
338 The International Arab Journal of Information Technology, Vol. 17, No. 3, May 2020

A Contrivance to Encapsulate Virtual Scaffold with

Comments and Notes

Nagarajan Balasubramanaian1, Suguna Jayapal2, and Satheeshkumar Janakiraman3
1Department of Computer Applications, Arunai Engineering College, India

2Department of Computer Science, Vellalar College for Women, India
3Department of Computer Science, Bharathiar University, India

Abstract: CLOUD is an elision of Common Location-independent Online Utility available on-Demand and is based on

Service Oriented Architecture (SOA). Today a chunk of researchers were working towards contrivance based on multi-tenant

aware Software as a Service (SaaS) application development and still a precise pragmatic solution remains a challenge among

the researchers. The first step towards resolving solution is to enhance the virtual scaffold and propose it as a System under

Test (SuT). The entire work is proposed as a Model View Controller (MVC) where the tenant login through the View and write

their snippet code for encapsulation. The proposed VirScaff schema acts as Controller and provides authentication and

authorization by role/session assignment for tenant and thus helps to access data from the dashboard (Viz., Create, Read,

Update and Delete (CRUD)). The SuT supports and accommodates both SQL and Not only Structured Query Language

(NoSQL) dataset. Finally, this paper construed that SuT behaves well for both SQL and NoSQL dataset in terms of time and

space complexities. To sum-up, the entire work addresses the challenges towards multitenant aware SaaS application

development and highly commendable while using NoSQL dataset.

Keywords: Virtual scaffold, Multi-Tenant common gateway, pattern, model view controller, role-based access control,

JavaScript object notation, not only structured query language, software as a service.

Received July 14, 2017; accepted July 28, 2019

https://doi.org/10.34028/iajit/17/3/7

1. Introduction

Common Location-independent Online Utility

available on-Demand (CLOUD) architecture is

location independent on-line utility which is

subscription based model. Multi-tenancy defines the

single instance of software which is running on the

service provider’s infrastructure [1, 20]. Virtual

scaffold provides a virtual platform, in which, the

tenant utility available from the remote location(s) [1,

11]. The scaffold provides seamless interoperability

through a model, view and controller. The model

provides data and business logic. A view provides user

interface. A controller acts as handler and issues

business logic.

A pattern language provides re-usable component,

and these components instruct the controller to handle

the request between application and database. This

contribution uses Model View Controller (MVC)

pattern, which helps in tweaking the multi-tenant

application development [3, 22].

Access Control is generally a policy or procedure

that allows, denies or restrict access to a system [5, 7].

Various identity based access control model includes

Mandatory Access Control (MAC), Discretionary

Access Control (DAC) and Role-Based Access Control

(RBAC) [6, 7].

National Institute of Standards and Technology

(NIST) has laid standards for cloud characteristics,

virtualization and RBAC [5]. Each tenant is isolated

(remote) and seclude (segregated with private space for

execution). Tenant can be from any corner of the globe

[11].

A role can be thought of as the set of transactions

that a tenant or group of the tenant can perform within

the context of an organisation [7].

This paper addresses the issues related to a tenant

logging into the system, access data from the

dashboard (Viz., Create, Read, Update and Delete

(CRUD)) and store the resultant solution in virtual

container using SQL and NoSQL datasets. Enhanced

virtual scaffold is proposed as SuT with Multi-Tenant

Component Gateway (MTCG) pattern as pattern

language [2, 19]. The VirScaff schema congregates the

layers in the virtual scaffold and provided

encapsulation between data and application. This

contribution discusses a gamut and implementation of

VirScaff schema in a pragmatic perspective.

The rest of this paper is organised as follows section

2, discussed on study on related literatures. Section 3

detailed about rudiments for contrivance. Section 4

elaborated on contrivance for encapsulation. Section 5

discussed about experiments conducted on virtual

scaffold. The discussion at the end of section 5.4,

provided comments on results obtained with a scope of

future implementation. Section 6 concluded remarks

https://doi.org/10.34028/iajit/17/3/7

A Contrivance to Encapsulate Virtual Scaffold with Comments and Notes 339

on solution to multi-tenant SaaS application

development.

2. Study on Related Literatures

Onset study for this orchestration begins with literature

related to host multi-tenant SaaS applications.

Marino et al. [14] have proposed a middleware, by

name, MIDAS, to provide interoperability between

Software as a Service (SaaS) and Data as a Service

(DaaS). They have claimed that, through MIDAS, an

application will be able to get data for its operation

through DaaS and return the expected result. Hui et al.

[12] has proposed architecture by name M-Store. They

argued that multi-tenant data management was a form

of SaaS, whereby, third party service provider host

DaaS and claimed scalability as the key feature for

their architecture. Solomon et al. [18] has presented

Zeros Framework. They claimed that, their Zeros

Framework combines with fine-grained access control

to allow existing application to migrate to cloud

environment with very minimal software changes.

