
358 The International Arab Journal of Information Technology, Vol. 17, No. 3, May 2020

A Novel Physical Machine Overload Detection

Algorithm Combined with Quiescing for Dynamic

Virtual Machine Consolidation in Cloud Data

Centers

Loiy Alsbatin1, Gürcü Öz1, and Ali Ulusoy2
1Department of Computer Engineering, Eastern Mediterranean University, North Cyprus via Mersin 10

Turkey
2Department of Information Technology, Eastern Mediterranean University, North Cyprus via Mersin 10

Turkey

Abstract: Further growth of computing performance has been started to be limited due to increasing energy consumption of

cloud data centers. Therefore, it is important to pay attention to the resource management. Dynamic virtual machines

consolidation is a successful approach to improve the utilization of resources and energy efficiency in cloud environments.

Consequently, optimizing the online energy-performance trade off directly influences Quality of Service (QoS). In this paper, a

novel approach known as Percentage of Overload Time Fraction Threshold (POTFT) is proposed that decides to migrate a

Virtual Machine (VM) if the current Overload Time Fraction (OTF) value of Physical Machine (PM) exceeds the defined

percentage of maximum allowed OTF value to avoid exceeding the maximum allowed resulting OTF value after a decision of

VM migration or during VM migration. The proposed POTFT algorithm is also combined with VM quiescing to maximize the

time until migration, while meeting QoS goal. A number of benchmark PM overload detection algorithms is implemented using

different parameters to compare with POTFT with and without VM quiescing. We evaluate the algorithms through simulations

with real world workload traces and results show that the proposed approaches outperform the benchmark PM overload

detection algorithms. The results also show that proposed approaches lead to better time until migration by keeping average

resulting OTF values less than allowed values. Moreover, POTFT algorithm with VM quiescing is able to minimize number of

migrations according to QoS requirements and meet OTF constraint with a few quiescings.

Keywords: Distributed systems, cloud computing, dynamic consolidation, overload detection and energy efficiency.

Received November 15 2017; accepted July 29, 2018

https://doi.org/10.34028/iajit/17/3/9

1. Introduction

Cloud environment is an efficient solution for data

intensive and computing intensive applications [10].

Cloud computing provides scalable virtualized

resources to global users over the internet. The

designers of cloud computing systems have interested

on the improvements of computing performance that

are driven by the demand of consumer, business, and

scientific applications. However, the power

consumption of USA data centers has increased by

62.5% from 2005 to 2013 and expected to increase by

150% in 2020 [33]. Most of the energy consumption of

data centers is consumed by the computing resources.

Accordingly, it is important to pay attention to the

resource management ensuring that the applications

efficiently utilize the available computing resources.

Switching the idle nodes to sleep mode to eliminate the

idle power consumption can achieve a reduction in

energy consumption. Dynamic Virtual Machine (VM)

consolidation can effectively improve the utilization of

resources and reduces energy consumption in data

centers. Reallocating VMs from an overloaded

Physical Machine (PM) maximizes the utilization and

energy efficiency with providing a high Quality of

Service (QoS). The goal of consolidation of VMs

ensuring an efficient utilization can be achieved

through the use of VMs migration across different

PMs.

One efficient way to improve the utilization of

cloud data center resources is the dynamic

consolidation of VMs [1, 2, 4, 5, 6, 7, 9, 11, 12, 13,

14, 15, 18, 20, 23, 30, 31, 34, 35]. The dynamic

consolidation reallocates VMs periodically using

migration to reduce the number of active PMs

required to handle requests. The idle PMs are switched

to sleep modes with fast transition times to minimize

the overall energy consumption. If the demand for

resources increases, PMs are reactivated from the

sleep mode. The objective of this approach is mainly

to minimize energy consumption and maximize of

QoS.

A Novel Physical Machine Overload Detection Algorithm Combined with ... 359

It is complex to solve dynamic VM consolidation

problem analytically as a whole [15, 30]. In general, the

problem can be decomposed into tasks as following [4]:

 PM underload detection: It is the phase when a PM

is considered as being underloaded, so all VMs

running on an underloaded PM should be migrated

to other PMs and the underloaded PM should be

switched to the sleep mode (to reduce the number of

active PMs).

 PM overload detection: It is the phase when a PM is

considered as being overloaded, so some VMs

running on an overloaded PM should be migrated to

another active PM (to avoid violation QoS

requirements).

 VM selection: It is the phase to select VMs to be

migrated from the overloaded PM.

 VM migration: It is the phase to perform VM

migration with minimal service downtime during the

migration process.

 VM placement: It is the phase to place selected VMs

for migration on another active PM.

