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1. Introduction 

Anomaly detection is the process of identifying those 

patterns in data which do not conform to expected 

behaviour. These patterns are called as anomalies or 

outliers. According to [11], the definition of an outlier 

is: “An outlier is an observation that deviates so much 

from other observations (considered normal) as to 

arouse suspicion that it was generated by a different 

mechanism”. For example, an abnormal traffic pattern 

in a computer network could mean that an unauthorized 

user is trying to compromise a system in the network. 

Anomaly detection finds application in a wide variety 

of domains such as intrusion detection in the field of 

networks and security; fraud detection in the field of 

banking and insurance, fault detection in wireless 

sensor networks, etc.  

The outliers can be classified into different 

categories based on their occurrence; generally there 

are three kinds of outliers [10]:  

1. Point Outlier: when a data point is different from 

remaining set of data points then this data point is 

termed as point outlier. For example, in credit card 

fraud detection, the outlier can be detected in terms 

of amount spent and location of transaction; if 

transaction amount is considerably higher compared 

to normal transactions and location is also different 

from usual then there is a high chance that it is a 

fraud transaction and an outlier. 

2. Collective Outlier: when a collection of related data 

is different from rest of the data set then it is a case 

of collective outlier. For example, in some graph, 

there may be many low values but multiple low 

values in succession may lead to suspicion of an  

 
abnormal condition. 

3. Contextual Outlier: when a data point is different 

from the rest with respect to some context then this 

data point is said to be a contextual outlier. For 

example, in context of age, a four feet child may be 

a normal person while four feet adult is an outlier.  

Anomaly detection can be performed on textual as 

well as image data. The textual data can be spatial 

(related to the geographical conditions) or temporal 

(related to the time aspects). Images can also be used 

in anomaly detection, where abnormal patterns in the 

contents of the images can be identified (for example 

abnormal growth in a tissue). Basically anomaly 

detection is used for removing the noisy data and 

producing accurate data set. Various applications of 

outlier detection are listed below:  

 Fraud Detection: fraud detection is one of the 

major applications of anomaly detection. 

Identifying transaction patterns which deviate from 

the normal transaction patterns of a particular 

customer may lead to suspicion of fraud. 

 Intrusion Detection: intrusion detection identifies 

the suspicious patterns that may indicate a network 

or system attack from someone attempting to break 

into or compromise a system.  

 Sensor Networks: a sensor network has multiple 

detection stations called sensor nodes. Reliability in 

wireless sensor networks is affected by various 

causes like environmental conditions, low quality 

sensors, etc., that lead to corrupted data generation 

by sensors. Through outlier detection techniques, 

faulty sensors are detected so that communication 

is not hindered.  
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 Medical and public health outlier detection: 

Anomaly detection in patient data helps to detect 

critical diseases at early stage for preventing it from 

becoming a severe and life-threatening disease. For 

example, detecting anomalous regions in images of 

heart or any other body part may lead to 

identification of a disease in early stages. 

2. Anomaly Detection Algorithms 

The anomaly detection techniques can be broadly 

divided into three categories: visual/graphical, 

statistical and machine learning. The visual techniques 

for anomaly detection includes scatter-plots which can 

help us discover anomalies in 2D datasets, but for large 

and multi-dimensional datasets we need some enhanced 

techniques like sparse traversal, etc., [5]. A statistics 

based definition of an outlier is: “an outlier is any data 

point more than 1.5 Inter Quartile Ranges (IQR) below 

the first quartile or above the third quartile”; based on 

this definition box-plots can be used for outlier 

detection [25]. Other statistical measures like 

frequencies [15], entropy [18], and correlation [24] 

have also been used in literature for anomaly detection. 

The machine learning based algorithms for anomaly 

detection can be divided into three categories: 

supervised, semi-supervised and unsupervised. 

Supervised anomaly detection is analogous to a binary 

classification problem, in which a training dataset is 

provided containing points labelled as normal and 

outliers. All the classifiers like K Nearest Neighbours 

(kNN), Support Vector Machine (SVM), perceptron, 

naive bayes, random forest, etc., can be used for 

anomaly detection, however, supervised learning is not 

often used for anomaly detection as the ratio of outliers 

to normal points is quite low, hence training for outlier 

class is often not sufficient which leads to poor 

performance of the algorithms. Instead of supervised 

learning, semi-supervised learning is preferred for 

detecting anomalies. Semi-supervised learning is 

analogous to one-class supervised learning i.e., a model 

representing normal behaviour is constructed from a 

training data set. Those points in the test dataset which 

deviate from the normal are labelled as anomalies. The 

popular examples of semi-supervised algorithms are 

One-Class SVMs and replicator neural networks.  

