
272 The International Arab Journal of Information Technology, Vol. 17, No. 2, March 2020

FAAD: A Self-Optimizing Algorithm for Anomaly

Detection

Adeel Hashmi and Tanvir Ahmad

Department of Computer Engineering, Jamia Millia Islamia, India

Abstract: Anomaly/Outlier detection is the process of finding abnormal data points in a dataset or data stream. Most of the

anomaly detection algorithms require setting of some parameters which significantly affect the performance of the algorithm.

These parameters are generally set by hit-and-trial; hence performance is compromised with default or random values. In this

paper, the authors propose a self-optimizing algorithm for anomaly detection based on firefly meta-heuristic, and named as

Firefly Algorithm for Anomaly Detection (FAAD). The proposed solution is a non-clustering unsupervised learning approach

for anomaly detection. The algorithm is implemented on Apache Spark for scalability and hence the solution can handle big

data as well. Experiments were conducted on various datasets, and the results show that the proposed solution is much

accurate than the standard algorithms of anomaly detection.

Keywords: Anomaly detection, outliers, firefly algorithm, big data, parallel algorithms and apache spark.

Received November 19, 2017; accepted April 28, 2019

https://doi.org/10.34028/iajit/17/2/16

1. Introduction

Anomaly detection is the process of identifying those

patterns in data which do not conform to expected

behaviour. These patterns are called as anomalies or

outliers. According to [11], the definition of an outlier

is: “An outlier is an observation that deviates so much

from other observations (considered normal) as to

arouse suspicion that it was generated by a different

mechanism”. For example, an abnormal traffic pattern

in a computer network could mean that an unauthorized

user is trying to compromise a system in the network.

Anomaly detection finds application in a wide variety

of domains such as intrusion detection in the field of

networks and security; fraud detection in the field of

banking and insurance, fault detection in wireless

sensor networks, etc.

The outliers can be classified into different

categories based on their occurrence; generally there

are three kinds of outliers [10]:

1. Point Outlier: when a data point is different from

remaining set of data points then this data point is

termed as point outlier. For example, in credit card

fraud detection, the outlier can be detected in terms

of amount spent and location of transaction; if

transaction amount is considerably higher compared

to normal transactions and location is also different

from usual then there is a high chance that it is a

fraud transaction and an outlier.

2. Collective Outlier: when a collection of related data

is different from rest of the data set then it is a case

of collective outlier. For example, in some graph,

there may be many low values but multiple low

values in succession may lead to suspicion of an

abnormal condition.

3. Contextual Outlier: when a data point is different

from the rest with respect to some context then this

data point is said to be a contextual outlier. For

example, in context of age, a four feet child may be

a normal person while four feet adult is an outlier.

Anomaly detection can be performed on textual as

well as image data. The textual data can be spatial

(related to the geographical conditions) or temporal

(related to the time aspects). Images can also be used

in anomaly detection, where abnormal patterns in the

contents of the images can be identified (for example

abnormal growth in a tissue). Basically anomaly

detection is used for removing the noisy data and

producing accurate data set. Various applications of

outlier detection are listed below:

 Fraud Detection: fraud detection is one of the

major applications of anomaly detection.

Identifying transaction patterns which deviate from

the normal transaction patterns of a particular

customer may lead to suspicion of fraud.

 Intrusion Detection: intrusion detection identifies

the suspicious patterns that may indicate a network

or system attack from someone attempting to break

into or compromise a system.

 Sensor Networks: a sensor network has multiple

detection stations called sensor nodes. Reliability in

wireless sensor networks is affected by various

causes like environmental conditions, low quality

sensors, etc., that lead to corrupted data generation

by sensors. Through outlier detection techniques,

faulty sensors are detected so that communication

is not hindered.

FAAD: A Self-Optimizing Algorithm for Anomaly Detection 273

 Medical and public health outlier detection:

Anomaly detection in patient data helps to detect

critical diseases at early stage for preventing it from

becoming a severe and life-threatening disease. For

example, detecting anomalous regions in images of

heart or any other body part may lead to

identification of a disease in early stages.

2. Anomaly Detection Algorithms

The anomaly detection techniques can be broadly

divided into three categories: visual/graphical,

statistical and machine learning. The visual techniques

for anomaly detection includes scatter-plots which can

help us discover anomalies in 2D datasets, but for large

and multi-dimensional datasets we need some enhanced

techniques like sparse traversal, etc., [5]. A statistics

based definition of an outlier is: “an outlier is any data

point more than 1.5 Inter Quartile Ranges (IQR) below

the first quartile or above the third quartile”; based on

this definition box-plots can be used for outlier

detection [25]. Other statistical measures like

frequencies [15], entropy [18], and correlation [24]

have also been used in literature for anomaly detection.

