
422 The International Arab Journal of Information Technology, Vol. 17, No. 3, May 2020

Gene Expression Prediction Using Deep Neural

Networks

Raju Bhukya and Achyuth Ashok

Department of Computer Science and Engineering, National Institute of Technology, India

Abstract: In the field of molecular biology, gene expression is a term that encompasses all the information contained in an

organism’s genome. Although, researchers have developed several clinical techniques to quantitatively measure the expressions

of genes of an organism, they are too costly to be extensively used. The NIH LINCS program revealed that human gene

expressions are highly correlated. Further research at the University of California, Irvine (UCI) led to the development of D-

GEX, a Multi Layer Perceptron (MLP) model that was trained to predict unknown target expressions from previously identified

landmark expressions. But, bowing to hardware limitations, they had split the target genes into different sets and constructed

separate models to profile the whole genome. This paper proposes an alternative solution using a combination of deep

autoencoder and MLP to overcome this bottleneck and improve the prediction performance. The microarray based Gene

Expression Omnibus (GEO) dataset was employed to train the neural networks. Experimental result shows that this new model,

abbreviated as E-GEX, outperforms D-GEX by 16.64% in terms of overall prediction accuracy on GEO dataset. The models

were further tested on an RNA-Seq based 1000G dataset and E-GEX was found to be 49.23% more accurate than D-GEX.

Keywords: Gene expression, regression, deep learning, autoencoder, multilayer perceptron.

Received April 25, 2018; accepted October 28, 2018

https://doi.org/10.34028/iajit/17/3/16

1. Introduction

An all inclusive picture of cellular function can be

obtained by measuring the activity (also known as

expression) of thousands of genes collectively. In

molecular biology, this significant domain of work is

termed as gene expression profiling [4]. Gene

expression can alternatively be viewed as the direct

mapping from the genotype to the phenotype, which is

the observable trait. Functional gene products, such as

proteins and functional RNAs are synthesized using the

information obtained from the gene expression. There

exist several clinical techniques to measure the

expression of a gene. For instance, DNA microarrays

measure the relative activity of previously identified

target genes [8]. Sequence based techniques like RNA-

Seq provide information on the sequences of genes in

addition to their expression level. Genes are expressed

by being transcribed into RNA, which in turn may be

translated into protein. The genetic code of each

organism stored in its DNA is quantitatively described

using gene expression. The properties of the expression

govern the traits that are showcased by the organism. Its

shape, size, structure and behaviour are controlled by

the proteins that are synthesized by its DNA. Regulation

of gene expression is thus critical to an organism’s

development. Its cellular response under a wide variety

of conditions such as diseases, genetic mutations, intake

of medicines and drugs etc., can thus be studied through

the complete profiling of gene expressions [15].

2. Related Work

There are many techniques that are employed to

measure the gene expression levels of an organism, and

they can be broadly classified under two categories,

clinical and statistical. The Connectivity Map (CMap)

project is one that comes under the former [20]. Even

with the advent of latest technological innovations,

whole genome expression profiling is too expensive to

be used in an academic set up. The CMap project in the

initial phase was able to perform just 564 genome-wide

expression profiles using the Affymetrix GeneChip

microarrays. On the contrary, statistical methods rely on

inferring the expression of several genes using the

clinically measured expressions of a select number of

genes. It was observed that although the human genome

consisted of approximately 22000 genes, the expression

levels of most of them were highly correlated.

Researchers from the Library of Integrated Network-

based Cellular Signatures (LINCS) program employed

this observation to formulate a cost effective alternative

to whole genome expression profiling [25]. Researchers

from the NIH LINCS program employed Principal

Component Analysis (PCA) and discovered that about

1000 genes explained close to 80% of the variance in

the genome-wide expression. They decided to call these

978 genes as landmark genes, since they could be used

to predict the expression levels of the rest [8]. Using the

L1000 Luminex bead technology, the expressions of

these landmark genes were measured and normalized

[25].

Gene Expression Prediction Using Deep Neural Networks 423

This landmark expression signature was considered

to accurately represent the cellular state at any given

time. To obtain expression values for all the genes, it

was assumed that the expression of an unmeasured gene

can be predicted from the measured landmark genes

using Linear Regression (LR). These clinically

unmeasured but statistically inferred genes were termed

as target genes [8].

However, the relative number of the target genes

(about 21000) with respect to the landmark genes (978)

vexed the researchers. Assuming linear relationship

between the target and landmark gene expressions, they

employed multi-task LR to predict the levels of the

target genes. They had to build close to 21000 models,

each one fitted for a specific target gene, in order to

profile the genome wide gene expression and compare

with the expression profiles from the L1000 project.