Most of the anomaly detection algorithms fall in the 

category of unsupervised learning. These unsupervised 

learning based algorithms can further be classified as 

distance-based and density-based. In distance-based 

approach, an object O in the dataset D is declared as an 

outlier if at least fraction p of the objects in D are 

farther than distance d from O [14]. Angiulli and 

Pizzuti [1, 2] and Angiulli et al.[ 3] calculated the sum 

of distances of the point under consideration with rest 

of the point in the dataset, and identified top n points 

which had highest cumulative sum (marked as outliers). 

Top-n kNN [22] is a simple approach for outlier 

detection where a distance measure like Euclidean 

distance can be used to identify k (user-defined value) 

nearest neighbours for each object, and declare n 

objects having highest cumulative/average value from 

its k neighbours as outliers. Distance-based clustering 

algorithms like k-means, Partition Around Medoids 

(PAM), etc., have also been used for outlier detection. 

In outlier detection by k-means algorithm, we initially 

make k clusters using k-means clustering algorithm, 

then we identify n points which have largest distance 

from their cluster centers to get n outliers. 

Density Based Spatial Clustering of Applications 

with Noise (DBSCAN) [8] is one of the earliest 

algorithms to identify outliers, although its main 

objective is clustering. In DBSCAN, we set two 

parameters eps and minPts; we then start by picking a 

random point in the dataset and considering all the 

points in its neighbourhood which are at a distance 

less than eps away from it to form the cluster. Next we 

count the number of such points, if this count is more 

than minPts then this cluster is called as dense cluster. 

We expand the cluster by repeating the process for all 

the new points in the cluster. If we run out of new 

points and there are still points left to consider in the 

dataset then we again pick a random point and restart 

the process till all points in the dataset are considered. 

A point which has less than minPts in its cluster and is 

also not a part of any other cluster is declared as an 

outlier. 

Local Outlier Factor (LOF) [4] is a non-clustering 

density-based outlier detection algorithm derived from 

DBSCAN algorithm, where a LOF score is calculated 

for each data point. In this method, number of 

neighbourhood points (n) to consider is set a priori; a 

reachability distance/density is computed (for the data 

point p under consideration) with n nearest 

neighbours. The reachability density of each of the n 

nearest neighbours is also calculated. The LOF score 

of the data point is ratio of the average density of the n 

nearest neighbour of the point and the density of the 

point itself. For a normal data point, the density of the 

point will be similar to that of its neighbours and the 

LOF value is low, whereas for an outlier LOF score 

will be high. Local Correlation Integral (LOCI) [20] 

addresses the difficulty of selecting the value of n in 

LOF by using different criteria for the neighbourhood. 

In LOCI, all the points within a value of r (radius) are 

considered as neighbours, and the reachability density 

is calculated w.r.t. to all these data points. In LOCI, a 

Multi-Granularity Deviation Factor (MDEF) value is 

calculated for each point; MDEF at radius r for a point 

is the relative deviation of its neighbourhood density 

from the average neighbourhood density in its r 

neighbourhood. Different values of r are taken and if 

the MDEF value deviates three times from the 

standard deviation of MDEFs in the neighbourhood 

then the point is flagged as an outlier. 
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Various strategies for anomaly detection in very 

large and high dimensional datasets have been 

discussed in literature. Koufakou et al. [15] 

implemented Attribute Value Frequency (AVF) in 

Map-Reduce for fast outlier detection in large 

categorical datasets. Liu et al. [18] proposed an 

Entropy-based Fast Detection algorithm for outlier 

detection in large datasets. Yan et al. [26] proposed a 

distributed outlier detection algorithm which employs 

compressive sensing for sampling high-dimensional 

data. Dimensionality Reduction for OUTlier detection 

(DROUT) can be used for anomaly detection in “very 

wide” datasets i.e., datasets with large number of 

features. Distributed Solving Sets (DSS) and Lazy 

Distributed Solving Sets (LDSS) are distributed 

strategies for anomaly detection in large datasets. For 

shorter turnaround time, GPU versions of parallel 

algorithms like DSS have also been implemented. 