Literature study on [12, 14, 18], provided sufficient

information on existing architecture and its

implementation on cloud multi-tenant data

management.

Jacobs and Aulbach [13] have implemented multi-

tenant SQL Data model using Shared Table and Shared

Instance (STSI) and suggest that it was essential for

hosted services to manage high traffic volumes at low

cost. They suggested those multi-tenant data models

were useful to handle multiple branches that have the

same schema. Hammes et al. [9] has examined the

design, execution and subsequent performance

between traditional RDBMS and NoSQL data model.

The authors implemented them in cloud server using

MongoDB document data model and results obtained

were useful. Tudorica and Bucur [21] have listed

and compared various NoSQL systems with multiple

comparisons. Both authors have concluded their results

by implementing Yahoo! Cloud Serving Benchmark

(YCSB) dataset. Okman et al. [17] has discussed

security issues in NoSQL. Literatures [9, 13, 21] gave

clear idea on implementation on SQL and NoSQL data

model.

Ferraiolo et al. [6] have proposed a NIST model for

role-based access control towards an unified standard

whereas Ferraiolo and Richard [7] have studied various

access control model and proposed rules required for

implementing role-based access control. Tang et al.

[20] have proposed multi-tenancy authorization models

for collaborative cloud services. They have remarked

that most cloud service providers isolate user activities

and data within a single tenant boundary with no or

minimum cross tenant interaction. With this remarks,

they have proposed a model for Authorization as a

Services (AaaS). For Multi-Tenant Role-based Access

Control (MT-RBAC) model family which aimed to

provide fine-grained authorization in collaborative

cloud environments by building trusted relations

among tenants.

Yu et al. [23] enunciated, many new challenges

when the user access confidential data in the untrusted

environment. They have identified and addressed open

challenges such as fine-graininess, scalability, and data

confidentiality of access control in their literature by

exploiting and uniquely combining technique of

attribute-based encryption, proxy re-encryption and

lazy re-encryption and claimed that they have

developed the provably secure system under existing

security models. Mehar et al. [15] has presented a

modified fine-grained data access control algorithm for

file storage cloud. They have presented the algorithm

for fine-grained data access.

The study on above existing literatures, helped to

understand that only limited authors have implemented

the system with an architecture which supported huge

dataset and thus help to develop multi-tenant SaaS

applications. The problem identified were - time taken

for execution of query and space requirement for

storage of data. Limited authors have discussed

solution for query execution.

2.1. Problem Statement

The proposed system congregates (or assembles)

various layers into an enhanced virtual scaffold and

implement a System under Test (SuT) with a re-usable

component called MTCG pattern which receives

RBAC and stores results using SQL and NoSQL

document data model(s).

3. Architecture of Enhanced Virtual

Scaffold

3.1. System under Test (SuT)

The virtual scaffold is enhanced and proposed as SuT

in Figure 1. It is a composite assemblage of SaaS,

Infrastructure as a Service (IaaS) and Platform as a

Service (PaaS). The proposed SuT helped to specify,

how application and database can be inter-operable.

The pattern formulation is included into a scaffold to

Prune the data available and provide RBAC to the

seclude tenant entering into the system [3, 5].

Figure 1. Enhanced Virtual Scaffold (SuT) for SaaS Application

Development.

340 The International Arab Journal of Information Technology, Vol. 17, No. 3, May 2020

3.2. Pattern Formalisation

The Multi-Tenant Component Gateway (MTCG)

Pattern [2, 21] is a single re-usable component which

used several patterns [2, 3]. Thus, MTCG helped in

tweaking multi-tenant SaaS application development.

Model View Controller (MVC) pattern helped in

separation of Model from View components and

makes it possible to implement several user interfaces

that reuse the common core business logic. Duplication

of low-level model code is totally eliminated across

multiple User Interface (UI) implementations. Hence,

decoupling of model and view code results in an

improved ability to write a unit test for the core

business logic code. Modularity of components

allowed core logic developers and UI developers to

work simultaneously without affecting the other. The

ability of unit test can be improved using implementing

core reusable component such as authorization service

pattern, which helped in identification of tenant [5].

Federated identity pattern provides the external identity

for a tenant by assigning Tenant ID (TID) [5].

Gatekeeper pattern protects applications and services

by using a dedicated host instance and prune

pseudonymous and anonymous persons using this

pattern [3, 5]. Valet key pattern will restrict direct

access to a client for a specific resource or service [5].

Command and Query Responsibility Segregation

(CQRS) Pattern can be applied in a scaffold to perform

CRUD operation [21]. This pattern segregates the

operation that read data (Queries) from the operation

that update data (command) by using separate

interfaces [1, 21]. The controller handles user request

by executing appropriate business logic for the request

send by the tenant from the dashboard.