Although the linear model was highly scalable, it failed

to capture the non-linear relationships between some

genes.

Most of the existing machine learning methods

encounter issues like improper separation of feature

extraction and model training, manually defined

features. Most of the applied features requires domain

expert in order to reduce the complexity of the data.

Sometimes these features are extremely laborious and

expensive Deep learning, as the modern, leading-edge

machine learning method has received ardent audience

in the field of artificial intelligence. It has the ability to

automatically extracts features from sequences and

discovers complex representations of data patterns

Poor scalability of non-linear techniques like kernel

machines steered the researchers away from such

alternatives [8]. Researchers at the University of

California, Irvine (UCI) decided that a machine learning

approach was the way forward [8]. They argued that it

would enhance the scalability and usher in better data

representation. The expansive field of deep learning that

could account for complex hierarchical nonlinear

relationships was identified as an ideal solution. Deep

learning, also called hierarchical learning uses multiple

layers of abstraction to learn complex data

representations [21]. The study at UCI culminated in the

formulation of D-GEX, which is a multi-task multi-

layer feed-forward neural network. The neural network

architecture is akin to that of a multi-layer perceptron

(MLP). The best performing model with 5 layers (1

input layer, 3 hidden layers of 9000 nodes each, 1 output

layer) was reported to be 15% more accurate than the

LR model [8].

D-GEX contains 943 units in the input layer

corresponding to the 943 landmark genes. D-GEX also

configured with 9520 units in the output layer

corresponding to the 9520 target genes. Due to memory

constrains D-GEX hidden layers are not configured.

Therefore, random partition was done with 9520 target

genes into two sets that each contains 4760 target genes.

Two separate neural networks with each output layer

corresponding to one half of the target genes was built

and constructed series of different architecture with

varying depths.

This paper identifies certain shortcomings of the D-

GEX project, some of which are general to any deep

neural network and others that are specific to the human

genome dataset based on Microarrays [1]. A prime

culprit belonging to the former category is the vanishing

gradient problem that plagues any deep neural network

[14, 15]. Theoretically, deeper and deeper networks are

able to capture complex non-linear relationships within

the data. But as the depth of the network grows, it

becomes increasingly difficult to train the network. This

is chiefly due to the fact that the errors propagated by

the back propagation algorithm keeps on diminishing as

it traverses towards the first layer. Thus there is little or

no change in weights of the first few layers. As a result,

these layers are poorly trained. Hence, although deeper

networks may give better results, training them is

cumbersome. Thus, the number of hidden layers that

can be employed is severely restricted. The Gene

Expression Omnibus (GEO) dataset that is used for

training consist of 112634 samples of 978x21290 genes

(978 landmarks versus 21290 targets) [12]. Training

networks using such a large dataset is computationally

expensive. Large number of features results in

extremely slow training [5]. The problem is

compounded by the fact that large feature size makes it

much harder to find a good solution too. This problem

is known as the curse of dimensionality. High

dimensional datasets are prone to become too sparse,

i.e., two instances randomly chosen are highly likely to

be tremendously far away from each other [14].

Previously unseen instances may diverge from the

instances that the network was trained on and thus

predictions will be inaccurate. Having greater

dimensions also bring forth the risk of over fitting the

data [5]. Ideally, the number of training instances for

training such high dimensional datasets should be

sufficiently large, but increasing the sample size is not

always possible [14]. The hidden units are activated

using the hyperbolic tangent function in the D-GEX

model [8]. Although hyperbolic tangent is better than

logistic function because its mean is at 0, the function

saturates to +1 or -1 as the input increases or decreases,

respectively. Thus the derivatives are pulled to zero and

thus the vanishing gradient problem kicks in [14]. As

the number of hidden layers increase, the fitted model

may be far from the ideal model. Another key drawback

of D-GEX was that training was done separately for

randomly segregated batches of target genes due to

hardware limitations [8]. This in turn increases the

overall training time. Also, since the batches were

randomly chosen, the correlation information between

the target genes was ignored.

Here, we present Encoded Gene Expression Predictor

(abbreviated as E-GEX), which is a combination of an

autoencoder and a multi-layer feed-forward neural

424 The International Arab Journal of Information Technology, Vol. 17, No. 3, May 2020

network. E-GEX attempts to systematically alleviate the

shortcomings of D-GEX by building an autoencoder to

derive a concise encoded representation of target

expression signature and then developing an MLP to

predict the encoded target expression from the original

landmark signature [8, 23]. We introduced some

modifications to the MLP network of D-GEX by

altering the optimization strategy and activation

function. The performance of E-GEX on the Microarray

based GEO data and RNA-Seq based 1000G data was

determined to be better than that of D-GEX, when both

were trained on the cross-platform quantile normalized

expression profiles. Additionally, E-GEX was trained

independently on the GEO data to efficiently predict

entire target profiles (21290 target genes) using a single

network, something that D-GEX failed to perform.