Rapid Anomaly Detection (RAD) algorithm is used by 

NetFlix for outlier detection. RAD is able to handle 

high cardinality dimensions, non-normalized datasets, 

seasonality and minimizes false positives. RAD is 

based on Robust Principal Component Analysis 

(RPCA) which repeatedly calculates Singular Value 

Decomposition (SVD) and applies thresholds to 

singular values in each iteration. Recently, Twitter 

released an R package for anomaly detection in time-

series data, which consists of Seasonal Hybrid Extreme 

Studentized Deviate (S-H-ESD) test for anomaly 

detection. 

3. Swarm Intelligence 

Swarm intelligence is a class of nature-inspired 

algorithms based on collective behaviour displayed by 

swarm of insects/organisms/animals in achieving some 

goal like foraging (act of wandering in search of food 

and other resources). These algorithms like other 

nature-inspired algorithms are used for optimization 

problems like minimizing a convex function, finding an 

optimal cluster, finding shortest route, etc. 

3.1. Swarm-based Metaheuristics 

Meta-heuristic term in the field of mathematical 

optimization refers to a high-level procedure which can 

be used for providing a good solution to an 

optimization problem, especially when exploration of 

whole search space is not possible. There are hundreds 

of swarm-based meta-heuristics available in the 

literature, and some of the popular ones are listed in 

Table 1. 

Ant colony algorithm [6] is based on the ability of ants 

to find shortest path to the food source. Initially, the 

ants wander randomly in search for food. On locating 

food, they return to colony leaving a pheromone trail. 

 

 

 

Table 1. Swarm Intelligence meta-heuristics. 

Algorithm Proposed by Year 

Ant Colony Optimization Dorigo, Di Caro 1992 

Particle Swarm Optimization Kennedy, Eberhart, Shi 1995 

Bacterial Foraging algorithm Passino 2002 

Artificial Fish Swarm Li et. Al 2003 

Glow-worm Krishnanad and Ghose 2005 

Artificial Bee Colony Karaboga, Basturk 2007 

Firefly algorithm Xin-She Yang 2008 

Cuckoo Search Xin-She Yang, Deb 2009 

Bat algorithm Xin-She Yang 2010 

When other ants come across such a trail, they quit 

wandering and follow the trail. The pheromones tend 

to evaporate with time; therefore pheromone density 

remains high on shorter paths compared to longer 

ones. So, the ants tend to follow the shortest path on 

which the pheromone density is highest. 

Particle Swarm Optimization (PSO) [7] is based on 

bird flocking. The initialization in PSO is similar to 

that of genetic algorithm; a random population is 

generated to represent the members of the swarm. The 

swarm is updated throughout the generations in order 

to search for optimum. The particles fly through the 

solution space based on their own best value and the 

swarm’s best value to obtain the global best. 

Bacterial foraging algorithm [21] is based on the 

behaviour exhibited by bacteria while searching for 

food. The behaviour of bacteria depends upon the 

chemicals in its environment which may be secreted 

by other bacteria for communication. The bacteria 

move in swarms towards a location which has the 

optimal environment (in terms of food, etc.,).  

The main concept in artificial fish swarm algorithm 

[17] is the visual scope of each fish. The visual scope 

of the fish may be empty, crowded, and normal. If the 

scope is normal, the fish moves towards the center of 

the scope. The swarming movement is activated if this 

central point has better fitness value; otherwise a 

random point within visual scope is selected (which 

also must have a better fitness value). 

The glow worm algorithm [16] is based on the 

concept of bioluminescence/glow which is used by 

glow worms to communicate with each other. The 

glow worm with less light intensity move towards the 

glow worm with higher light intensity. 

Artificial bee colony [13] algorithm is based on 

foraging behaviour of honey bees. Bee colonies send 

bees to collect nectar from flower patches in 

proportion to the amount of nectar available in the 

patch. These bees return and communicate with other 

bees at the hive via a waggle dance that informs other 

bees in the hive about the direction, distance, and 

quality of food sources. 

Cuckoo search [31] algorithm is inspired by the 

breeding behaviour of cuckoos (to lay their eggs in the 

nests of other birds). Three basic operations associated 

with CSA are: 
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a. Every cuckoo lays one egg at a time, and dumps its 

egg in randomly selected nest in the environment. 

b. The nests with good quality of eggs will remain for 

next generations. 

c. The number of host bird nests is fixed, and the egg 

laid by a cuckoo is identified by the host bird 

depending on a probability in the range [0, 1] (under 

such situation, the host bird can either destroy the 

egg or destroy the present nest and build a new one). 