In this paper, we mainly focus on PM overload

detection problem. PM overload detection directly

influences QoS, because performance degradation is

very likely to occur if the resources are completely

utilized. PM overload detection problem is complex

because of the need to improve the system response

time, while handling a set of heterogeneous workloads

placed on a single PM [4]. When a PM is considered as

being underloaded, its VMs are consolidated into other

active PMs and it should be switched to the sleep mode.

But when a PM is considered as being overloaded,

VMs require a higher performance and PM in sleep

mode is reactivated to migrate VMs.

The rest of the paper is organized as follows. In

section 2, we discuss the related work. We introduce

the dynamic consolidation of VMs and propose our PM

overload detection algorithm and the combination of

PM overload detection algorithm and VM quiescing in

section 3. In section 4, we introduce the experimental

settings of Central Processing Unit (CPU) model. In

section 5, the experimental evaluations and results are

discussed. Finally, we conclude the results and discuss

the future work in section 6.

2. Related Work

In the past few years, many approaches to the dynamic

consolidation of VMs have been proposed VMs [1, 2,

4, 5, 6, 7, 9, 11, 12, 13, 14, 15, 18, 20, 23, 30, 31, 34,

35]. Some of VM consolidation algorithms based on

different heuristics on the legitimate PM were analyzed

by Kaushar et al. [17]. A comparative study of various

existing consolidation of VMs algorithms using real

world workload traces was presented by authors. VM

consolidation algorithms under QoS expectations were

evaluated using the CloudSim [5] toolkit showing high

improvement of cost savings and energy efficiency

using dynamic workload scenarios. A scheduling

algorithm to assign VMs to PMs in a data center was

proposed by Sharifi et al. [26]. The goal was to

improve energy efficiency by taking into

consideration the conflicts between the costs of VM

migration and CPU and disk utilizations. Four models

were presented to identify the conflicts, namely the

migration model, the energy model, the application

model, and the target system model.

An adaptive threshold-based algorithm was

proposed by Deng et al. [7]. The overload threshold of

CPU utilization and the average utilization of active

PMs were used for PM underload detection algorithm,

and minimum average utilization difference of the

data center was used for VM placement algorithm.

Several dynamic VM consolidation algorithms were

proposed by Khoshkholghi et al. [19] to improve the

utilization, energy consumption and Service Level

Agreement (SLA) violations based on the CPU,

Random Access Memory (RAM) and bandwidth.

They used an iterative weighted linear regression

method for PM overload detection and a vector

magnitude squared of resources for PM underload

detection. They also proposed SLA and power-aware

VM selection algorithm and VM placement algorithm.

PM overload and underload detection algorithms

based on dynamic thresholds were proposed by Najari

et al. [22]. They used simple exponential smoothing

technique to predict CPU utilization and calculate

dynamic upper and lower utilization thresholds. A VM

consolidation algorithm with utilization prediction of

multiple resource types based on the local history of

PMs was proposed by Nguyen et al. [24] to improve

the energy efficiency of cloud data centers.

Managing resource allocation to improve response

time using control loops at the server and cluster

levels were applied by Wang et al. [32]. The server

migrated a VM if the server’s resource capacity was

not enough to meet SLAs of application. Kakadia et

al. [16] proposed a greedy consolidation algorithm

based on VMs placement algorithm to improve the

network usage and performance of applications in the

data centers. The greedy consolidation algorithm

reduced the number of migrations and speed up the

placement decisions. Forsman et al. [8] proposed two

algorithms, which could be used together for live

migration of multiple VMs. The proposed VM

migration depended on three factors that were the cost

of migration, the expected distribution of workload

and the state of PM after migration. The algorithms

distributed the workload efficiently in the system. In

spite of that, the paper did not discuss how to meet

SLA. A dynamic consolidation of VMs for web

applications was implemented by Guenter et al. [13].

The response time was used to define SLAs. Weighted

linear regression was applied to get the future

workload and improve the distribution of workload.

360 The International Arab Journal of Information Technology, Vol. 17, No. 3, May 2020

Because of constraints on the allowed number of

migration of VMs in a certain period of time, the prior

works might not be the only effective methods. We

propose an approach that uses the combination of PM

overload detection algorithm and VM quiescing which

maximizes the time between sequential VM migrations

(to minimize the number of migration of VMs) under

the specified QoS constraint.

3. Dynamic Consolidation of Virtual

Machines

In general, current solutions to PM overload detection

problem are based on heuristic or statistical analysis of

historical data. These approaches do not clearly specify

QoS target. We propose the dynamic consolidation of

VMs under the specified QoS targets based on a

combination of PM overload detection algorithm and

VM quiescing which solves optimally the problem of

short time intervals between sequential VM migrations

under QoS goal. The average time between sequential

VM migrations is necessary to be maximized to

optimize consolidation of VMs [4]. VM consolidation

is used to reduce the number of active PMs, so a lower

average number of active PMs represents a better

consolidation of VMs.