3. Proposed Model

The key idea of gene expression prediction is to treat it

as a supervised learning problem [8]. Since the target

values are expressions of target genes, the learning

scenario can be simplified to multi-task regression.

Expression profiles that were generated by the LINCS

program are used to train and test models built for the

expression inference.

3.1. Dataset

GEO is a publicly available database repository of high

throughput gene expression data and hybridization

arrays, chips, microarrays [12]. The GEO expression

data was made publicly available by the LINCS

program. It was curated by the Broad Institute from the

publicly available GEO database. It consists of 112634

gene expression profiles from the Affymetrix

microarray platform. The 978 landmark genes and

21290 target genes of the human genome are

represented by 22268 probes per profile. The expression

levels are normalized and fall in the range 4-15 [8].

A supplementary Illumina RNA-Seq platform

dataset, titled as 1000 Genomes (1000G) RNA-Seq

expression data is also used to train E-GEX. This dataset

is not derived from the Affymetrix Microarray platform

and thus is used for testing the cross platform viability

of the models developed. The expression levels of 462

profiles of lymphoblastoid cell line samples measured

in RPKM format based on Gencode V12 annotations

constitute 1000G [8].

The two datasets that are used for training E-GEX are

derived from different platforms. Also, one Gencode

probe may include multiple probes of the Microarray

platform [8]. Using the gene ID and name information

from the two datasets, probes that were common to both

platforms were identified and the rest were pruned off.

After pruning, we were left with 943 landmark genes

and 9520 target genes, which exactly matched the

feature set that was used to train D-GEX. Since the

range of values in GEO Expression dataset and 1000G

differ, they were quantile normalized with standard

normal distribution as reference [8]. The normalized

version of the GEO Expression data, which is called

GEO-norm, is used for training the models. The

normalized 1000G dataset is set aside for testing and

inferring the cross platform viability of E-GEX. The

original GEO dataset is used to build a complete model

that can predict the entire target signature from the

landmark expression.

3.2. Encoding Target Expressions

Principal Component Analysis (PCA) is applied on the

target gene set to identify whether the target genes are

further correlated [8]. PCA projected the 21290 target

genes into a 508 features, retaining about 99% of the

variance in the target data, without significant

reconstruction error (approximately 0.22).

Figure 1. Principal components analysis on target expressions.

Hence, it is inferred that the target expression can

ideally be represented using much less number of

features than 21290, without compromising much on

the accuracy. Although PCA is used to validate our

attempt to encode the target signature, the projections

made by PCA are based on an assumption of linearity

[26]. Instead, autoencoders are used to find complex

nonlinear encodings of the target expressions [6, 22].

Figure 2. Deep Autoencoder with 3 hidden layers.

Autoencoders are artificial neural networks capable

of learning efficient coding of the input data without any

supervision [2]. Basically, an autoencoder learns to

copy their inputs to their outputs. The coding can be

viewed as the manifestation of the autoencoders attempt

to learn the identity function under constraints like

limiting the number of internal nodes [14]. An

Gene Expression Prediction Using Deep Neural Networks 425

autoencoder typically consists of two phases - an

encoder phase and a decoder phase. The number of

neurons in the output layer must be equal to that of the

number of inputs. By stacking autoencoders one above

another to form a deep autoencoder, it can learn much

more complex coding [14, 31]. A deep autoencoder is

symmetrical about its central hidden layer. Training can

be made easier by tying the weights, a technique in

which the weights of the encoder phase are reused for

the decoder phase after being transposed [14, 32].

Autoencoders learn by reducing the error in

reconstructing the input data [2]. For E-GEX, two

autoencoders are separately trained - one to encode the

whole target set (21290 genes) and another to encode

the target genes in GEO-norm. The target expressions

are encoded into a 2000 feature representation. The

chosen feature length is approximately 4 times the

number of features suggested by PCA to account for

nonlinearity. For ease of training, deep architectures

with 3 hidden layers are selected. Different number of

nodes are tried for the first and third layer (5000, 6000,

8000), with the innermost encoding layer consisting of

2000 neurons [8]. This is the first phase of E-GEX.