Bat algorithm [27] is based on echolocation behaviour 

of bats. As the bat flies, it emits pulses which bounce 

back of the objects in its path and echo back to the bat. 

From these echoes, the bat can determine the distance 

of the object, size of the object, as well as its own speed 

of flight. The bat can adjust its velocity and pulse rates 

based on its proximity to the object/prey. 

3.2. Anomaly Detection by Swarm Intelligence 

According to Knorr’s definition of an outlier, a data 

point is an outlier if it has a fraction ϕ or less of the 

total points within distance r (Figure 1). The values of ϕ 

and r are user-defined and very hard to decide. Instead 

of selecting values of ϕ and r randomly, an 

optimization algorithm can be used to obtain these 

values. The idea is: for each point p, consider a circle of 

radius r with p being the center, find the number of 

points being enclosed by this circle; let the number of 

points being enclosed is k, then the aim is to find the 

point p* and radius r* such that the value of k/r is 

minimized. This value of r* is then used to compute the 

k/r ratio of other points and rank them. The points with 

low k/r ratio will be outliers. We can also set a value ϕ 

such that if k/n<ϕ (n is total number of points) for a 

point, then such a point will be an outlier.  

 

Figure 1. Knorr’s definition of an outlier. 

Swarm intelligence algorithms are used in many 

optimization problems and can also be used for this 

problem. The fitness function is k/r and we have to 

minimize this fitness function. However, if r is very 

small then k may be 0 giving the least possible value of 

k/r, and if r is very large then also k/r→0 when r→∞. 

Hence, the value of r should not be too high or too 

low. Therefore, we need to set a lower limit as well as 

an upper limit on the value of k. So, acc. to [19] the 

fitness function that could be used is:  

*

k k

r k r n k


 

   

The first term is to limit the lower bound of r, and 

third term is to limit the upper bound of r. For a small 

value of r, the first term will be high so fitness 

function will return a high value (we will consider 

minimum value of k to be 1 i.e., we will consider the 

point itself in the value of k). If we set value of 

α=0.05n, then it will ensure that the value of r will be 

large enough. The third term becomes infinity for k=n 

(case when r is very large), so points for which third 

term comes out to be infinity will clearly not be 

outliers. This ensures that r is not too small which may 

lead to missing the outliers or too large to include 

outliers from the normal set of points. 

4. Firefly Algorithm 

Firefly algorithm developed by Yang [28, 29], is a 

meta-heuristic algorithm inspired by nature. Firefly 

algorithm is among those stochastic algorithms which 

follow randomization approach to search the solution. 

Some of the important fields of its application are 

optimization of dynamic and noisy environment and 

constraints, combinatorial and multi-objective 

optimization [33]. Apart from the field of optimization 

it is also capable of solving classification problems 

that we come across in the fields of neural network, 

data mining and machine learning [23, 32].  

4.1. Biological Foundation 

Fireflies are distinguished by their flashing light 

produced by a biochemical process known as 

bioluminescence. These bright flashing lights serve as 

a signal for mating as well as warning signals from 

potential predators. The fireflies move towards the 

brightest/fittest/optimal partner for mating and this 

behavior is exploited in the metaheuristic to find the 

optimal solution for a given problem. Firefly 

algorithm makes the following assumptions [9, 30]: 

 The brightness/fitness of a firefly corresponds to 

the objective function.  

 Each firefly is attracted to all other fireflies as they 

are unisex. 

 A brighter firefly is more attractive, and a less 

bright firefly will move towards a firefly which is 

brighter. The attractiveness/brightness increases as 

the distance b/w the fireflies’ decreases.  

The objective function is the convex/fitness function 

which is to be minimized. Each firefly represents a 

candidate solution, and the aim is to find the solution 

(1) 
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which gives the minima of the convex function. This 

can be done by calculating the fitness value of each 

solution, and moving the value of less fit solutions 

towards the fittest solution. This process may lead to a 

local best instead of global best, so the brightest firefly 

is needed to be moved randomly to a location where its 

brightness is increased even further. This random 

movement of brightest firefly ensures that we are able 

to reach a global best instead of local best. In next 

section, the mathematical formulation of the 

movements of the fireflies is presented.  