4. Encapsulating SuT

4.1. Main Idea

 In tenant self-Service layer, unique login

authentication for the new tenant is done using an

authentication pattern [3, 5]. The existing tenant

logging into the scaffold with tenant ID and password

issued by the authentication process.

In network layer, using federated identity pattern, a

tenant is authorized and provided role identification.

The session identification is provided to the tenant and

Virtual Table Authorization (VTA) is done.

In the data layer, once role selection is done

successfully, tenant operation can be done as Data

Provider (DP), Data Consumer (DC) or create/delete a

table.

The business layer acts as controller in the server

side, which does tenant operation (such as, execution

of CRUD operation on tenant’s model (or table)

available in server side) using CQRS pattern. The

resultant table generated by the tenant after Create

Read Update and Delete (CRUD) operations are stored

in virtual storage container based on Event Sourcing

Pattern [18].

Table 1. Rule for Tenant Access Right (TAR) Code.

Rule 1 Rule 2 Rule 3

The Active Role (AR) for the

tenant (subject) can be defined as

follows

AR(S: subject) = {the active role

for subject S}

Each tenant (subject S) may be

authorized to perform one or more
roles:

Role Authorization (RA)(s:

subject) = {authorized role of

subject s}

Each role may be authorized by

RA to perform one or more

transaction.

Transaction Authorization (TA)
(r: role) = {Transaction

authorized for role r}

Tenant (Subject S) may execute

the transaction.

The predicate exec(s, t) will be

true if subjects can execute

transactions t at the current time,
otherwise, it will be false.

exec (s: subject, t: trans) = true iff

subject ‘s‘can execute transaction

t.

In Role Assignment (RA), a tenant (subject) can execute a

transaction only if the subject has selected or been assigned

a role.

Based on definition 1, the equation 1 will be as follows: ∀s:

subject, t: trans,(exec(s,t)⇒ AR(s) ≠ ⱷ  1
The identification and authentication process is not

considered as a transaction.

All other tenant activities on the system are conducted

through transactions. Thus all active tenants are required to

have a same active role.

In RA, a subject's active role must be authorised for the

subject:

∀s: subject, (AR(s) ⊆ RA(s))  2
With equation (1), this rule ensures that users can take only

the roles for which they are authorised.

In Transaction authorization (TA), a tenant (subject) can
execute a transaction only if the transaction is authorised for

the subject's active role.

∀s: subject, t: trans, (exec(s,t) ⇒t Є TA(AR (S))  3
With equation 1 and 2, this rule ensures that users can

execute only transactions for which they are authorised.

With reference to equation 1, 2 and 3, to enforce control to

access resources (objects) the following equation (4) can be

used ∀s: subject, t: trans, o: object, (exec(s, t) access

(AR(s), r, t, o, x))  4
The equation 4 could be defined using a transaction access

(r, t, o, x) which indicates - a subject (tenant) in role r to

access object (resources) o in mode x using transaction t,

where x is taken from some set of modes such as DP or DC.

USERS, ROLES, OPS, OBS (users, roles, operations, and objects,

respectively)

UA ⊆ USER X ROLES, a many to many mapping users to role
assignment relation.

Assigned users: (r: ROLES) → 2 USERS, the mapping of role r onto

a set of user.

Formally: assigned _user(r) = {u Є USERS | (u, r) Є UA}.

PRMS = 2(OPS-X OBS), the set of permissions

PA ⊆ PRMS X ROLES, a many to many mapping permission –to-
role assignment relation.

Assigned – permission (r: ROLES) → 2PRMS, the mapping of

role r onto a set of permission. Formally : assigned –permissions (

r) = { p Є PRMS | (p,r) Є PA}

Ob (p: PRMS) → {OP ⊆ OPS}, the permission-to-operation

mapping, which gives the set of objects associated with permission

p.

Ob (p: PRMS) → {OP ⊆ OBS}, the permission-to-operation

mapping, which gives the set of objects associated with permission

p.
SESSIONS, the set of sessions.

User sessions (u: USERS) → 2 SESSIONS, the mapping of user u

onto a set of sessions.

Session roles (s: SESSIONS) → 2 ROLES, the mapping of user u

onto a set of roles.

Formally session roles (si)⊆{r ROLES} (session users (si), r)Є
UA)

USER represents the subject (tenant), ROLES represents the role

assigned to the tenant according to their option. OPS represent the

operation to be performed by the tenant and OBS represents the

object (resource), generally available through ISVs in the data
layer. PRMS represents the permission granted during the user

session.