3.3. Predicting Target Expressions

The principal objective of our work is to find a single

deep neural network model that can predict target

expressions, given the corresponding landmark

expressions. A Multilayer Perceptron (MLP), which is

a multilayer feed-forward neural network is used for

building this prediction model. Except the input layer

nodes, each node in an MLP is a neuron with a nonlinear

activation function. Formally, an MLP can be

considered as a non-linear transformation NM RRf : ,

where M is the size of the input vector and N is the size

of the output vector [8]. The inputs to the hidden layer

are calculated as the weighted sum of the inputs. The

input to the output layer is the weighted sum of the

hidden layer activations. The number of hidden layers

can be increased, forming a deep network that

introduces greater levels of abstraction.

The second phase of E-GEX is an MLP with 943

nodes in the input layer and 2000 nodes in the output

layer. The number of hidden layers and number of nodes

per hidden layer are varied to find a best fit model. The

following subsections describe the various parameters

and constraints that were chosen while constructing the

E-GEX MLP.

1) Activation: The hyperbolic tangent function used in

D-GEX can capture the non-linearity, but it is prone

to the vanishing gradients problem since it saturates

to 1 for high/low input values [8]. The Restricted

Linear Units (ReLU) were introduced as a

compromise between fully linear units and nonlinear

units [16]. But the output of ReLU is pulled to 0 for

negative values. The Exponential Linear Unit (ELU)

was derived as an alternative to ReLU in neural

networks [10]. The exponential linear function is

defined as





 .if x)α(e

.if x>x
f(x)=

x 01

0
 (1)

ELUs are not vulnerable to the vanishing gradient

problem since they are continuous everywhere, even at

the origin, as depicted in Figure 3. The calculation of the

derivative is a bit more involved for ELUs than for

hyperbolic tangents or ReLU, but they converges faster

[14].

Figure 3. Exponential linear function.

In recent times, ELUs have become the norm in deep

neural networks. All but the output layer in the E-GEX

MLP are composed of ELUs. The output layer neurons

are linear units since the output values are continuous

[8].

2) Initialization: Randomized initialization of weights

and biases is a huge deterrent in deep neural networks

because it can direct the cost function to local minima

[14]. Also, the training may go on indefinitely

without finding an optimal solution. As an

alternative, researchers suggested sampling from a

normal distribution so that the total variance of the

inputs of each layer and the total variance of the

outputs are similar [11]. Also the gradients would

have the same variance before and after flowing

through a layer when such an initialization strategy is

used. The fan-in and fan-out of each layer is used to

select the mean and standard deviation of the Normal

distribution from which sampling is done [14]. The

Glorot Initialization scheme samples from a normal

distribution with mean 0 and standard deviation,

outputinput nn 

2
= (2)

or an uniform distribution between -r and +r where

outputinput nn
r



6
= (3)

This generic scheme was modified through derivation

of formulas suited specifically to specific activation

functions [11]. The above mentioned r and were found

suitable for logistic functions. For Rectified Linear

Units (ReLU) and its variants like ELU the parameters

r and are multiplied by a factor of √2. This variance

scaling initializer scheme, also known as He

426 The International Arab Journal of Information Technology, Vol. 17, No. 3, May 2020

initialization is used for the lower layers of the E-GEX

MLP [14]. Since the MLP is used for regression, the

initial values of output layer is sampled from a uniform

distribution in the range [-1x10-4, 1x10-4] [8]. Selection

of appropriate activation functions and initialization

schemes can alleviate the vanishing gradient problem.

3) Optimization: Standard back-propagation is the most

widely adopted technique for updating weights in

neural networks [28]. Researchers have developed a

variety of techniques to optimize back propagation

and thus train neural networks faster. Gradient

descent is the most common technique for

optimization [14]. Momentum optimization method

was derived as a way to accelerate the simple gradient

descent optimization [14, 27]. Gradient descent

simply updates the weights by subtracting the

gradient of the cost function)(J multiplied by the

learning rate [14].

))((J
θ

αθ=θ



 (4)

The key idea in Momentum optimization is to give

sufficient weight to the previous gradients and not just

the current derivative. Each epoch adds the local

gradient to the momentum vector m and it updates the

weights using this parameter [27].

))((= 


 Jmm



 , (5)

 Where  is momentum, and

m = (6)

Nesterov Accelerated Gradient (NAG) is a small variant

of the momentum optimization, which has been

empirically observed to be faster than the momentum

technique [14, 24]. The chief idea is to measure the

gradient of the cost function not at the local position, but

slightly ahead in the direction of the momentum.