4.2. Mathematical Foundation 

From physics, we know that the light intensity I(r) 

varies according to the inverse square law: 

2( ) /sI r I r  

Where, Is is the light intensity at source.  

The light intensity I vary with distance r for a stated 

medium with absorption coefficient λ, acc. to the 

Equation: 

0

rI I e 
 

Where, Io is the actual light intensity. 

The Equations (2) and (3) can be combined to give 

the following Equation: 

2

0

rI I e   

Taking the above equations into consideration, the 

attractiveness of a firefly can be defined as: 

2

0

re     

Where, 0  is the attractiveness of the firefly at r=0. 

In the real time environment, the attractiveness 

function of the firefly i.e., ( )r  can be any 

monotonically decreasing function described in the 

generalized form as: 

0( )
mrr e   

 

The cartesian distance (r) is the distance between any 

two random fireflies i and j at location xi and xj. 
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In 2-dimensional case, we have 

2 2( ) ( )ij i j i jr x x y y     

The less bright firefly l is attracted to another more 

attractive firefly m according to the Equation: 

2
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This equation (Equation (10)) gradually changes the 

value of the parameter (to be optimized) in each 

iteration so as to move towards the best value found so 

far until we reach convergence to obtain the global 

best. The value of the parameter   plays a significant 

role in determining the speed of convergence and it 

follows the range of 0 to 10. Higher the value of , 

faster is the convergence to the solution but we should 

also not set it so high that it jumps the optimal solution 

(normally this value is set to 1).  

4.3. The Algorithm 

The pseudo-code for firefly meta-heuristic is given 

below. 

begin 

Identify objective function f(x);  

Generate initial population xi of fireflies; 

Formulate light intensity Ii at xi via f(xi);  

while t<maxGenerations do begin 

for i := 1 to n do begin 

for j := 1 to n do begin  

if Ij>Ii then  

Move firefly i towards j by using Eq. (10);  

Evaluate new results; end;  

Update light intensity; end; 

Rank the fireflies and find the current best; end; end; 

Display results; 

end.  

The algorithm starts with a population of fireflies 

where each firefly corresponds to a possible solution 

from the solution space. The solutions are evaluated 

based on a defined fitness function; the better the 

solution, brighter the firefly. The less bright fireflies 

are moved towards more bright fireflies i.e. the 

parameters of less promising solutions are changed so 

that they are closer to the parameters of more 

promising solutions (according to Equation (10)). To 

prevent the algorithm from converging towards local 

maxima/minima instead of global maxima/minima, 

the brightest firefly is moved randomly so as to 

increase its brightness. This process is repeated for a 

fixed number of iterations so as to converge to a 

global maxima/minima.  

4.4. Firefly Algorithm for Anomaly Detection 

Firefly algorithm can be quite easily used for detecting 

anomalies by optimizing the fitness function 

expressed in Equation (1) to obtain the optimal value 

of r which can be further utilized to detect the outlier 

points in the data. What we need to do is to start with 

a random population of fireflies (corresponding to the 

parameter to be optimized which in this case is the 

radius r) and find the brightest firefly (best value of r) 

in the current population and move remaining (less 

bright) fireflies i.e., towards this brightest firefly 

(optimal value of r) until convergence is reached. The 

pseudo-code for detecting outliers using firefly 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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algorithm is given below. In the firefly algorithm there 

are generic parameters like number of fireflies, gamma, 

beta0 as well as problem specific parameters like 

fitness function, etc., The pseudo-code for Firefly 

Algorithm for Anomaly Detection (FAAD) algorithm is 

given below. 

Algorithm 1: (FAAD) 

Input: Dataset D 

Output: Anomalous data points in D 

begin 

 

Step-1. Initialization. 

Generate a distance matrix dist_mat of D. 

Define a list with N values of radius r, each value of r 

corresponds to a firefly. 

Set objective function as F=k/r. 

 

Step-2. Calculate brightness of each firefly. 

For each r in list do 

  For each row in dist_mat do 

i.     Find number of elements less than r (set this value 

as k). 

ii. Find fitness of rows acc to F. 

   

  Find row with minimum value of fitness function. The fitness of 

this row is the brightness of the firefly. 

 

Step-3. Identify the brightest firefly. 

In previous step, we get N fitness values corresponding to 

brightness of each firefly. 

The firefly (value of r) with least fitness value is the brightest 

firefly, denoted by r*. 