A Contrivance to Encapsulate Virtual Scaffold with Comments and Notes 341

4.2. Mathematical Foundation for RBAC

The user request for the pattern language is based on

the tenant (subjects) and resources (objects). In the

cloud environment, the Independent Software Vendors

(ISVs) will provide resources (objects) to the tenant.

ISVs can share data using STSI data model. According

to tenant's choice, role will be assigned to seclude

tenant before tenant login into the scaffold. NIST has

formulated definitions for RBAC [6, 8]. Table 1

provides the basic rules for TAR code. To sum up, rule

1 provides AR, RA and TA. The rule 2 gives the rule

to implement the RBAC. The rule 3 provides ways and

mathematical definition for implementing RBAC [2,

3].

4.3. Schema Representation

For clarity, the schema is presented in two levels,

namely system level and algorithm level. At the system

level, high-level operations were explained which will

be implemented as the algorithms in the next level.

4.3.1. System Level Schema

The high-level operations involved in this schema

include login/assign a role for the tenant, a creation of

the table and performing CRUD operations, torage of

the file in the virtual container and log-out of tenant

from the scaffold. To sum-up, the operations involved

include new tenant authentication, session allocation

and role management, CRUD operations, storage of

files in the virtual container and tenant revocation.

4.3.2. Algorithm Level Operations

The tenant login into this enhanced virtual scaffold is

from any corner of the globe. The Figure 2 outlines

main idea and flow chart for writing contrivance to

encapsulate the virtual scaffold. The steps for

algorithm level operations were summarized as follows

The tenant self-service layer helps the existing/ new

tenant to login into the system using proper

authentication (View) (Algorithm 1.1 and Algorithm

1.2).

The Network layer authorize the tenant and provide

a seclude User Interface (or View) to the seclude

tenant with unique Tenant ID (TID) (Algorithm 2).

The tenant is assigned with unique Job role by network

layer and then tenant invocates the resource R by

writing suitable snippet code in the business layer

(Algorithm 2).

The business layer (Controller) encapsulates with

data layer and search for the information in the

metadata layer (Algorithm 3).

The Model fetches the data invocated by the tenant,

if available and a discrete view of the data is available

in the tenant’s View (Algorithm 3).

The master database and resultant solutions either in

JSON document format or XML format is stored in the

storage layer (Model) (Algorithm 4).

The tenant logout from the scaffold once they

complete their process (Algorithm 5).

4.3.3. Definition and Notation

The role based seclude tenant invoke for the resource

R through their dashboard and controller receives the

request and encapsulate the tenant with data layer to

fetch the data invocated. To restrict curious snooper

into the scaffold, Tenant Access Right (TAR) code

(Table 2) is generated as Boolean values based on rule

2 and 3 in Table 1. Notation table (Table 3) for

VirScaff algorithm include a Request (Req) sends the

request to the CLOUD and invokes the action on the

service.

Table 2. Tenant Access Right (TAR) code.

TAR

Code

TAR Generation Code

COMMIT ROLLBACK

DP DC

1 T T F

2 F T T

3 F F T

4 F F F

Table 3. Notion table used in VirScaff algorithm.

Notation Description

Req () Tenant’s request with essential parameters.

Serv()
Tenant’s service with a network-based interface and pre-defined

operations

Res () A resource that is acted upon by one or more cloud services

Env()
An environment which contains critical information and not related with

any entity

D
Details regarding the request including Tenant mail ID, First Name, Last

Name etc.,

Tid Tenant Id for the valid request.

SecPass Security Password for the tenant

SA Security Authentication

SAP Security Authentication Plan

Rid Role id for the tenant login into the system

TAR Tenant Access Rights (TAR) (Refer Table 1)

TOP Tenant OPeration based on TAR

Cid Command issue id

Qid Query issued id

Sid Session id

VTA Virtual Table Authentication

TUid Table unique id

TUL Tenant User List

VSid Virtual Storage specific to Tid

FUid File User Identification in the Virtual Table

FUPid File Update id in the Virtual Table

Figure 2. Flowchart to write the VirScaff Schema.

342 The International Arab Journal of Information Technology, Vol. 17, No. 3, May 2020

A Service (Serv) software and hardware with a

network-based interface and per-defined operations.

A Resource (Res) that is acted upon by one or more

CLOUD services, with a specified set of state data

which is either XML documents or JSON documents.

An environment (Env) contains information useful in

taking the access decision.

4.3.4. Schema for Encapsulation

Algorithm VirScaff

{

 Algorithm 1: Tenant Authentication

 Algorithm 1.1: New user login into Scaffold

 Public Virscaff-NewLogin (D)

 {

 If Req(D) == Valid Then Send mail

 regarding pass to the Tenant Email ID

 Tenant start login into his mail and

 get his SecPass;

 Endif;

 If Tenant (SecPass) == valid

 Tenant login into Tenant Dashboard

 Endif;

 }

 Algorithm 1.2: For the existing user

 Public VirScaff-ExistLogin (Tid, Rid, TOP, TUid)

 {

 If Tid (SecPass) == Valid

 Then SA is done in the network layer

 Else intimate Tenant as invalid password

 Endif;

 If Tid (Sec Pass) == invalid Then

 Submit forget password. Network layer

 sends alternative SecPass to his mail ID.

