Liu Q., Cai W., Shen J., Fu Z., Liu X., and Linge

N.,“A Speculative Approach to Spatial-Temporal

Efficiency with Multi-Objective Optimization in

A Heterogeneous Cloud Environment,” Security

and Communication Networks, vol. 9, no. 17, pp.

4002-4012, 2016.

[12] Mahafzah B. and Jaradat B., “The Hybrid

Dynamic Parallel Scheduling Algorithm for Load

Balancing on Chained-Cubic Tree

Interconnection Networks,” The Journal of

Supercomputing, vol. 52, no. 3, pp. 224-252,

2010.

[13] Mahafzah B. and Jaradat B., “The Load

Balancing Problem in OTIS-Hypercube

Interconnection Networks,” The Journal of

Supercomputing, vol. 46, no. 3, pp. 276-297,

2010.

[14] Marimuthu P., Arumugam R., and Ali J., “Hybrid

Metaheuristic Algorithm for Real Time Task

Assignment Problem in Heterogeneous

Multiprocessors,” The International Arab

Journal of Information Technology, vol. 15, no.

3, pp. 445-453, 2018.

[15] Masadeh R., Sharieh A., and Mahafzah B.,

“Humpback Whale Optimization Algorithm

Based on Vocal Behavior for Task Scheduling in

Cloud Computing,” International Journal of

Advanced Science and Technology, vol. 13, no. 3,

pp. 121-140, 2019.

[16] Pao T. and Chen J., “The Scalability of

Heterogeneous Dispatcher Based Web Server

Load Balancing Architecture,” in Proceedings of

International Conference on Parallel and

Distributed Computing, Application and

Technology, Taipei, pp. 213-216, 2006.

[17] Patel D., Tripathy D., and Tripathy C., “An

Improved Load Balancing Mechanism Based on

Deadline Failure Recovery on Gridsim,”

Engineering with Computers, vol. 32, no. 2, pp.

173-188, 2016.

[18] Ramakrishna M., Kodati V., Gratz P., and

Sprintson A., “GCA: Global Congestion

Awareness for Load Balance in Networks-on-

Chip,” IEEE Transactions on Parallel and

Distributed Systems, vol. 27, no. 7, pp. 2022-

2035, 2016.

[19] Singh H. and Kumar S., “WSQ: Web Server

Queueing Algorithm for Dynamic Load

232 The International Arab Journal of Information Technology, Vol. 17, No. 2, March 2020

Balancing,” Wireless Personal Communication,

vol. 80, no. 1, pp. 229-245, 2015.

[20] Tawfeek M., El-Sisi A., Keshk A., and Torkey

F., “Cloud Task Scheduling Based on Ant

Colony Optimization,” The International Arab

Journal of Information Technology, vol. 12, no.

2, pp. 129-137, 2015.

Anju Shukla is pursuing PhD at

Jaypee University of Engineering

and Technology, Guna, M.P, India.

She has completed B. Tech from

Uttar Pradesh Technical University,

Lucknow and M.Tech from Shobhit

University, Meerut.

Shishir Kumar is working as

Professor in the Department of

Computer Science and Engineering

at Jaypee University of Engineering

and Technology, Guna, M.P., India.

He has earned PhD in Computer

Science in 20 He has 18 years of

teaching and research experience.

Harikesh Singh is working as

Assistant Professor in the

Department of Computer Science

and Engineering at Jaypee

University of Engineering and

Technology, Guna, M.P., India. He

has earned PhD in Computer

Science in 2015.