))((= mJmm 


 



 (7)

m =

In general the momentum vector will be pointing in the

direction of the optimum and thus it will be slightly

more accurate to use the gradient a bit farther in that

direction than at the current position [24]. Although the

modification is slight, it helps in rolling down the cost

slope a bit faster [14]. Optimisation of all the feed-

forward networks trained as part of this work is done

using NAG.

4) Regularization: Neural networks have a tendency to

overfit the data on which it was trained [15]. A

collection of regularization techniques aims at

creating the most generalized neural network models.

Simple regularization techniques like L1 and L2

regularization imposes restrictions on the weights of

the network by limiting their range. Dropout is the

most popular regularization technique for deep

neural networks [14, 30]. The approach is very

simple - at every training step, every neuron (except

the output neurons) is temporarily dropped out of the

network with a probability p. The dropped neurons

will be completely ignored during this training step,

but may become active in the next one [3]. The

hyperparameter p is termed as the dropout rate.

Dropout prevents neurons from co-adapting with its

neighbours and thus they learn to become useful on their

own. Also, they cannot rely on just a section of the input

neurons and has to pay attention to all of them [14].

Thus, a more robust network that generalizes well will

be obtained. Dropping is strictly restricted to the

training phase. During the testing phase, each of the

input connection weight is multiplied by a factor of (1-

p) to adjust for the increase in the number of neurons

[3]. Although dropout may delay convergence, it

produces a good generalized model [14].

Early stopping is another form of regularization

where training is pre-empted when the performance on

a validation set (which the network does not see while

training) keeps on reducing for a series of consecutive

epochs [7]. The models are check pointed at regular

intervals and when a better model is not obtained for k

epochs, training is terminated and the previously check

pointed model is restored for testing and further analysis

[14]. Assigning small values for k can lead to extensive

early stopping due to slight kinks in the cost function.

Both early stopping and dropout regularization are used

together while training the MLP networks.

5) Hidden Layers: Despite the widespread popularity of

deep learning, there is still no universal consensus on

the ideal number of hidden layers and the number of

neurons per hidden layer to be used to construct the

neural networks. Derivation of a global solution is

cumbersome since these parameters are very much

application dependent. Nevertheless, researchers

have come up with certain workarounds where the

ideal hidden layer configuration is deduced from

other known parameters. For instance, irrespective of

the nature of the data, the number of neurons per

hidden layer can be derived using the cardinality of

the dataset and the sample size. One popular rule of

thumb is that a standard 2-layer feed-forward neural

network with
2

22)(





m

N
Nm neurons in the first

hidden layer and)

2

(

m

N
m neurons in the second

hidden layer can represent N distinct input samples

with any desired precision, where m is the number of

output neurons [17]. For our work, such a 2 hidden

layer model consisting of 11850 and 11826 nodes

respectively is adopted (our chosen m=2000 and

N≈70000, the number of training samples). An E-

GEX model is also constructed bereft of the

Gene Expression Prediction Using Deep Neural Networks 427

autoencoder stage to compare the effectiveness of

this configuration with the best performing D-GEX

network consisting of 3 hidden layers of 9000 nodes

each [8]. In this model, m = 4760 (one half of the

target expressions) and N 70000, thus producing 2

hidden layers of approximately 18000 nodes each.

Due to hardware limitations, ultimately only 12000

nodes are used in each of the hidden layers.

6) Hyperparameters: Parameters of the learning

algorithms that are implicitly introduced into the

model are collectively known as hyperparameters

[14]. The step size in gradient descent is controlled

by a hyperparameter called learning rate [29].

Learning rate of E-GEX MLP is initialized to 5x 10-

4. For optimal learning, this value is

programmatically tuned using a decay rate of 0.9

until it reaches a minimum of 1x10-5 [8]. The tuning

is done based on the prediction performance on a

subset of the training set. For the acceleration using

NAG, momentum hyperparameter is set as 0.9 [8,

14]. Dropout is performed with a dropout rate of

10%, which means that 90% of the internal nodes are

retained during each epoch [8].

3.4. Model Selection

The target encoded GEO-norm dataset is partitioned

into 3 disjoint sets - GEO-norm-tr, GEO-norm-val and

GEO-norm-ts for training, validation and testing

respectively. Instead of randomly segregating the

sample profiles, we have adopted k-means clustering to

ensure good representation and thus prevent overfitting

[8, 13].

Appropriate value of k for clustering is normally

identified as the elbow point in the plot of k versus

squared error [13]. The plot in Figure 4 does not

showcase a clear elbow and k was chosen as 20 because

the error appears to be quite stagnant after that. From

each cluster, a maximum of 4500 expression profiles are

written onto GEO-norm-tr and 700 onto GEO-norm-val.