 Endif;

 } // End – Algorithm 1

 Algorithm 2: Tenant authorization and session allocation

 Public VirScaff-aur (Tid, TOP, Rid, TUid, Sid)

 {

 If Tid == Valid Then SA grants permission

 To perform TOP- Tenant enter into

 Dashboard. Tid is assigned with a Rid

 according to TA. Rid is assigned with

 TUid. Tenant Sid starts VSid is assigned

 to Tid at the end of every Sid.

 Endif;

 }// End – Algorithm 2

Algorithm 3: Encapsulating the scaffold

Public class virscaff-TenantCQRS (Rid, Qid,

 VTA, VSid, TUL)

 { // Query Method –Virtual Table Authentication

 // create a Seclude tenant specific table

 Public void createTable (Tid, VTA, Sid, Qid,

 TOP, TUid,)

 {// query method creates a virtual table with

 Table User id (TUid)

 }

 // Command Method

Public void InsertTable (Tid, VTA, Sid, Cid,

 TUid, TOP, VSid)

 { //insert Tenant virtual table by issued a

 // Command id and unique table id (TUid)

 // store the data into Virtual Storage

 // specific to tenant (VSid)

 } // End – InsertTable

Public void Update table (Tid, VTA, Sid, Cid,

 TUid, TOP, VSid)

 { // find tenant’s virtual table (VTA),

 // by issuing Command id and

 // unique table id (TUid)

 //update the tenant data through

 // the seclude tenant dashboard

 // store the data into Virtual Storage

 // container specific to Tenant (VSid)

 } // End - Update Table

Public void DeleteTable (Tid, VTA, Sid, Cid, TUid, TOP, VSid)

 { // find tenant in the data storage by TID

 // Delete the tenant data stored in

 // the virtual container

 } // End - DeleteTable

 } // End – Algorithm 3

Algorithm 4: Storage of Tenant’s file

Public VirScaff-VitStorageReq (Tid, SAP, TOP, Sid, Rid, FUid,

FUPid, UL)

[Storage of Tenant’s specific data]

 {

 Tid is authenticated and authorized

 before storage. Rid of the Tid is ascertained.

 SAP extracts the file attributes whether

 Tid possesses authority to upload the file or not.

 If system == Tid upload file Then

 Extract the owner’s information relevant

 to the FUid. Store the file in the seclude

 tenant’s virtual storage container

 else return to submit the valid new request

 Endif;

 If FUid == exists and

 Tid wants to insert/delete data into file FUid

 Then Check tenant information Tid and

 file information FUid are valid, Update data

 into the file requested by the tenant

 else exception request send by tenant are sent

 back requesting to send valid file request.

 Update the virtual storage container with list of

 Tenant Request List (TUL) against FUid

 Endif;

 } // End – Algorithm 4

Algorithm 5 - Tenant Revocation

Public VirScaff-Logout (Tid, SA, SAP, Sid, Rid, FUid, FUPid,

TUL)

 { [Tenant Log-out from the Virtual Scaffold]

 If Tid == FUid

 close all virtual files

 Endif;

 If Tid == FUPid

 Close all updated virtual files

 Endif;

 If SAP == Tid

 Close the tenant’s session Sid and role Rid

 Endif;

 If SA== TUL valid logout Tid

 from the dashboard and close the session

 Endif;

 Exit from Virtual Scaffold.

 } End – Algorithm 5

} // End of Algorithm VirScaff

4.3.5. Performance Analysis for VirScaff Schema

Consider |L| as the number of user grant login with

A Contrivance to Encapsulate Virtual Scaffold with Comments and Notes 343

authentication. |N| as the number of tenants logged into

the system currently with valid authorization and using

the resources according to their job role. The

computation complexity is summarised as follows

Based on the complexity tabulated in Table 4 and

through priori analysis provided on every algorithm

considering unambiguous, input, output, finiteness,

feasibility and independent it is concluded that the

efficiency of the algorithm is commendable for

implementation and experimentation using posterior

analysis.

Table 4. Complexity for virScaff schema.

Operation Complexity

User grants O(|L|)

File Access O(max| L|,N)

Tenant Revocation O(N)

In posterior analysis, outcome of priori analysis is

taken into consideration and pragmatic implementation

is done to prove the effectiveness and efficiency of the

algorithms using a suitable experimental setup.