The machine learning based algorithms for anomaly

detection can be divided into three categories:

supervised, semi-supervised and unsupervised.

Supervised anomaly detection is analogous to a binary

classification problem, in which a training dataset is

provided containing points labelled as normal and

outliers. All the classifiers like K Nearest Neighbours

(kNN), Support Vector Machine (SVM), perceptron,

naive bayes, random forest, etc., can be used for

anomaly detection, however, supervised learning is not

often used for anomaly detection as the ratio of outliers

to normal points is quite low, hence training for outlier

class is often not sufficient which leads to poor

performance of the algorithms. Instead of supervised

learning, semi-supervised learning is preferred for

detecting anomalies. Semi-supervised learning is

analogous to one-class supervised learning i.e., a model

representing normal behaviour is constructed from a

training data set. Those points in the test dataset which

deviate from the normal are labelled as anomalies. The

popular examples of semi-supervised algorithms are

One-Class SVMs and replicator neural networks.

Most of the anomaly detection algorithms fall in the

category of unsupervised learning. These unsupervised

learning based algorithms can further be classified as

distance-based and density-based. In distance-based

approach, an object O in the dataset D is declared as an

outlier if at least fraction p of the objects in D are

farther than distance d from O [14]. Angiulli and

Pizzuti [1, 2] and Angiulli et al.[3] calculated the sum

of distances of the point under consideration with rest

of the point in the dataset, and identified top n points

which had highest cumulative sum (marked as outliers).

Top-n kNN [22] is a simple approach for outlier

detection where a distance measure like Euclidean

distance can be used to identify k (user-defined value)

nearest neighbours for each object, and declare n

objects having highest cumulative/average value from

its k neighbours as outliers. Distance-based clustering

algorithms like k-means, Partition Around Medoids

(PAM), etc., have also been used for outlier detection.

In outlier detection by k-means algorithm, we initially

make k clusters using k-means clustering algorithm,

then we identify n points which have largest distance

from their cluster centers to get n outliers.

Density Based Spatial Clustering of Applications

with Noise (DBSCAN) [8] is one of the earliest

algorithms to identify outliers, although its main

objective is clustering. In DBSCAN, we set two

parameters eps and minPts; we then start by picking a

random point in the dataset and considering all the

points in its neighbourhood which are at a distance

less than eps away from it to form the cluster. Next we

count the number of such points, if this count is more

than minPts then this cluster is called as dense cluster.

We expand the cluster by repeating the process for all

the new points in the cluster. If we run out of new

points and there are still points left to consider in the

dataset then we again pick a random point and restart

the process till all points in the dataset are considered.

A point which has less than minPts in its cluster and is

also not a part of any other cluster is declared as an

outlier.

Local Outlier Factor (LOF) [4] is a non-clustering

density-based outlier detection algorithm derived from

DBSCAN algorithm, where a LOF score is calculated

for each data point. In this method, number of

neighbourhood points (n) to consider is set a priori; a

reachability distance/density is computed (for the data

point p under consideration) with n nearest

neighbours. The reachability density of each of the n

nearest neighbours is also calculated. The LOF score

of the data point is ratio of the average density of the n

nearest neighbour of the point and the density of the

point itself. For a normal data point, the density of the

point will be similar to that of its neighbours and the

LOF value is low, whereas for an outlier LOF score

will be high. Local Correlation Integral (LOCI) [20]

addresses the difficulty of selecting the value of n in

LOF by using different criteria for the neighbourhood.

In LOCI, all the points within a value of r (radius) are

considered as neighbours, and the reachability density

is calculated w.r.t. to all these data points. In LOCI, a

Multi-Granularity Deviation Factor (MDEF) value is

calculated for each point; MDEF at radius r for a point

is the relative deviation of its neighbourhood density

from the average neighbourhood density in its r

neighbourhood. Different values of r are taken and if

the MDEF value deviates three times from the

standard deviation of MDEFs in the neighbourhood

then the point is flagged as an outlier.

274 The International Arab Journal of Information Technology, Vol. 17, No. 2, March 2020

Various strategies for anomaly detection in very

large and high dimensional datasets have been

discussed in literature. Koufakou et al. [15]

implemented Attribute Value Frequency (AVF) in

Map-Reduce for fast outlier detection in large

categorical datasets. Liu et al. [18] proposed an

Entropy-based Fast Detection algorithm for outlier

detection in large datasets. Yan et al. [26] proposed a

distributed outlier detection algorithm which employs

compressive sensing for sampling high-dimensional

data. Dimensionality Reduction for OUTlier detection

(DROUT) can be used for anomaly detection in “very

wide” datasets i.e., datasets with large number of

features. Distributed Solving Sets (DSS) and Lazy

Distributed Solving Sets (LDSS) are distributed

strategies for anomaly detection in large datasets. For

shorter turnaround time, GPU versions of parallel

algorithms like DSS have also been implemented.