PM overload detection can initiate a VM migration

from an overloaded PM. There are two possible cases

of VM migrations due to the overload:

1. A new PM must be activated to a VM, which should

be migrated from an overloaded PM due to not

enough resources on another active PM.

2. A VM which should be migrated can be placed on

another active PM.

The goal of PM overload detection is to maximize the

average time between sequential VM migrations (to

minimize the number of migrations) [4]. Therefore, the

activity time should be maximized for overloaded PMs,

while the activity time should be minimized for under

loaded PMs.

At every moment of time, each VM on a PM takes a

fraction of CPU utilization as required by VM’s

workload. PM’s workload is constituted by CPU

utilization created by a set of VMs that is currently

allocated to a PM. CPU utilization of PM is monitored

by a controller. A PM overload detection algorithm

decides when a VM migration needs to be done to meet

QoS goals, while maximizing the average time until

migration.

3.1. A Workload QoS Metric

We use a workload QoS metric used in [4] to impose

QoS requirements on the system. PM can be in one of

the states according to its CPU utilization:

1. Serving the normal load.

2. Being highly loaded.

It is assumed that VMs allocated to the overloaded PM

might not provide the required performance level.

Therefore, this leads to performance degradation. We

use Overload Time Fraction (OTF) metric which

allows measuring the performance degradation over

the interval of time in regard to the definition of the

overload state [4]. OTF metric is defined as:

 (100%)
OTF 100% () o

a

t

t


Where to is the total time during which PM is in the

overload state, when its CPU utilization is 100%, and

ta is the total time of PM being in the active state. OTF

is monitored continuously, and is recalculated every

time PM overload detection is invoked.

3.2. Proposed PM Overload Detection

Algorithm

We propose PM overload detection algorithm based

on OTF Threshold (OTFT) algorithm [4]. OTFT

algorithm decides to migrate a VM if the current OTF

value of PM exceeds the defined Maximum Allowed

OTF (MAOTF) value. However, OTFT algorithm

fails to meet SLA requirements because OTF

threshold equals to MAOTF and the average resulting

OTF value exceeds the maximum allowed resulting

OTF value [4].

Our proposed overload detection algorithm decides

to migrate a VM if the current OTF value of PM

(pm.OTF) exceeds the defined percentage (p) of

MAOTF value to avoid exceeding the maximum

allowed resulting OTF value after a decision of VM

migration or during VM migration. We refer to this

algorithm as Percentage of Overload Time Fraction

Threshold (POTFT) algorithm. POTFT algorithm is

presented in Algorithm 1.

Algorithm 1: POTFT PM Overload Detection Algorithm

Input: pm.OTF, MAOTF, p

Output: PM’s status

1: PM’s status = normal loaded

2: if pm.OTF > (MAOTF × p) then

3: PM’s status = overloaded

4: end if

5: return PM’s status

3.3. Proposed PM Overload Detection

Algorithm with VM Quiescing

Current researches may not be able to limit the

number of VM migrations to be less than maximum

allowed number of VM migrations and at the same

time do not allow PM to exceed maximum allowed

OTF. Therefore, this paper focuses on PM overload

detection algorithms and proposes the combination of

proposed PM overload detection algorithms with VM

quiescing (temporary turning off VM) [3], which is

able to minimize number of VM migrations and meet

OTF constraint. VM quiescing should be applied with

(1)

A Novel Physical Machine Overload Detection Algorithm Combined with ... 361

VM Quiescing

VM Unquiescing

efficient PM overload detection algorithm to minimize

number of VM quiescings required. Therefore, we

propose to combine VM quiescing with POTFT

algorithm to minimize the number of VM migrations to

be less than maximum allowed number of VM

migrations and limit OTF to be less than MAOTF

according to QoS constraints.

PM overload detection algorithm is invoked

periodically to decide if a PM is overloaded or not. The

proposed algorithm turns off one of VMs randomly

from the set of generated VM by Algorithm 3 if PM is

highly loaded according to POTFT algorithm that its

OTF value exceeds specified percentage of MAOTF,

and current simulation time does not exceed minimum

allowed time until migration. Turned off VMs are

restarted when PM no longer suffers from overload.

PM is no longer considered suffering from overload

when OTF value of PM is less than 10% subtracted

from specified percentage of MAOTF value. If PM still

suffers from overload and current simulation time

exceeds minimum allowed time until migration, a VM

should be migrated from PM. The maximum allowed

number of VM migrations initiated over n time steps

(n/T) is considered as QoS requirement, where T is the

minimum allowed time until migration and is set

according to the maximum allowed number of VM

migration in time. Combination of POTFT and VM

quiescing algorithm is presented in Algorithm 2.