The remnants of each cluster, if any, are added to GEO-

norm-ts.

Figure 4. Plot of k vs sum of squared error.

The same approach is used to partition the original

GEO dataset into GEO-tr, GEO-val and GEO-ts. In each

case, the performance on the validation set is monitored

every 5 epochs. Training will be stopped early if the

latest model performs worse than the model 25 epochs

prior to it. Thus the model with the least validation error

will be chosen as the best performer. Mean Absolute

Error (MAE) is the metric that is used to measure

performance [8, 19]. For n samples,

,

||

= 1=

N

yy

MAE
ii

n

i


 (8)

Where
iy s are the actual values and yi s are the

predicted values [8, 19]. Different models are compared

based on their MAE on the respective test sets. The

quantile normalized 1000G dataset is exclusively used

as a test set to validate cross platform application of E-

GEX.

4. Experimental Results

Each of the autoencoder architectures were trained for

150 epochs and saved after their reconstruction errors

were recorded. The encoded target expressions were

written onto disk for training the prediction networks.

Training of E-GEX MLP networks were done for a

maximum of 250 epochs. The test sets were run through

the saved MLP models to obtain the predicted target

encodings, which were decoded using the saved

autoencoder models. The final decoded target

expressions were used to compute the MAE of the

models.

Some MLP networks were also trained using the

actual expression values, bypassing the autoencoder

phase. These models serve the purpose of evaluating the

performance improvement achieved solely by the

modifications made to the MLP network [8, 17]. All the

models were trained and tested using the Tensorflow

library in Python on an i7-3770 CPU@ 3.40GHz x8

[14].

4.1. Performance of Models on GEO-norm

Two 3-layer feed-forward networks with 9000 nodes in

each layer were trained on GEO-tr for 250 epochs, one

for target genes 0-4760 and another for genes 4760-

9520. The parameters were directly adapted from the

best performing D-GEX model [8]. Activation of lower

layers was done using hyperbolic tangent function.

Output units had linear activation. Momentum

technique was used for optimization. Dropout was

performed with 10% dropout rate. This model served as

the benchmark that was used to select the best

performing E-GEX network.

Firstly, we measured the performance of the

modified feed-forward network that addresses certain

shortcomings of D-GEX. We constructed and trained

two 2-hidden layer models with 12000 nodes in each

layer. The activation function for lower layers was the

exponential linear function, and linear function for the

428 The International Arab Journal of Information Technology, Vol. 17, No. 3, May 2020

output layer. Early stopping regularization was used

alongside dropout with 10% dropout rate. Optimization

was done using NAG technique. MAE of both the

networks was combined to produce the total error rate

for genes 0-9520, which is described in Table 1. It can

be observed that these modifications brought forth a

16.64% improvement in test error over D-GEX.

Table 1. Validation and test errors of different models.

Model Error on GEO-val Error on GEO-ts

D-GEX 1.1342 1.2927

E-GEX MLP 0.8988 1.0789

E-GEX 0.9833 1.0775

Secondly, we encoded the target genes into a 2000-

feature representation using a deep autoencoder with 3

hidden layers. The number of nodes in the first and last

hidden layers was varied to find the configuration that

resulted in the least reconstruction error. From Table 2,

it is evident that the 6000x2000x6000 configuration

produced the best 3-layer encoding.

Table 2. Three-hidden layer autoencoders with tied weights.

Number of Nodes in

layers 1 and 3

Reconstruction

Error

Training time per

epoch (minutes)

5000 0.5346 40

6000 0.4468 45

8000 0.4971 55

The second phase of E-GEX is identical to the E-

GEX MLP described above, with the exception of its

hidden layer configuration which was tweaked to

accommodate the change in the number of output nodes.

The number of nodes in the first two hidden layers was

11850 and 11826, respectively [17]. The decoded target

predictions were compared to the original target

expressions to derive the final error rate mentioned in

Table 1. The encoded prediction model showcased

performance slightly superior to E-GEX MLP. It can be

observed that the reconstruction error of 0.4478 can be

reduced substantially by training a deeper autoencoder,

which would further pull down the overall predictive

error. Figure 5 establishes the superiority of E-GEX

model over D-GEX, in terms of the validation errors.

The expressions of each target gene predicted by E-

GEX and D-GEX were compared, which is represented

in Figure 8. E-GEX produced better predictions for

99.87% of the target genes, with or without the

autoencoder phase.