 

Step-4. Move fireflies towards the brightest firefly. 

for each r in the list do 

  if(r!=r*)  

    update r acc. to Eq. (10) 

  else 

    update r* by random walk 

 

Step-5. Repeat steps 3 and 4 for fixed number of iterations. 

Return the value r* (optimal value of r). 

 

Step-6. Rank the points for r*. 

for each row in dist_mat do 

i. Find number of elements less than r*. 

ii. Find fitness of row acc. to F. 

 

Rank all the rows (lower the fitness value, higher the rank). 

 

Step-7. Return the k highest ranked points/rows as outliers and 

remaining as inliers. 

end.  

The algorithm starts with initializing the fireflies (a 

firefly corresponds to a value of r). Brightness of each 

firefly is calculated by identifying the point with lowest 

value of fitness function given in Equation 1. The less 

bright fireflies are moved towards brighter firefly i.e. 

the value of r for each firefly is changed so as to be 

near (by some fraction) to the best value of r in the 

current epoch. This process is repeated till 

convergence. 

4.5. Parallelization in Spark MapReduce 

MapReduce is a distributed/parallel programming 

model which runs on a cluster of commodity 

hardware, where a master node distributes the job to 

slave nodes for parallel processing. MapReduce model 

consists of two phases: map and reduce; in the map 

phase the job in divided into independent sub-tasks 

and assigned to slave nodes, and in the reduce phase 

the output returned by each slave is aggregated to give 

a final result. The two most popular tools which 

support MapReduce are Apache Hadoop and Apache 

Spark. Apache Spark is said to be faster than Apache 

Hadoop due to its in-memory computation capability 

and use of Resilient Distributed Database (RDD) on 

which two types of operations can be performed viz. 

transformation and action. 

A Spark job typically contains sequential steps and 

those steps which contain independent sub-tasks can 

be parallelized by executing the sub-tasks in parallel 

as shown in Figure 2 below. In the MapReduce-based 

parallel implementation of the firefly algorithm for 

anomaly detection, the task of finding fitness of 

fireflies can be parallelized as all fireflies are 

independent of each other. 

 

Figure 2. Spark Job. 

A snapshot of parallelization in PySpark is given 

below. 

sc = pyspark.SparkContext.getOrCreate() 

data_rdd=sc.textFile(“ dataset ”) 

 

# values of r 

fireflies = [ 10, 100, 1000, 10000 ] 

 

# convert the list to a Spark RDD  

fireflies_rdd=sc.parallelize(fireflies) 

 

def brightness(firefly): 

# sequential code to find fitness 

return fit 

 

# code to parallelize a function 
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intensity = fireflies_rdd.map(lambda x: brightness(x)) 

5. Experiments 

In this section, the performance of the proposed FAAD 

algorithm is compared with standard algorithms of 

anomaly detection viz. KMeans, DBSCAN, LOF, and 

Random Forest. Each of these algorithms require some 

parameters to be set, however the proposed FAAD 

algorithm doesn’t require setting up of any parameters 

as it is self-optimizing. For k-means algorithm, the 

number of clusters was set to 30. For DBSCAN, we do 

not need to set the number of clusters, but we need to 

set the parameter eps i.e. the maximum distance 

between two samples for them to be considered as in 

the same neighborhood, and was given the value 0.8. 

LOF requires the number of neighbors to consider, and 

this value was set to 15. Random Forest requires the 

number of trees, which was set to 10. The algorithms 

were implemented in PySpark and the experiments 

were performed on i7 processor with 4 cores, 8GB 

RAM running Ubuntu 16.10. The performance was 

evaluated on the basis of accuracy of the algorithms 

(Table 2 and Figure 3). The metric used for accuracy is 

jaccard similarity between actual labels and predicted 

labels for each instance in the dataset. The experiments 

were conducted on openly available datasets: 

lymphography dataset, wisconsin breast cancer dataset, 

post-operative dataset, pageblocks dataset, credit card 

fraud detection dataset, forest cover dataset and 

kddcup99 dataset.  

Lymphography dataset contains 148 instances and 

18 attributes. There are 4 classes: normal find (label 1), 

metastasis (label 2), malign lymph (label 3), and 

fibrosis (label 4). Classes “normal find” and “fibrosis” 

have only 2 and 4 instances in the dataset, respectively 

and are treated as outliers. Hence, the dataset has 6 

outliers and 142 normal points. 