5. Schema Implementation

5.1. Experimental Setup

The existing system earlier resulted with OLAP using

either TCP or YCSB based benchmarks. A datasets

based on SQL were used to perform OLAP. Further,

the related literatures revealed that only limited

provision were available for implementing NoSQL

document data model [4, 10]. Hence, a modified

existing system by name VirScaffSQL have to be

devised along with a proposed system by name

VirScaff NoSQL both executes CRUD operations.

 Considering the implementation of SQL and

NoSQL data model for processing in a single SuT,

VirScaffSQL using .NET framework with SQL

SERVER 2008 R2 (where SQL CRUD queries were

executed) and VirScaffNoSQL using Mongo DB (a

NoSQL document data model, where JSON document

were executed) has been setup as an experimental

setup. The business logic (which acts as a Controller)

is using C# (C Sharp) and ASP. NET to access the

dataset for both VirScaffSQL and proposed new

system [16, 19].

5.2. Data Set Description

The experiment is conducted with servers and set of

nodes as the clients. The dataset uses two tables

namely, Tbl_login and Tbl_tenant. The student dataset

is used for processing.

For the purpose of tenant authentication Tbl_login is

used and consists of the attributes email-id, password,

first name, last name and type of user (admin / user).

Every role-based tenant can take the role of DP or DC.

The DP will insert or update the table Tbl_tenant (as

user) whereas DC will select and read values in the

table Tbl_tenant (view the data-as admin).

The other table used is Tbl_tenant. The purpose of

this table is to input/modify student data as DP. The

administrator can view the data as DC. Tbl_tenant

consists of attributes necessary for admission of

student into a course viz., student name, name of father

/guardian, gender, nationality, religion, stream

(vocational/science/others), medium of instruction,

address of student, pin code, mobile Number and

community. Student has to enter their details as DP and

admission will be decided by the management after

login into the system and view the data as DC.

5.3. Metrics for Evaluating VirScaff Schema

The existing system used YCSB as benchmark with

meager dataset for processing. Further, only limited

information were available on usage of tools and

metrics for evaluation. Since, cloud environment

handles CRUD operations with big data set. A schema

should be devised to process the same with minimum

time and less storage space. Hence, to check the

effectiveness of the VirScaff schema the metrics

namely time complexity and space complexity were

used.

The time complexity helps to understand the time

taken to execute CRUD operations on the student

database. Here, time complexity is tested with 10,000

to 1, 00,000 CRUD operations on table Tbl_tenant.

The space complexity helps to understand the storage

space required for a tenant to store their data into table

Tbl_tenant. The space complexity, is tested with

10,000 to 1, 00,000 records stored on the table

Tbl_tenant after CRUD operations.

5.4. Result and Discussion

The results were generated with a VirScaffSQL system

using. NET framework with SQL SERVER 2008 R2

(where SQL CRUD queries were executed) and

VirScaffNoSQL system using MongoDB (a NoSQL

document data model, where JSON document were

executed).

In order to test the time complexity based on Table

5, initially 10,000 CRUD operations on Tbl_tenant

were considered. The VirScaffSQL takes 500 MS to

execute the CRUD operations whereas the proposed

system takes only 120 MS. When as many as 1,00, 000

CRUD operations are executed, in the case of

VirScaffSQL, time required is 2500 MS and on the flip

side, the VirScaffNoSQL executes in 900 MS. Hence,

this research work, based on Figure 3, concludes that,

irrespective of number of CRUD operations performed

in the table Tbl_tenant, the proposed VirScaff Schema

behaved effectively for VirScaffNoSQL than the

VirScaffSQL.

In order to test the space complexity based on Table

6, a seclude tenant has to login into the scaffold

344 The International Arab Journal of Information Technology, Vol. 17, No. 3, May 2020

successfully and start storing resultant solution after

the CRUD operations. The experiment initially stored

10,000 records into Tbl_tenant table. The space

occupied by the VirScaffSQL is 12,000 KB.

Table 5. Pragmatic Results for time complexity.

TIME COMPLEXITY

Time Taken (in Milli-Seconds)

Number of CRUD Operations VirScaffSQL VirScaffNoSQL

10000 500 120

25000 1000 200

50000 1500 350

75000 2000 500

100000 2500 900

Figure 3. Time Complexity.

Table 6. Pragmatic results for space complexity.

SPACE COMPLEXITY

Space Occupied (in Kilo-Bytes)

Number of RecordStored VirScaffSQL VirScaffNoSQL

10000 12000 6000

25000 18000 8500

50000 21000 10000

75000 24000 11000

100000 29000 14000

The VirScaffNoSQL required only 6000 KB of

storage space. When 1,00,000 CRUD operations were

considered for testing, the VirScaffSQL takes 29000

KB of storage space while the VirScaffNoSQL

required only 15,000 KB of storage space to store the

student records in Tbl_tenant table. Hence, it is

concluded, based on Figure 4, irrespective of records

stored in the table Tbl_tenant after CRUD operations,

the proposed VirScaff schema behaved efficiently for

VirScaffNoSQL than the VirScaffSQL.