Rapid Anomaly Detection (RAD) algorithm is used by

NetFlix for outlier detection. RAD is able to handle

high cardinality dimensions, non-normalized datasets,

seasonality and minimizes false positives. RAD is

based on Robust Principal Component Analysis

(RPCA) which repeatedly calculates Singular Value

Decomposition (SVD) and applies thresholds to

singular values in each iteration. Recently, Twitter

released an R package for anomaly detection in time-

series data, which consists of Seasonal Hybrid Extreme

Studentized Deviate (S-H-ESD) test for anomaly

detection.

3. Swarm Intelligence

Swarm intelligence is a class of nature-inspired

algorithms based on collective behaviour displayed by

swarm of insects/organisms/animals in achieving some

goal like foraging (act of wandering in search of food

and other resources). These algorithms like other

nature-inspired algorithms are used for optimization

problems like minimizing a convex function, finding an

optimal cluster, finding shortest route, etc.

3.1. Swarm-based Metaheuristics

Meta-heuristic term in the field of mathematical

optimization refers to a high-level procedure which can

be used for providing a good solution to an

optimization problem, especially when exploration of

whole search space is not possible. There are hundreds

of swarm-based meta-heuristics available in the

literature, and some of the popular ones are listed in

Table 1.

Ant colony algorithm [6] is based on the ability of ants

to find shortest path to the food source. Initially, the

ants wander randomly in search for food. On locating

food, they return to colony leaving a pheromone trail.

Table 1. Swarm Intelligence meta-heuristics.

Algorithm Proposed by Year

Ant Colony Optimization Dorigo, Di Caro 1992

Particle Swarm Optimization Kennedy, Eberhart, Shi 1995

Bacterial Foraging algorithm Passino 2002

Artificial Fish Swarm Li et. Al 2003

Glow-worm Krishnanad and Ghose 2005

Artificial Bee Colony Karaboga, Basturk 2007

Firefly algorithm Xin-She Yang 2008

Cuckoo Search Xin-She Yang, Deb 2009

Bat algorithm Xin-She Yang 2010

When other ants come across such a trail, they quit

wandering and follow the trail. The pheromones tend

to evaporate with time; therefore pheromone density

remains high on shorter paths compared to longer

ones. So, the ants tend to follow the shortest path on

which the pheromone density is highest.

Particle Swarm Optimization (PSO) [7] is based on

bird flocking. The initialization in PSO is similar to

that of genetic algorithm; a random population is

generated to represent the members of the swarm. The

swarm is updated throughout the generations in order

to search for optimum. The particles fly through the

solution space based on their own best value and the

swarm’s best value to obtain the global best.

Bacterial foraging algorithm [21] is based on the

behaviour exhibited by bacteria while searching for

food. The behaviour of bacteria depends upon the

chemicals in its environment which may be secreted

by other bacteria for communication. The bacteria

move in swarms towards a location which has the

optimal environment (in terms of food, etc.,).

The main concept in artificial fish swarm algorithm

[17] is the visual scope of each fish. The visual scope

of the fish may be empty, crowded, and normal. If the

scope is normal, the fish moves towards the center of

the scope. The swarming movement is activated if this

central point has better fitness value; otherwise a

random point within visual scope is selected (which

also must have a better fitness value).

The glow worm algorithm [16] is based on the

concept of bioluminescence/glow which is used by

glow worms to communicate with each other. The

glow worm with less light intensity move towards the

glow worm with higher light intensity.

Artificial bee colony [13] algorithm is based on

foraging behaviour of honey bees. Bee colonies send

bees to collect nectar from flower patches in

proportion to the amount of nectar available in the

patch. These bees return and communicate with other

bees at the hive via a waggle dance that informs other

bees in the hive about the direction, distance, and

quality of food sources.

Cuckoo search [31] algorithm is inspired by the

breeding behaviour of cuckoos (to lay their eggs in the

nests of other birds). Three basic operations associated

with CSA are:

FAAD: A Self-Optimizing Algorithm for Anomaly Detection 275

a. Every cuckoo lays one egg at a time, and dumps its

egg in randomly selected nest in the environment.

b. The nests with good quality of eggs will remain for

next generations.

c. The number of host bird nests is fixed, and the egg

laid by a cuckoo is identified by the host bird

depending on a probability in the range [0, 1] (under

such situation, the host bird can either destroy the

egg or destroy the present nest and build a new one).

Bat algorithm [27] is based on echolocation behaviour

of bats. As the bat flies, it emits pulses which bounce

back of the objects in its path and echo back to the bat.

From these echoes, the bat can determine the distance

of the object, size of the object, as well as its own speed

of flight. The bat can adjust its velocity and pulse rates

based on its proximity to the object/prey.