Algorithm 2: Combination of POTFT and VM Quiescing

Algorithm

Input: A set of generated VMs, a set of turned off VMs, pm.OTF,

T, current simulation time, MAOTF, p

Output: A set of turned off VMs and a decision on whether to

migrate a VM

1: a decision on whether to migrate a VM = false

2: if pm.OTF > (MAOTF × p) then

3: if current simulation time > T then

4: a decision on whether to migrate a VM = true

5: else

6: select VM randomly from a set of generated VMs

7: remove CPU utilization trace of a selected VM

8: add a VM to the set of turned off VMs

9: end if

10: else

11: if the set of turned off VMs ≠ null and pm.OTF < (MAOTF

× (p - 0.1))

12: select a VM randomly from turned off VMs

13: assign CPU utilization trace for the selected VM

14: remove a VM from the set of turned off VMs

15: end if

16: end if

17: return (a set of turned off VMs, a decision on whether to

migrate a VM)

3.4. Benchmark PM Overload Detection

Algorithms

We evaluate the proposed algorithms using a number of

benchmark PM overload detection algorithms with

different parameters. The first benchmark algorithm is a

simple heuristic algorithm based on specifying fixed

CPU utilization Threshold (THR), which is applied in

a number of related works [11, 12, 31, 35]. PM’s CPU

utilization is monitored and if the specified upper

threshold is exceeded, a VM is migrated. The next two

algorithms are based on the statistical analysis to

adjust CPU utilization threshold dynamically: based

on Median Absolute Deviation (MAD) and

Interquartile Range (IQR) [5]. MAD adjusts upper and

lower PM’s utilization thresholds and keeps the total

utilization of VMs between these thresholds. IQR

adjusts an upper PM’s utilization threshold based on a

measure of statistical dispersion, being equal to the

first quartile subtracted from the third quartile. The

next two algorithms estimate the future CPU

utilization using regression-based approach and a

modification of the robust regression method, which is

robust to outliers [5]. These algorithms are denoted as

Local Regression (LR) and Local Regression Robust

(LRR) respectively. The main idea of LR, which is

proposed by Guenter et al. [13], is to fit simple models

to localized subsets of data to build up a curve that

approximates the original data. LR algorithm is in line

with robust regression method. Two other algorithms

discussed in section 3.2. are OTFT and our proposed

POTFT algorithms. In this paper, the benchmark PM

overload detection algorithms are compared to

proposed POTFT algorithm and POTFT with VM

quiescing as presented in section 5.2.

4. CPU Modelling

We use CPU model as presented in [4]. The model is

appropriate for single core and multi-core CPU

architectures. The single core CPU capacity is

modelled according to its clock frequency (F). A CPU

utilization of VMs (ui) is a fraction of CPU utilization

of PM (U) and is relative to CPU frequency of VMs

(fi). CPU utilization of PM equals the summation of

fractions of L VMs running on PM as:

1

1 L

i ii
U f u

F 
 

We model a multi-core CPU for the investigation of

PM overload detection problem. A clock frequency

(Fc) of a multi-core CPU with k cores is modelled as

kFc frequency of a single core CPU, which means F in

(2) is replaced by kFc. Using a time-shared scheduling

algorithm, each VM is randomly assigned to one of

CPU’s cores. The only restriction is that VM’s CPU

capacity cannot exceed the single core capacity. If this

restriction is removed, a VM would be required to be

executed on multi-core in parallel.

5. Performance Evaluation of PM Overload

Detection Algorithms using CPU Model

We use simulations to evaluate the proposed POTFT

algorithm and POTFT with VM quiescing. We use the

source code of benchmark PM overload detection

(2)

362 The International Arab Journal of Information Technology, Vol. 17, No. 3, May 2020

algorithms which is written in Clojure [4] and add the

code of proposed POTFT algorithm and VM quiescing

algorithm.

5.1. Evaluation of PM Overload Detection

Algorithms using Planet-Lab Workload

Traces

In multiple PMs environment, PM overload detection

algorithm works independently in a decentralized way

on every PM. So, a variety of heterogeneous VMs is

served using a single PM with a quad-core CPU to

evaluate PM overload detection algorithm under a real

world workload. The clock frequency of each core of

PM is set to 3 GHz, which transforms into 12 GHz

according to CPU model in Section 4. The above CPU

characteristics correspond to a medium range type in

the cloud physical Amazon EC2 servers [21]. The

memory size of PM is assumed to be enough for VMs.

CPU frequency of each created VM is randomly set to:

1.7 GHz, 2 GHz, 2.4 GHz, or 3 GHz, which

corresponds to the types of Amazon EC2 instance [27].

CPU utilization used in the simulations is based on

workload traces from the CoMon project, a monitoring

tool for Planet-Lab [25]. The provided workload traces

were collected every 5 minutes from more than a

thousand VMs located at more than 500 places around

the world. This trace was taken from March to April in

2011.