Figure 4. Space complexity.

6. Conclusions

This contribution assumed an enhanced virtual scaffold

as system model and used a MTCG pattern language to

provide a model view controller to the system. RBAC

was used to provide the role to the tenant, thus,

restricting the snooper intruding into the system. The

VirScaff schema, implemented, acts as a controller,

while developing multi-tenant SaaS application. The

experiment is conducted on performance analysis in

terms of time and space complexity concluded that the

VirScaff schema is efficient to implement and effective

to work with CRUD operations with minimum time

and occupies less storage space. To sum up, this

contribution will be a compendium for the skeptics and

researchers, who want to develop multi-tenant SaaS

application using NoSQL document data model. The

future research work includes enhancing MTCG

pattern and work with the Dockers servers and provide

container with Multi-Cloud environment as a mobile

application with alternative document database model

as a back-end which will be useful for people in all

walks of life anywhere any time.

References

[1] Balasubramanian N. and Suguna J., “A Virtual

Scaffold for Storage Multi-Tenant SaaS Data

Models,” International Journal of Applied

Engineering Research, vol. 10, no. 20, pp.

40775-40780, 2015.

[2] Balasubramanian N. and Jayapal S., “Rumination

on Scaffold Pattern Language for Multi-Tenant

SaaS Application Development,” International

Journal of Control Theory and Application, vol.

9, no. 16, pp. 8257-8265, 2016.

[3] Balasubramanian N. and Jayapal S., “Enhanced

Scaffold Design Pattern for Seclude Multi-tenant

SaaS Application,” in Proceedings of 1st

International Conference on Computational

Intelligence and Informatics, Hyderabad, pp.

671-680, 2016.

[4] Dede E., Govindaraju M., Gunter D., Canon R.,

and Ramakrishnan L., “Performance Evaluation

of a mongo DB and Hadoop Platform for

Scientific Data Analysis,” in Proceedings of 4th

ACM Workshop on Scientific Cloud Computing,

Tucson, pp. 13-20, 2013.

[5] Fehling C., Leymann F., Retter R., Schumm D.,

and Schupeck W., “An Architectural Pattern

Language Of Cloud-Based Applications,” in

Proceedings of 18th Conference on Pattern

Languages of Programs, Portland Oregon USA,

pp. 13-20, 2011.

[6] Ferraiolo D., Sandhu R., Gavrila S., Kuhn D.,

and Chandramouli R., “Proposed NIST Standard

for Role-Based Access Control,” ACM

A Contrivance to Encapsulate Virtual Scaffold with Comments and Notes 345

Transactions on Information and System

Security, vol. 4, no. 3, pp. 224-274, 2001.

[7] Ferralolo D. and Richard K., “Role-Based Access

Control,” in Proceedings of 15th National

Computer Security Conference, Baltimore, pp.

554-563, 1992.

[8] Habiba M., Islam M., and Ali A., “Access

Control Management for Cloud,” in Proceedings

of 12th IEEE International Conference on Trust,

Security and Privacy in Computing and

Communications, Melbourne, pp. 485-492, 2013.

[9] Hammes D., Medero H., and Mitchell H.,

“Comparison of NoSQL and SQL Databases in

the Cloud,” in Proceedings of the Southern

Association for Information Systems Conference,

Macon, pp. 1-8, 2014.

[10] Han J., Song M., and Song J., “A Novel Solution

of Distributed Memory NoSQL Database for

Cloud Computing,” in Proceedings of 10th

IEEE/ACIS International Conference on

Computer and Information Science, Sanya, pp.

351-355, 2011.

[11] Hou D., Zhang S., and Kong L., “Placement of

SaaS Cloud Data and Dynamically Access

Scheduling Strategy,” in Proceedings of 8th

International Conference on Computer Science

and Education, Colombo, pp. 834-838, 2013.

[12] Hui M., Jiang D., Li G., and Zhou Y.,

“Supporting Database Applications As A

Service,” in Proceedings of IEEE 25th

International Conference on Data Engineering,

Shanghai, pp. 832-843, 2009.

[13] Jacobs D. and Aulbach S., “Ruminations on

Multi-Tenant Databases,” in Proceedings of

Datenbanksysteme in Business, Technologie and

Web, Aachen, pp. 514-521, 2007.

[14] Marinho T., Cidreira V., Claro D., and Mane B.,

“Midas: A middleware to Provide

Interoperability between SaaS and DaaS,” in

Proceedings of the XII Brazilian Symposium on

Information Systems on Brazilian Symposium on

Information Systems: Information Systems in the

Cloud Computing, Brazilian, pp. 401-408, 2016.