3.2. Anomaly Detection by Swarm Intelligence

According to Knorr’s definition of an outlier, a data

point is an outlier if it has a fraction ϕ or less of the

total points within distance r (Figure 1). The values of ϕ

and r are user-defined and very hard to decide. Instead

of selecting values of ϕ and r randomly, an

optimization algorithm can be used to obtain these

values. The idea is: for each point p, consider a circle of

radius r with p being the center, find the number of

points being enclosed by this circle; let the number of

points being enclosed is k, then the aim is to find the

point p* and radius r* such that the value of k/r is

minimized. This value of r* is then used to compute the

k/r ratio of other points and rank them. The points with

low k/r ratio will be outliers. We can also set a value ϕ

such that if k/n<ϕ (n is total number of points) for a

point, then such a point will be an outlier.

Figure 1. Knorr’s definition of an outlier.

Swarm intelligence algorithms are used in many

optimization problems and can also be used for this

problem. The fitness function is k/r and we have to

minimize this fitness function. However, if r is very

small then k may be 0 giving the least possible value of

k/r, and if r is very large then also k/r→0 when r→∞.

Hence, the value of r should not be too high or too

low. Therefore, we need to set a lower limit as well as

an upper limit on the value of k. So, acc. to [19] the

fitness function that could be used is:

*

k k

r k r n k

The first term is to limit the lower bound of r, and

third term is to limit the upper bound of r. For a small

value of r, the first term will be high so fitness

function will return a high value (we will consider

minimum value of k to be 1 i.e., we will consider the

point itself in the value of k). If we set value of

α=0.05n, then it will ensure that the value of r will be

large enough. The third term becomes infinity for k=n

(case when r is very large), so points for which third

term comes out to be infinity will clearly not be

outliers. This ensures that r is not too small which may

lead to missing the outliers or too large to include

outliers from the normal set of points.

4. Firefly Algorithm

Firefly algorithm developed by Yang [28, 29], is a

meta-heuristic algorithm inspired by nature. Firefly

algorithm is among those stochastic algorithms which

follow randomization approach to search the solution.

Some of the important fields of its application are

optimization of dynamic and noisy environment and

constraints, combinatorial and multi-objective

optimization [33]. Apart from the field of optimization

it is also capable of solving classification problems

that we come across in the fields of neural network,

data mining and machine learning [23, 32].

4.1. Biological Foundation

Fireflies are distinguished by their flashing light

produced by a biochemical process known as

bioluminescence. These bright flashing lights serve as

a signal for mating as well as warning signals from

potential predators. The fireflies move towards the

brightest/fittest/optimal partner for mating and this

behavior is exploited in the metaheuristic to find the

optimal solution for a given problem. Firefly

algorithm makes the following assumptions [9, 30]:

 The brightness/fitness of a firefly corresponds to

the objective function.

 Each firefly is attracted to all other fireflies as they

are unisex.

 A brighter firefly is more attractive, and a less

bright firefly will move towards a firefly which is

brighter. The attractiveness/brightness increases as

the distance b/w the fireflies’ decreases.

The objective function is the convex/fitness function

which is to be minimized. Each firefly represents a

candidate solution, and the aim is to find the solution

(1)

276 The International Arab Journal of Information Technology, Vol. 17, No. 2, March 2020

which gives the minima of the convex function. This

can be done by calculating the fitness value of each

solution, and moving the value of less fit solutions

towards the fittest solution. This process may lead to a

local best instead of global best, so the brightest firefly

is needed to be moved randomly to a location where its

brightness is increased even further. This random

movement of brightest firefly ensures that we are able

to reach a global best instead of local best. In next

section, the mathematical formulation of the

movements of the fireflies is presented.

4.2. Mathematical Foundation

From physics, we know that the light intensity I(r)

varies according to the inverse square law:

2() /sI r I r

Where, Is is the light intensity at source.

The light intensity I vary with distance r for a stated

medium with absorption coefficient λ, acc. to the

Equation:

0

rI I e

Where, Io is the actual light intensity.

The Equations (2) and (3) can be combined to give

the following Equation:

2

0

rI I e

Taking the above equations into consideration, the

attractiveness of a firefly can be defined as:

2

0

re

Where, 0 is the attractiveness of the firefly at r=0.

In the real time environment, the attractiveness

function of the firefly i.e., ()r can be any

monotonically decreasing function described in the

generalized form as:

0()
mrr e

The cartesian distance (r) is the distance between any

two random fireflies i and j at location xi and xj.