To run a simulation, a set of VMs is generated

randomly with the assigned CPU utilization traces

allocated on PM. PM overload detection technique at

each time step decides if a VM migration should be

done or not. The simulation ends when a VM is decided

to be migrated, or when all workload traces are

assigned. When a simulation ends, the average OTF is

calculated according to (1). A set of VMs is assigned

with the workload traces by the workload trace

assignment algorithm which is presented in Algorithm

3 [4]. The original workload traces is filtered to assign

more dynamic workloads to PM overload detection

algorithms. MAOTF after the first 30 time steps is

constrained to 10% and the minimum overall OTF to

20%. The workload trace assignment algorithm

regenerates 100 different sets of VMs that meet the

specified OTF constraints and every PM overload

detection algorithm is run for each set of VMs [4].

Algorithm 3: Workload Trace Assignment Algorithm

Input: A set of CPU utilization traces

Output: A set of generated VMs

1: select PM’s minimum CPU utilization randomly from

(80%, 85%, 90%, 95%, and 100%) at the time 0

2: while PM’s CPU utilization < PM’s minimum CPU

utilization at the time 0

3: randomly select CPU frequency of new VM

4: randomly assign a CPU utilization trace

5: add new VM to the set of created VMs

6: end while

7: return a set of generated VMs

The output of Algorithm 3 is used as one of the inputs

to Algorithm 2.

5.2. Simulation Results

In this section, we compare THR, MAD, IQR, LR,

LRR, OTFT, POTFT, and POTFT with VM quiescing

algorithms with the experimental environment settings

presented in section 5.1. For each overload detection

technique, the parameters are used as presented in

Table 1 [4].

Table 1. Parameters used in PM overload detection algorithms.

Algorithm Parameter
Value

1

Value

2

Value

3

THR
CPU utilization threshold

[4, 5, 9, 11]
80% 90% 100%

MAD
The median of the

absolute deviations [12]
2 3 -

IQR
The median of the

absolute deviations [11]
1 2 -

LR
Estimated trend line [12] 1.2 1.1 1.0

LRR

OTFT
OTF threshold (MAOTF)

[4]
10% 20% 30%

POTFT
OTF threshold (MAOTF

× p)

(10%×80%) 8%
(20%×80
%) 16%

(30%×80

%)

24%

(10%×85%)

8.5%

(20%×85

%) 17%

(30%×85
%)

25.5%

(10%×90%) 9%
(20%×90

%) 18%

(30%×90
%)

27%

MAOTF value of OTFT and POTFT is set to 10%,

20% and 30%. OTF threshold for OTFT is set as equal

to MAOTF (10%, 20% and 30%) as presented in [4].

And OTF threshold for POTFT is set to 8%, 8.5%,

9%, 16%, 17%, 18%, 24%, 25.5%, and 27% with

varied p (80%, 85% and 90%) multiplied by MAOTF

(10%, 20% and 30%). Average value of resulted OTF

was not exceeding 10%, 20% and 30% respectively,

by tuning parameters of PM overload detection

algorithm to be increased from first to third parameter

as shown in Table 1. Minimum allowed time until

migration (T) is set to 40,000 seconds and 80,000

seconds for all algorithms. OTF parameter values that

are monitored continuously and recalculated every

time PM overload detection is invoked as stated in

section 3.1 and the minimum allowed time until

migration are varied according to various supposed

QoS constraints. 43 various combinations of the

algorithms and parameters result by these variations.

VM quiescing may occur many times before

migration. The better algorithm is the one that

maximizes the time until migration and does not let

resulting OTF value to exceed maximum allowed

value, which satisfies QoS constraint.

Figure 1 presents the average OTF values with 95%

confidence interval for benchmark PM overload

detection algorithms, proposed POTFT without

A Novel Physical Machine Overload Detection Algorithm Combined with ... 363

quiescing, and proposed POTFT with VM quiescing

(POTFT_Q). It can be seen from the results in Figure 1

that POTFT and POTFT_Q with all parameters are the

only competitive algorithms. They maximize resulting

OTF value without allowing it to exceed maximum

allowed value (10%, 20%, and 30%) and maximize the

time until migration, while POTFT_Q is able to

maximize time until migration to be more than

minimum allowed time until migration as shown in

Figure 2.