[15] Mehar D., Vishwakarma G., and Jain Y.,

“Modified Fine-Grained Data Access Control

Algorithms for File Storage Cloud,”

International Journal of Computer Applications,

vol. 116, no. 22, pp. 15-19, 2015.

[16] Ni J., Li G., Zhang J., Li L., and Feng J., Adapt:

Adaptive Database Schema Design for Multi-

Tenant Applications,” in Proceedings of 21st

ACM International Conference on Information

and Knowledge Management, pp. 2199-2203,

2012.

[17] Okman L., Gal-Oz N., Gonen Y., Gudes E., and

Abramov J., “Security Issues in Nosql

Databases,” in Proceedings of 10th International

Conference on Trust, Security and Privacy in

Computing and Communications, Changsha, pp.

541-547, 2011.

[18] Solomon M., Sunderam V., and Xiong L.,

“Towards Secure Cloud Database with Fine-

Grained Access Control,” in Proceedings of IFIP

Annual Conference on Data and Applications

Security and Privacy, Vienna, pp. 324-338, 2013.

[19] Tang B., Sandhu R., and Li Q., “Multi‐Tenancy

Authorization Models for Collaborative Cloud

Services,” Concurrency and Computation:

Practice and Experience, vol. 27, no. 11, pp.

2851-2868, 2015.

[20] Tang B., Li Q., and Sandhu R., “A Multi-Tenant

RBAC Model for Collaborative Cloud Services,”

in Proceedings of 11th Annual Conference on

Privacy, Security and Trust, Tarragona, pp. 229-

238, 2013.

[21] Tudorica B. and Bucur C., “A Comparison

between Several Nosql Databases with

Comments and Notes,” in Proceedings of

RoEduNet International Conference 10th Edition:

Networking in Education and Research, Iasi, pp.

1-5, 2011.

[22] Xiaorong C. and Tianqi L., “A Trusted Virtual

Network Construction Method Based on Data

Source Dependencies,” The International Arab

Journal of Information Technology, vol. 16, no.

5, pp. 889-893, 2019.

[23] Yu S., Wang C., Ren K., and Lou W.,

“Achieving Secure, Scalable, and Fine-Grained

Data Access Control in Cloud Computing,” in

Proceedings IEEE INFOCOM, San Diego, pp. 1-

9, 2010.

346 The International Arab Journal of Information Technology, Vol. 17, No. 3, May 2020

 Nagarajan Balasubramanian
completed his bachelor’s of Science

in Computer Science from Sri

Sankara Arts and Sciece College,

Kanchipuram, India in 1995. He has

completed his Master of Computer

Applications (MCA) from Arunai

Engineering College, Tiruvannamalai, India in 1998

and his Master of Philosophy in Computer Science

from Bharathiar university in 2006. He recently (on 09

December 2019) defended successfully his Phd.,

Thesis at R&D center, Department of Computer

Science, Bharathiar University, Coimbatore, India. He

has around 20 + years of teaching experience at Master

degree. His research interest were Cloud storage and

security.

Suguna Jayapal received the

Master’s degree in mathematics

from Annamalai University,

Chidambaram in 1988 and the Ph.D.

degree in Computer Science from

the Bharathiar University,

Coimbatore in 2009. She is currently

an Associate Professor with the Department of

Computer Science, Vellalar College for Women

(Autonomous), Erode, Tamil Nadu. Her research

interests are AI, Data Mining, Text Mining and Image

Processing. She is the author or co-author of over 30

publications in journals, conference proceedings and

book chapters. She has presented a paper in an

International Conference held at Cincinnati University,

Cincinati, Ohio, USA. She has produced over 22

M.Phil. Scholars, 2 Ph.D. Scholars in Computer

Science and guiding 6 Ph.D. Scholars at present.

Completed one Mnor Research Project funded by

UGC.

Satheeshkumar Janakiraman is

with the Department of Computer

Applications, School of Computer

Science and Engineering, Bharathiar

University, Coimbatore, Tamil

Nadu, India. He received his Masters

in Computer Applications (MCA)

during 1999 and Doctor of

Philosophy during 2010. He is having 18 plus years of

research and teaching experience. He has published

more than 140 research articles in reputed journals and

conference proceedings. He is the member of IEEE,

IETE and CSI. He completed two research projects

under university grants commission and one

collaborative project for the funding of 60 lakhs under

the Department of Science and Technology (DST). He

acted as an organizing secretary for various

international conferences and chaired sessions in

international and national conferences. His area of

specialization includes soft computing, networks,

Image processing and medical imaging. He is an

eminent speaker who visited and delivered speech in

more than 125 institutions. He is an identifiable

researcher in the area of Indian Music and its influence

on human brain.