2

, ,

1

()
d

ij i j i k j k

k

r x x x x

In 2-dimensional case, we have

2 2() ()ij i j i jr x x y y

The less bright firefly l is attracted to another more

attractive firefly m according to the Equation:

2

2 2

0

0 0

()

(1)

r

l l m l

r r

l m l

x x e x x

x e x e x

This equation (Equation (10)) gradually changes the

value of the parameter (to be optimized) in each

iteration so as to move towards the best value found so

far until we reach convergence to obtain the global

best. The value of the parameter plays a significant

role in determining the speed of convergence and it

follows the range of 0 to 10. Higher the value of ,

faster is the convergence to the solution but we should

also not set it so high that it jumps the optimal solution

(normally this value is set to 1).

4.3. The Algorithm

The pseudo-code for firefly meta-heuristic is given

below.

begin

Identify objective function f(x);

Generate initial population xi of fireflies;

Formulate light intensity Ii at xi via f(xi);

while t<maxGenerations do begin

for i := 1 to n do begin

for j := 1 to n do begin

if Ij>Ii then

Move firefly i towards j by using Eq. (10);

Evaluate new results; end;

Update light intensity; end;

Rank the fireflies and find the current best; end; end;

Display results;

end.

The algorithm starts with a population of fireflies

where each firefly corresponds to a possible solution

from the solution space. The solutions are evaluated

based on a defined fitness function; the better the

solution, brighter the firefly. The less bright fireflies

are moved towards more bright fireflies i.e. the

parameters of less promising solutions are changed so

that they are closer to the parameters of more

promising solutions (according to Equation (10)). To

prevent the algorithm from converging towards local

maxima/minima instead of global maxima/minima,

the brightest firefly is moved randomly so as to

increase its brightness. This process is repeated for a

fixed number of iterations so as to converge to a

global maxima/minima.

4.4. Firefly Algorithm for Anomaly Detection

Firefly algorithm can be quite easily used for detecting

anomalies by optimizing the fitness function

expressed in Equation (1) to obtain the optimal value

of r which can be further utilized to detect the outlier

points in the data. What we need to do is to start with

a random population of fireflies (corresponding to the

parameter to be optimized which in this case is the

radius r) and find the brightest firefly (best value of r)

in the current population and move remaining (less

bright) fireflies i.e., towards this brightest firefly

(optimal value of r) until convergence is reached. The

pseudo-code for detecting outliers using firefly

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

FAAD: A Self-Optimizing Algorithm for Anomaly Detection 277

algorithm is given below. In the firefly algorithm there

are generic parameters like number of fireflies, gamma,

beta0 as well as problem specific parameters like

fitness function, etc., The pseudo-code for Firefly

Algorithm for Anomaly Detection (FAAD) algorithm is

given below.

Algorithm 1: (FAAD)

Input: Dataset D

Output: Anomalous data points in D

begin

Step-1. Initialization.

Generate a distance matrix dist_mat of D.

Define a list with N values of radius r, each value of r

corresponds to a firefly.

Set objective function as F=k/r.

Step-2. Calculate brightness of each firefly.

For each r in list do

 For each row in dist_mat do

i. Find number of elements less than r (set this value

as k).

ii. Find fitness of rows acc to F.

 Find row with minimum value of fitness function. The fitness of

this row is the brightness of the firefly.

Step-3. Identify the brightest firefly.

In previous step, we get N fitness values corresponding to

brightness of each firefly.

The firefly (value of r) with least fitness value is the brightest

firefly, denoted by r*.

Step-4. Move fireflies towards the brightest firefly.

for each r in the list do

 if(r!=r*)

 update r acc. to Eq. (10)

 else

 update r* by random walk

Step-5. Repeat steps 3 and 4 for fixed number of iterations.

Return the value r* (optimal value of r).

Step-6. Rank the points for r*.

for each row in dist_mat do

i. Find number of elements less than r*.

ii. Find fitness of row acc. to F.

Rank all the rows (lower the fitness value, higher the rank).

Step-7. Return the k highest ranked points/rows as outliers and

remaining as inliers.

end.

The algorithm starts with initializing the fireflies (a

firefly corresponds to a value of r). Brightness of each

firefly is calculated by identifying the point with lowest

value of fitness function given in Equation 1. The less

bright fireflies are moved towards brighter firefly i.e.

the value of r for each firefly is changed so as to be

near (by some fraction) to the best value of r in the

current epoch. This process is repeated till

convergence.

4.5. Parallelization in Spark MapReduce

MapReduce is a distributed/parallel programming

model which runs on a cluster of commodity

hardware, where a master node distributes the job to

slave nodes for parallel processing. MapReduce model

consists of two phases: map and reduce; in the map

phase the job in divided into independent sub-tasks

and assigned to slave nodes, and in the reduce phase

the output returned by each slave is aggregated to give

a final result. The two most popular tools which

support MapReduce are Apache Hadoop and Apache

Spark. Apache Spark is said to be faster than Apache

Hadoop due to its in-memory computation capability

and use of Resilient Distributed Database (RDD) on

which two types of operations can be performed viz.

transformation and action.