Figure 2 presents the average time until a migration

with 95% confidence interval for PM overload

detection algorithms. The results in Figure 3 show that

OTFT and proposed POTFT without quiescing have

longer time until migration compared to other overload

detection algorithms, and POTFT_Q is able to

maximize time until migration to be more than

minimum allowed time until migration (40,000 seconds

and 80,000 seconds). The results in Figure 3 show that

there is a statistically significant difference in the

average time until a migration produced by LR_1,

LRR_1, OTFT_30, POTFT_24, POTFT_25.5, and

POTFT_27 algorithms compared to other algorithms

except POTFT_Q. OTFT and POTFT algorithms have

better average time until a migration compared to LR,

and LRR. Moreover, the resulting OTF of POTFT and

POTFT_Q and the time until migration of POTFT are

increased when p parameter is increased from 80% to

90%.

Figure 3 presents the average number of VM

quiescings with 95% confidence interval for POTFT_Q

to maximize the time until migration to 40,000 seconds

and 80,000 seconds. A large number of quiescings may

highly affect QoS. However, Figure 3 shows that

POTFT_Q with varied parameters has a small number

of quiescings. Therefore, POTFT_Q is able to

maximize time until migration according to QoS

requirements with a few quiescings.

Table 2. SLA violations by OTFT and POTFT.

OTF

Parameter
OTFT POTFT_80% POTFT_85% POTFT_90%

10% 100/100 0/300 0/300 3/300

20% 100/100 0/300 0/300 0/300

30% 44/100 0/300 0/300 0/300

Overall 81.33% 0% 0% 0.33%

Table 2 presents the levels of SLA violations

caused by OTFT and POTFT algorithms. The results

show that POTFT significantly outperforms OTFT

algorithm according to SLA violation levels. POTFT

with 80% and 85% of MAOTF leads to 0% SLA

violations, POTFT with 90% of MAOTF causes only

0.33% SLA violations, whereas OTFT causes 81.33%

SLA violations.

The results in Figure 2 show that the average time

until a migration of POTFT is slightly lower than

OTFT algorithm, however POTFT is able to avoid

SLA violations as shown in Table 2. The experimental

results show that the proposed POTFT leads to higher

average time until a migration compared to benchmark

algorithms while meeting the specified OTF goal.

Moreover, POTFT_Q is able to minimize number of

migrations according to QoS requirements and meet

OTF constraint with a few quiescings.

Figure 1. Average OTF values with 95% confidence interval of PM overload detection algorithms.

Figure 2. Average time until a VM migration with 95% confidence interval of PM overload detection algorithms.

364 The International Arab Journal of Information Technology, Vol. 17, No. 3, May 2020

Figure 3. Average number of quiescings with 95% confidence interval of combination of POTFT and VM quiescing.

6. Conclusions

Current works may not be able to limit the number of

VM migrations to be less than maximum allowed

number of VM migrations and at the same time do not

allow PM to exceed MAOTF according to QoS

constraints. Therefore, we propose dynamic VM

consolidation based on a PM overload detection

algorithm and a combination of PM overload detection

algorithm and VM quiescing to minimize number of

VM migrations according to QoS requirements and

meet OTF constraint. The goal of the model is to

improve the utilization of resources and energy

efficiency in cloud data centers. We implement a

number of PM overload detection algorithms using

various parameters to compare with the proposed

POTFT with and without VM quiescing. The

algorithms are evaluated through simulations using real

world workload traces. Our results of experiments show

that PM overload detection algorithm outperforms the

benchmark PM overload detection algorithms and leads

to higher performance of benchmark PM overload

detection algorithms, while meeting QoS target. The

results show that proposed PM overload detection

algorithm leads to better time until migration keeping

average resulting OTF values less than allowed values.

Moreover, proposed POTFT with VM quiescing is able

to minimize number of VM migrations according to

QoS requirements and meet OTF constraint with a few

quiescings.

As a future work, we plan to implement the

proposed combination of VM quiescing and benchmark

PM overload detection algorithms on a software

framework for dynamic and energy efficient

consolidation of VMs called OpenStack Neat [28]. The

framework can be applied in existing OpenStack

Clouds [29] deployments and in research on dynamic

consolidation of VMs to optimize the resource

utilization and energy efficiency.

References

[1] Alsbatin L., Oz G., and Ulusoy A., “An Overview

of Energy-Efficient Cloud Data Centers,” in

Proceedings of the International Conference of

Computer and Applications, Dubai, pp. 211-

214, 2017.

[2] Arianyan E., Taheri H., Sharifian S., and Tarighi

M., “New Six-Phase On-line Resource

Management Process for Energy and SLA

Efficient Consolidation in Cloud Data Centers,”

The International Arab Journal of Information

Technology, vol. 15, no. 1, pp. 10-20, 2018.

[3] Baset S., Wang L., and Tang C., “Towards an

Understanding of Oversubscription in Cloud,” in

Proceedings of the 2nd USENIX Conference on

Hot Topics in Management of Internet, Cloud,

and Enterprise Networks and Services, Berkeley,

pp. 1-6, 2012.