4.2. Testing E-GEX on 1000G

All the three models described above were tested on the

1000G dataset, and the results are described in Table 3.

Al-though the predictive errors of D-GEX and E-GEX

MLP were found to be identical, encoding the target

before prediction boosted prediction accuracy by

49.23%.

a) Without autoencoder.

b) With autoencoder.

Figure 5. Comparison of validation errors.

Table 3. Predictive errors on 1000G.

Model Genes (0-4760) Genes (4760-9520) Total

D-GEX 0.7756 0.7757 1.5513

E-GEX MLP 0.7750 0.7754 1.5504

E-GEX 0.3794 0.4082 0.7876

From Figure 6 we observed that the predictive error

on 1000G by D-GEX was almost halved by E-GEX,

although the models were trained on GEO-norm. Thus,

E-GEX can be employed across platforms, much more

effectively than D-GEX.

Figure 6. Performance of different models on 1000G dataset.

4.3. Performance of E-GEX on full GEO data

Encouraged by the performance of E-GEX on GEO-

norm, a similar model was constructed and trained for

the entire GEO dataset with 978 landmark genes and

21290 target genes. An autoencoder with 3 hidden

layers of 8000, 2000 and 8000 nodes respectively was

used to encode the target expressions. The parameters

Gene Expression Prediction Using Deep Neural Networks 429

for the predictive network were directly adapted from

the previous model. Several hidden layer configuration

were tried, but it is clear from Table 4 and Figure 7 that

the 11850 x11826 configuration was the best among the

lot.

Figure 7. Effect of hidden layer configuration of E-GEX on

validation loss.

Table 4. Validation Errors in 2-hidden layer feed-forward networks
of E-GEX.

Number of

nodes in layer 1

Number of nodes

in layer 2

Mean Absolute

Error (MAE)

3000 3000 0.464

3000 6000 0.423

6000 6000 0.389

6000 9000 0.351

9000 9000 0.334

11850 11826 0.257

The candidate configurations were adopted from the

different models that were tried as part of the D-GEX

project. The 3-hidden layer 9000x9000x9000

configuration produced the best result on normalized

GEO data in D-GEX. Since the output nodes have been

significantly reduced by the encoding phase, there was

no need to look beyond 2-hidden layer feed-forward

networks.

Deeper MLPs would usher in performance

deficiencies in the form of the vanishing gradient

problem since we are not employing higher order

derivatives [15]. For the consolidated model that

performs genome- wide microarray based profiling, the

MAE on the test set was observed to be 1.8484. The

principal contributor to this quantity was the

reconstruction error of the autoencoder, which was

close to 1.81. Although deeper encoders can produce

better representations with minimum reconstruction

error, hardware limitations hampered our attempts to

increase the depth of the autoencoders.

a) Without autoencoder.

b) With autoencoder.

Figure 8. Comparison of Gene-wise errors.

5. Conclusions and Future Work

Characterising the gene expression patterns of genes

under various biological environments is a fundamental

problem in molecular biology. Cost constraints steer

researchers away from explicit profiling through

laboratorial techniques like the L1000 Luminex bead

technology [25]. E-GEX presents a statistical approach

to profile thousands of genes at once using deep neural

networks. It is an extension of the D-GEX project,

which used separately trained Multilayer Perceptron

networks to predict expressions of randomly partitioned

sets of target genes [8]. The autoencoder phase of E-

GEX overcomes this redundancy and enables the

construction of a single trained MLP to profile complete

genome expressions. In addition to that, modifications

are made to the MLP network in terms of its activation

function, optimization technique, regularization

strategy and hidden layer configuration. These

alterations alone resulted in a 16.64% improvement in

performance on the normalized GEO data. The MLP

training procedure is simplified using the autoencoder

phase. Since the mean absolute error on the RNA-Seq

based 1000G data is lesser than that of the test error on

GEO dataset, it can be inferred that good generalization

has been achieved. The E-GEX model brought forth a

49.23% performance boost over D-GEX on the 1000G

data. Thus we strongly believe that E-GEX is an

efficient and accurate model for gene expression

prediction. In the current implementation, the depth of

430 The International Arab Journal of Information Technology, Vol. 17, No. 3, May 2020

the autoencoder is severely restricted due to hardware

limitations. Architectures with more number of hidden

layers with a gradual decrease in the number of neurons

in each successive layer of the encoder phase can further

reduce the reconstruction error which would result in

better encoding [31]. Forage into recent developments

in multi-GPU techniques would accelerate training and

also enable us to accommodate deeper architectures [8,

9]. Deep networks could be efficiently trained layer by

layer in a greedy manner using GPUs. Recurrence of the

vanishing gradient problem in such deep networks could

be tackled using the Batch Normalization technique for

weight tuning [18].