Post-Operative Patient dataset contains 90 instances 

with 9 attributes. The data points are classified into 3 

classes: A, S and I. We will treat the points classified as 

A (64 in total) as normal points, whereas the points 

classified as I (2 in total) and S (24 in total) will be 

treated as outliers. So, the dataset consists of 26 outliers 

and 64 non-outliers. 

Wisconsin breast cancer dataset has 483 instances 

with 10 attributes, containing 444 benign (label 2) 

instances and 39 malignant (label 4) instances. The 

original dataset has 699 instances, where 458 are 

benign and 241 are malignant. 16 instances have 

missing values, so we remove these instances, giving us 

444 benign and 239 malignant instances. Following 

Hawkins [12], only one of every sixth malignant 

instance is kept, giving us 39 malignant instances, 

which are treated as outliers among 444 benign 

instances. 

Page-blocks dataset has 5053 instances with 11 

attributes, containing 4913 normal points and 140 

outliers. The original page-blocks dataset has 5473 

instances with 11 attributes. The dataset is mainly a 

classification problem where the blocks of documents 

are classified as text or non-text. Although it is a 

multi-class problem of 5 classes (text, horizontal line, 

picture, vertical line, and graphic), we will consider it 

as a two class problem: text and non-text, which gives 

us 4913 instances of text blocks and 560 instances of 

non-text blocks. We will take one of every four non-

text instances i.e., we will keep only 140 instances 

which are not classified as text.  

The credit card fraud detection dataset contains data 

of 284807 transactions with 31 attributes, out of which 

492 transactions are labeled as fraud. These 

transactions are done with 172792 credit cards, hence 

there are multiple transactions for most of the cards. 

The forest cover dataset has 581012 instances (with 

54 attributes) which are classified into 7 classes (1-7), 

with class 4 having minimum number of instances 

(2747). We will consider instances of class 2 (283301 

instances) and class 4 (2747 instances) only i.e., total 

286048 instances. Moreover, we will consider only 10 

attributes (ignoring 40 binary soil type attributes and 4 

binary wilderness areas). Therefore, we will consider 

the instances from class 4 as outliers whereas the rest 

of the instances will be considered as inliers.  

The original kddcup99 dataset (for intrusion 

detection) has 4898431 instances with 41 attributes. 

The original dataset has 3925651 attacks, but a smaller 

set with attribute “logged-in” as positive has 3377 

attacks. Further, taking the “service” attribute, the 

dataset can be divided into http, smtp, ftp, ftp-data, 

others subsets. We consider only the http instances 

(567497 in total) with 2211 attacks and we will 

consider every type of attack as an outlier, and give 

same label to every type of attack. 

Table 2. Accuracy of algorithms. 

Dataset K-Means DBSCAN LOF Random Forest FAAD 

Lymphography 0.7942 0.8405 0.9256 0.9082 0.9729 

Post-Operative 0.7461 0.7988 0.8666 0.8712 0.9111 

Cancer 0.6438 0.7283 0.8033 0.8427 0.9751 

Page-blocks 0.7159 0.8023 0.8750 0.8154 0.9703 

Credit Card 0.6943 0.8217 0.8999 0.8545 0.9985 

Forest Cover 0.5861 0.8096 0.8945 0.9148 0.9964 

KDDCup99 0.5537 0.6158 0.6088 0.6859 0.9930 

The FAAD algorithm doesn’t assign labels to the 

instances, instead it ranks the instances in decreasing 

order of probability of being an outlier. So, the user 

needs to provide the count k of outliers to be detected, 

and the algorithm will label top k instances in the 

returned list as outliers, whereas rest of the instances 

will be labeled as normal. From the experimental 

results, it can be inferred that FAAD algorithm 

provides much accurate results than its counterparts. 
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6. Conclusions 

In this paper, the authors proposed a firefly meta-

heuristic based algorithm for anomaly detection. The 

major advantage of the proposed solution is that it is 

self-optimizing and is implemented on a big data tool in 

a parallel environment. Experiments were performed on 

multiple datasets to compare the performance of the 

proposed algorithm with existing algorithms. The 

results highlighted the drawbacks of existing algorithms 

which were run with default parameters, and therefore 

had poor accuracy. The proposed solution being self-

optimizing doesn’t suffer from such drawback and 

gives much accurate results.  

 

Figure 3. Comparative performance of algorithms. 
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