A Spark job typically contains sequential steps and

those steps which contain independent sub-tasks can

be parallelized by executing the sub-tasks in parallel

as shown in Figure 2 below. In the MapReduce-based

parallel implementation of the firefly algorithm for

anomaly detection, the task of finding fitness of

fireflies can be parallelized as all fireflies are

independent of each other.

Figure 2. Spark Job.

A snapshot of parallelization in PySpark is given

below.

sc = pyspark.SparkContext.getOrCreate()

data_rdd=sc.textFile(“ dataset ”)

values of r

fireflies = [10, 100, 1000, 10000]

convert the list to a Spark RDD

fireflies_rdd=sc.parallelize(fireflies)

def brightness(firefly):

sequential code to find fitness

return fit

code to parallelize a function

278 The International Arab Journal of Information Technology, Vol. 17, No. 2, March 2020

intensity = fireflies_rdd.map(lambda x: brightness(x))

5. Experiments

In this section, the performance of the proposed FAAD

algorithm is compared with standard algorithms of

anomaly detection viz. KMeans, DBSCAN, LOF, and

Random Forest. Each of these algorithms require some

parameters to be set, however the proposed FAAD

algorithm doesn’t require setting up of any parameters

as it is self-optimizing. For k-means algorithm, the

number of clusters was set to 30. For DBSCAN, we do

not need to set the number of clusters, but we need to

set the parameter eps i.e. the maximum distance

between two samples for them to be considered as in

the same neighborhood, and was given the value 0.8.

LOF requires the number of neighbors to consider, and

this value was set to 15. Random Forest requires the

number of trees, which was set to 10. The algorithms

were implemented in PySpark and the experiments

were performed on i7 processor with 4 cores, 8GB

RAM running Ubuntu 16.10. The performance was

evaluated on the basis of accuracy of the algorithms

(Table 2 and Figure 3). The metric used for accuracy is

jaccard similarity between actual labels and predicted

labels for each instance in the dataset. The experiments

were conducted on openly available datasets:

lymphography dataset, wisconsin breast cancer dataset,

post-operative dataset, pageblocks dataset, credit card

fraud detection dataset, forest cover dataset and

kddcup99 dataset.

Lymphography dataset contains 148 instances and

18 attributes. There are 4 classes: normal find (label 1),

metastasis (label 2), malign lymph (label 3), and

fibrosis (label 4). Classes “normal find” and “fibrosis”

have only 2 and 4 instances in the dataset, respectively

and are treated as outliers. Hence, the dataset has 6

outliers and 142 normal points.

Post-Operative Patient dataset contains 90 instances

with 9 attributes. The data points are classified into 3

classes: A, S and I. We will treat the points classified as

A (64 in total) as normal points, whereas the points

classified as I (2 in total) and S (24 in total) will be

treated as outliers. So, the dataset consists of 26 outliers

and 64 non-outliers.

Wisconsin breast cancer dataset has 483 instances

with 10 attributes, containing 444 benign (label 2)

instances and 39 malignant (label 4) instances. The

original dataset has 699 instances, where 458 are

benign and 241 are malignant. 16 instances have

missing values, so we remove these instances, giving us

444 benign and 239 malignant instances. Following

Hawkins [12], only one of every sixth malignant

instance is kept, giving us 39 malignant instances,

which are treated as outliers among 444 benign

instances.

Page-blocks dataset has 5053 instances with 11

attributes, containing 4913 normal points and 140

outliers. The original page-blocks dataset has 5473

instances with 11 attributes. The dataset is mainly a

classification problem where the blocks of documents

are classified as text or non-text. Although it is a

multi-class problem of 5 classes (text, horizontal line,

picture, vertical line, and graphic), we will consider it

as a two class problem: text and non-text, which gives

us 4913 instances of text blocks and 560 instances of

non-text blocks. We will take one of every four non-

text instances i.e., we will keep only 140 instances

which are not classified as text.

The credit card fraud detection dataset contains data

of 284807 transactions with 31 attributes, out of which

492 transactions are labeled as fraud. These

transactions are done with 172792 credit cards, hence

there are multiple transactions for most of the cards.

The forest cover dataset has 581012 instances (with

54 attributes) which are classified into 7 classes (1-7),

with class 4 having minimum number of instances

(2747). We will consider instances of class 2 (283301

instances) and class 4 (2747 instances) only i.e., total

286048 instances. Moreover, we will consider only 10

attributes (ignoring 40 binary soil type attributes and 4

binary wilderness areas). Therefore, we will consider

the instances from class 4 as outliers whereas the rest

of the instances will be considered as inliers.

The original kddcup99 dataset (for intrusion

detection) has 4898431 instances with 41 attributes.