[4] Beloglazov A. and Buyya R., “Managing

Overloaded Hosts for Dynamic Consolidation of

Virtual Machines in Cloud Data Centers Under

Quality of Service Constraints,” IEEE

Transactions on Parallel and Distributed

Systems, vol. 24, no. 7, pp. 1366-1379, 2013.

[5] Beloglazov A. and Buyya R., “Optimal Online

Deterministic Algorithms and Adaptive

Heuristics for Energy and Performance Efficient

Dynamic Consolidation of Virtual Machines in

Cloud Data Centers,” Concurrency and

Computation: Practice and Experience, vol. 24,

pp. 1397-1420, 2012.

[6] Chunlin L., Yanpei L., and Youlong L.,

“Energy-Aware Cross-Layer Resource

Allocation in Mobile Cloud,” International

Journal of Communication Systems, vol. 30, no.

12, pp. e3258-n/a, 2017.

[7] Deng D., He K., and Chen Y., “Dynamic Virtual

Machine Consolidation for Improving Energy

Efficiency in Cloud Data Centers,” in

Proceedings of 4th International Conference on

Cloud Computing and Intelligence Systems,

Beijing, pp. 366-370, 2016.

[8] Forsman M., Glad A., Lundberg L., and Ilie D.,

“Algorithms for Automated Live Migration of

Virtual Machines,” Journal of System and

Software, vol. 101, pp. 110-126, 2015.

[9] Fu X. and Zhou C., “Virtual Machine Selection

and Placement for Dynamic Consolidation in

A Novel Physical Machine Overload Detection Algorithm Combined with ... 365

Cloud Computing Environment,” Frontiers of

Computer Science, vol. 9, no. 2, pp. 322-330,

2015.

[10] Gao K., Wang Q., and Xi L., “Reduct Algorithm

Based Execution Times Prediction in Knowledge

Discovery Cloud Computing Environment,” The

International Arab Journal of Information

Technology, vol. 11, no. 3, pp. 268-275, 2014.

[11] Gmach D., and Rolia J., Cherkasova L., Belrose

G., Turicchi T., and Kemper A., “An integrated

Approach to Resource Pool Management:

Policies, Efficiency and Quality Metrics,” in

Proceedings of the 38th IEEE International

Conference on Dependable Systems and

Networks, Anchorage, pp. 326-335, 2008.

[12] Gmach D., Rolia J., Cherkasova L., and Kemper

A., “Resource Pool Management: Reactive

Versus Proactive or Lets Be Friends,” Computer

Networks, vol. 53, no. 17, pp. 2905-2922, 2009.

[13] Guenter B., Jain N., and Williams C., “Managing

Cost, Performance, and Reliability Tradeoffs for

Energy-Aware Server Provisioning,” in

Proceedings of the 30st Annual IEEE Intl.

Conference on Computer Communications,

Shanghai, pp. 1332-1340, 2011.

[14] Han G., Que W., Jia G., and Shu L., “An Efficient

Virtual Machine Consolidation Scheme for

Multimedia Cloud Computing,” Sensors, vol. 16,

no. 2, pp. 246-246, 2016.

[15] Jung G., Hiltunen M., Joshi K., Schlichting R.,

and Pu C., “Mistral: Dynamically Managing

Power, Performance, and Adaptation Cost in

Cloud Infrastructures,” in Proceedings of the 30th

Intl. Conf. on Distributed Computing Systems,

Genova, pp. 62-73, 2010.

[16] Kakadia D., Kopri N., and Varma V., “Network-

Aware Virtual Machine Consolidation for Large

Data Centers,” in Proceedings of the 3rd

International Workshop on Network-Aware Data

Management, Denver, pp. 1-8, 2013.

[17] Kaushar H., Ricchariya P., and Motwani A.,

“Comparison of SLA based Energy Efficient

Dynamic Virtual Vachine Consolidation

Algorithms,” International Journal of Computer

Applications, vol. 102, no.16, pp. 31-36, 2014.

[18] Khan M., Paplinski A., Khan A., Murshed M.,

and Buyya R., Sustainable Cloud and Energy

Services, Springer, 2018.

[19] Khoshkholghi M., Derahman M., Abdullah A.,

Subramaniam S., and Othman M., “Energy-

Efficient Algorithms for Dynamic Virtual

Machine Consolidation in Cloud Data Centers,”

IEEE Access, vol. 5, pp. 10709-10722, 2017.

[20] Kumar S., Talwar V., Kumar V., Ranganathan P.,

and Schwan K., “vManage: Loosely Coupled

Platform And Virtualization Management in Data

Centers,” in Proceedings of the 6th International

Conference on Autonomic Computing,

Barcelona, pp. 127-136, 2009.