The original dataset has 3925651 attacks, but a smaller

set with attribute “logged-in” as positive has 3377

attacks. Further, taking the “service” attribute, the

dataset can be divided into http, smtp, ftp, ftp-data,

others subsets. We consider only the http instances

(567497 in total) with 2211 attacks and we will

consider every type of attack as an outlier, and give

same label to every type of attack.

Table 2. Accuracy of algorithms.

Dataset K-Means DBSCAN LOF Random Forest FAAD

Lymphography 0.7942 0.8405 0.9256 0.9082 0.9729

Post-Operative 0.7461 0.7988 0.8666 0.8712 0.9111

Cancer 0.6438 0.7283 0.8033 0.8427 0.9751

Page-blocks 0.7159 0.8023 0.8750 0.8154 0.9703

Credit Card 0.6943 0.8217 0.8999 0.8545 0.9985

Forest Cover 0.5861 0.8096 0.8945 0.9148 0.9964

KDDCup99 0.5537 0.6158 0.6088 0.6859 0.9930

The FAAD algorithm doesn’t assign labels to the

instances, instead it ranks the instances in decreasing

order of probability of being an outlier. So, the user

needs to provide the count k of outliers to be detected,

and the algorithm will label top k instances in the

returned list as outliers, whereas rest of the instances

will be labeled as normal. From the experimental

results, it can be inferred that FAAD algorithm

provides much accurate results than its counterparts.

FAAD: A Self-Optimizing Algorithm for Anomaly Detection 279

6. Conclusions

In this paper, the authors proposed a firefly meta-

heuristic based algorithm for anomaly detection. The

major advantage of the proposed solution is that it is

self-optimizing and is implemented on a big data tool in

a parallel environment. Experiments were performed on

multiple datasets to compare the performance of the

proposed algorithm with existing algorithms. The

results highlighted the drawbacks of existing algorithms

which were run with default parameters, and therefore

had poor accuracy. The proposed solution being self-

optimizing doesn’t suffer from such drawback and

gives much accurate results.

Figure 3. Comparative performance of algorithms.

References

[1] Angiulli F. and Pizzuti C., “Fast Outlier Detection

in High Dimensional Spaces,” in Proceedings of

European Conference on Principles of Data

Mining and Knowledge Discovery, Helsinki, pp.

15-27, 2002.

[2] Angiulli F. and Pizzuti C., “Outlier Mining In

Large High-Dimensional Data Sets,” IEEE

Transactions on Knowledge and Data

Engineering, vol. 17, no. 2, pp. 203-215, 2005.

[3] Angiulli F., Basta S., and Pizzuti C., “Distance-

Based Detection and Prediction of Outliers,”

IEEE Transactions on Knowledge and Data

Engineering, vol. 18, no. 2, pp. 145-160, 2006.

[4] Breunig M., Kriegel H., Ng R., and Sander J.,

“LOF: Identifying Density-Based Local Outliers,”

in Proceedings of ACM SIGMOD Record, vol. 29,

no. 2, pp. 93-104, 2000.

[5] Bryson S., Kenwright D., Cox M., Ellsworth D.,

and Haimes R., “Visually Exploring Gigabyte

Data Sets in Real Time,” Communications of the

ACM, vol. 42, no. 8, pp. 82-90, 1999.

[6] Dorigo M., Optimization, Learning and Natural

Algorithms, Thesis, Politecnico di Milano, 1992.

[7] Eberhart R. and Kennedy J., “A New Optimizer

Using Particle Swarm Theory,” in Proceedings of

the 6th International Symposium on Micro

Machine and Human Science, Nagoya, pp. 39-43,

1995.

[8] Ester M., Kriegel H., Sander J., and Xu X., “A

Density-Based Algorithm for Discovering

Clusters in Large Spatial Databases with Noise,”

in Proceedings of the 2nd International

Conference on Knowledge Discovery and Data

Mining, vol. 96, no. 34, pp. 226-231, 1996.

[9] Fister I., Yang X., and Brest J., “A

Comprehensive Review of Firefly Algorithms,”

Swarm and Evolutionary Computation, vol. 13,

no. 1, pp. 34-46, 2013.

[10] Han J., Pei J., and Kamber M., Data Mining:

Concepts and Techniques, Elsevier, 2011.

[11] Hawkins D., Identification of Outliers, Chapman

and Hall, 1980.

[12] Hawkins S., He H., Williams G., and Baxter R.,

“Outlier Detection Using Replicator Neural

Networks,” in Proceedings of International

Conference on Data Warehousing and

Knowledge Discovery, Aix-en-Provence, pp.

170-180, 2002.

[13] Karaboga D. and Basturk B., “A Powerful and

Efficient Algorithm for Numerical Function

Optimization: Artificial Bee Colony Algorithm,”

Journal of Global Optimization, vol. 39, no. 3,

pp. 459-471, 2007.