[21] Mills K., Filliben J., and Dabrowski C.,

“Comparing vm-Placement Algorithms for on-

Demand Clouds,” in Proceedings of the 3rd IEEE

International Conference on Cloud Computing

Technology and Science (CloudCom), Athens,

pp. 91-98, 2011.

[22] Najari A., Alavi S., and Noorimehr M.,

“Optimization of Dynamic Virtual Machine

Consolidation in Cloud Computing Data

Centers,” International Journal of Advanced

Computer Science and Applications, vol. 7, no.

9, pp. 202-208, 2016.

[23] Nathuji R. and Schwan K., “Virtualpower:

Coordinated Power Management in Virtualized

Enterprise Systems,” ACM SIGOPS Operating

Systems Review, vol. 41, no. 6, pp. 265-278,

2007.

[24] Nguyen T., Francesco M., and Yla-Jaaski A.,

“Virtual Machine Consolidation with Multiple

Usage Prediction for Energy-Efficient Cloud

Data Centers,” IEEE Transactions on Services

Computing, vol. 99, pp. 1-14, 2017.

[25] Park K. and Pai V., “CoMon: A Mostly-Scalable

Monitoring System for Planetlab,” ACM

SIGOPS Operating Systems Review, vol. 40, no.

1, pp. 65-74, 2006.

[26] Sharifi M., Salimi H., and Najafzadeh M.,

“Power-Efficient Distributed Scheduling of

Virtual Machines Using Workload-Aware

Consolidation Techniques,” Journal of

Supercomputing, vol. 61, no. 1, pp. 46-66, 2012.

[27] The Amazon Instance Types,

https://aws.amazon.com/ec2/instance-types, Last

Visited, 2017.

[28] The OpenStack Neat framework,

http://openstack-neat.org, Last Visited, 2017.

[29] The OpenStack platform, http://openstack.org,

Last Visited, 2017.

[30] Verma A., Ahuja P., and Neogi A., “pMapper:

Power and Migration Cost Aware Application

Placement in Virtualized Systems,” in

Proceedings the 9th ACM/IFIP/USENIX

International Conference on Middleware,

Leuven, pp. 243-264, 2008.

[31] VMware Inc., “VMware Distributed Power

Management Concepts and Use,” Information

Guide, 2010.

[32] Wang X. and Wang Y., “Coordinating Power

Control and Performance Management for

Virtualized Server Clusters,” IEEE Transactions

on Parallel and Distributed Systems, vol. 22, no.

2, pp. 245-259, 2011.

[33] Weber W., Fan X., and Barroso L., “Powering

the Data Center,” United States Patent No.

8595515, 2013.

366 The International Arab Journal of Information Technology, Vol. 17, No. 3, May 2020

[34] Zheng W., Bianchini R., Janakiraman G., Santos

J., and Turner Y., “JustRunIt: Experiment-Based

Management of Virtualized Data Centers,” in

Proceedings of the USENIX Annual Technical

Conference, San Diego, pp. 18-33, 2009.

[35] Zhu X., Young D., Watson B. J., Wang Z., Rolia

J., Singhal S., McKee B., Hyser C., Gmach D.,
Gardner R., Christian T., and Cherkasova L.,

“1000 islands: Integrated Capacity and Workload

Management for The Next Generation Data

Center,” in Proceedings of the 5th International

Conference on Autonomic Computing, Chicago,

pp. 172-181, 2008.

Loiy Alsbatin is a Ph.D. student in

the department of Computer

Engineering in Eastern

Mediterranean University (EMU),

North Cyprus. He received his B.S.

degree in Computer Engineering in

Mutah University, Jordan, in 2008,

and his M.S. degree in Computer Engineering in Jordan

University of Science and Technology (JUST), Jordan,

in 2012. He is currently a faculty member at the

Computer Science Department of Shaqra University,

Saudi Arabia. His current research interests include

distributed system, and cloud computing.

Gürcü Öz received her B.S, M.S.

degrees from the Electrical and

Electronic Engineering department

and Ph.D. degree from the Computer

Engineering Department of Eastern

Mediterranean University, in

Famagusta, North Cyprus. Currently,

she is working as an Associate Professor in the

Department of Computer Engineering of Eastern

Mediterranean University. Her research interests

include computer networks, wireless networks,

distributed systems, cloud computing, system

simulation, information security.

Ali Ulusoy was born in Eskisehir,

Turkey, on June 3, 1974. He

graduated from the double major

program of the department of

Electrical and Electronic Engineering

(EEE) and department of Physics in

Eastern Mediterranean University

(EMU) in 1996. He received his M.S. and Ph.D.

degrees in EEE in EMU in 1998 and 2004,

respectively. He joined Information Technology

department, EMU, in 2004. His current research

interests include wireless communications, receiver

design, channel estimation, fuzzy systems, wireless

networks, cloud computing, millimeter wave

communications and healthcare system development.