[14] Knorr E. and Ng R., “Algorithms for Mining

Distance Based Outliers in Large Datasets,” in

Proceedings of the International Conference on

Very Large Data Bases, New York, pp. 392-403,

1998.

[15] Koufakou A., Secretan J., Reeder J., Cardona K.,

and Georgiopoulos M., “Fast Parallel Outlier 1

Detection for Categorical Datasets Using

Mapreduce,” in Proceedings of IEEE

International Joint Conference on Neural

Networks, Hong Kong, pp. 3298-3304, 2008.

[16] Krishnanand K. and Ghose D., “Glowworm

Swarm Based Optimization Algorithm for

Multimodal Functions with Collective Robotics

Applications,” Multiagent and Grid Systems,

vol. 2, no. 3, pp. 209-222, 2006.

[17] Li X., A New Intelligent Optimization-Artificial

Fish Swarm Algorithm, PhD Thesis, Zhejiang

University, 2003.

[18] Liu B., Fan W., and Xiao T., “A Fast Outlier

Detection Method for Big Data,” in Proceedings

of Asian Simulation Conference, Singapore, pp.

379-384, 2013.

[19] Mohemmed A., Zhang M., and Browne W.,

“Particle Swarm Optimisation for Outlier

Detection,” in Proceedings of the 12th Annual

Conference on Genetic and Evolutionary

Computation, Portland, pp. 83-84, 2010.

[20] Papadimitriou S., Kitagawa H., Gibbons P., and

Faloutsos C., “Loci: Fast Outlier Detection

Using the Local Correlation Integral,” in

Proceedings of the 19th International Conference

280 The International Arab Journal of Information Technology, Vol. 17, No. 2, March 2020

on Data Engineering, Bangalore, pp. 315-326,

2003.

[21] Passino K., “Biomimicry of Bacterial Foraging

For Distributed Optimization and Control,” IEEE

Control Systems Magazine, vol. 22, no. 3, pp. 52-

67, 2002.

[22] Ramaswamy S., Rastogi R., and Shim K.,

“Efficient Algorithms for Mining Outliers from

Large Data Sets,” ACM SIGMOD Record, vol. 29,

no. 2, pp. 427-438, 2000.

[23] Sajwan M., Acharya K., and Bhargava S.,

“Swarm Intelligence Based Optimization for Web

Usage Mining in Recommender System,”

International Journal of Computer Applications

Technology and Research, vol. 3, no. 2, pp. 119-

124, 2014.

[24] Sugumaran P., Ravi K., and Shanmugam T., “A

Novel Algorithm for Enhancing Search Results

By Detecting Dissimilar Patterns Based on

Correlation Method,” The International Arab

Journal of Information Technology, vol. 14, no. 1,

pp. 60-69, 2017.

[25] Tukey J., Exploratory Data Analysis, Addison-

Wesley Publication Company, 1977.

[26] Yan Y., Zhang J., Huang B., Sun X., Mu J.,

Zhang Z., and Moscibroda T., “Distributed

Outlier Detection Using Compressive Sensing,”

in Proceedings of the ACM SIGMOD

International Conference on Management of

Data, Melbourne, pp. 3-16, 2015.

[27] Yang X., Nature Inspired Cooperative Strategies

for Optimization, Springer, 2010.

[28] Yang X., “Firefly Algorithm, Stochastic Test

Functions and Design Optimization,”
International Journal of Bio-Inspired

Computation, vol. 2, no. 2, pp. 78-84, 2010.

[29] Yang X., Research and Development in

Intelligent Systems, Springer, 2010.

[30] Yang X., Nature-Inspired Metaheuristic

Algorithms, Luniver Press, 2010.

[31] Yang X. and Deb S., “Cuckoo Search Via Lévy

Flights,” in Proceedings of World Congress on

Nature and Biologically Inspired Computing,

Coimbatore, pp. 210-214, 2009.

[32] Yang X. and He X., “Firefly Algorithm: Recent

Advances and Applications,” International

Journal Swarm Intelligence, vol. 1, no. 1, pp. 36-

50, 2013.

[33] Zang H., Zhang S., and Hapeshi K., “A Review of

Nature-Inspired Algorithms,” Journal of Bionic

Engineering, vol. 7, no. 4, pp. 232-237, 2010.

Adeel Hashmi is a PhD scholar in

Jamia Millia Islamia. He has done

his BTech and MTech from IP

University Delhi. He has over 8

years of teaching/research

experience. His areas of interest in

research are machine learning, data

mining and big data.

Tanvir Ahmad is a Professor in

Department of Computer

Engineering at Faculty of

Engineering and Technology. He

has over 20 years of teaching and

research experience. He has

multiple publications in reputed

international journals and conferences.

https://www.sciencedirect.com/science/journal/16726529
https://www.sciencedirect.com/science/journal/16726529