References

[1] Arel I., Rose D., and Karnowski T., “Deep

Machine Learning-A New Frontier in Artificial

Intelligence Research,” IEEE Computational

Intelligence Magazine, vol. 5, no. 4, pp. 13-18

2010.

[2] Baldi P., “Autoencoders, Unsupervised Learning,

and Deep Architectures,” in Proceedings of ICML

Workshop on Unsupervised and Transfer

Learning, Washington, pp. 37-50, 2012.

[3] Baldi P. and Sadowski P., “Understanding

Dropout,” in Proceedings of Neural Information

Processing Systems, pp. 2814-2822, 2013.

[4] Bansal M., Belcastro V., Ambesi-Impiombato A.,

and Bernardo D., “How to infer gene networks

from expression profiles,” Molecular Systems

Biology, vol. 3, no. 78, pp. 1-10, 2007.

[5] Bengio Y., “Learning Deep Architectures for AI,”

Foundations and Trends® in Machine Learning,

vol. 2, no. 1, pp. 1-127, 2009.

[6] Bengio Y., Courville A., and Vincent P.,

“Representation Learning: A Review and New

Perspectives,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 35, no. 8,

pp. 1798-1828, 2013.

[7] Caruana R., Lawrence S., and Giles L.,

“Overfitting in Neural Nets: Backpropagation,

Conjugate Gradient, and Early Stopping,”

Advances in Neural Information Processing

Systems, pp. 402-408, 2001.

[8] Chen Y., Li Y., Narayan R., Subramanian A., and

Xie X., “Gene Expression Inference with Deep

Learning,” Bioinformatics, vol. 32, no. 12, pp.

1832-1839, 2016.

[9] Chen L., Villa O., Krishnamoorthy S., and Gao G.,

“Dynamic Load Balancing on Single- And Multi-

GPU Systems,” in Proceedings of IEEE

International Parallel and Distributed Processing

Symposium, Georgia, pp. 1-12, 2010.

[10] Clevert D., Unterthiner T., and Hochreiter S.,

“Fast and Accurate Deep Network Learning by

Exponential Linear Units (ELUS),” arXiv preprint

arXiv:1511.07289, pp. 1-14, 2015.

[11] De Sousa C., “An Overview on Weight

Initialization Methods for Feedforward Neural

Networks,” in Proceedings of the International

Joint Conference on Neural Networks, pp. 52-59,

2016.

[12] Edgar R., Domrachev M., and Lash A., “Gene

Expression Omnibus: NCBI Gene Expression and

Hybridization Array Data Repository,” Nucleic

Acids Research, vol. 30, no. 1, pp. 207-210, 2002.

[13] Forgy E., “Cluster Analysis of Multivariate Data:

Efficiency versus Interpretability of

Classifications,” Biometrics, vol. 21, pp. 768-769

1965.

[14] Géron A., Hands-On Machine Learning with

Scikit-Learn and TensorFlow Concepts, Tools,

and Techniques to Build Intelligent Systems,

O’Reilly Media, 2019.

[15] Glorot X. and Bengio Y., “Understanding the

Difficulty of Training Deep Feedforward Neural

Networks,” in Proceedings of the 13th

International Conference on Artificial

Intelligence and Statistics, Sardinia, pp. 249-256,

2010.

[16] Glorot X., Bordes A., and Bengio Y., “Deep

Sparse Rectifier Neural Networks,” in

Proceedings of the 14th International Conference

on Artificial Intelligence and Statistics, FL, pp.

315-323, 2011.

[17] Huang G., “Learning Capability and Storage

Capacity of Two-Hidden-Layer Feedforward

Networks,” IEEE Transactions on Neural

Networks, vol. 14, no. 2, pp. 274-281, 2003.

[18] Ioffe S. and Szegedy C., “Batch Normalization:

Accelerating Deep Network Training by Reducing

Internal Covariate Shift,” arXiv preprint

arXiv:1502.03167, pp. 137-141, 2015.

[19] Kassam S., “Quantization Based on the Mean-

Absolute-Error Criterion,” IEEE Transactions on

Communications, vol. 26, no. 2, pp. 267-270,

1978.

[20] Lamb J., Crawford E., Peck D., Model J., Blat I.,

Wrobel M., Lerner J., Brunet J., Subramanian A.,

Ross K., Reich M., Hieronymus H., Wei G.,

Armstrong S., Haggarty S., Clemons P., Wei R.,

Carr S., Lander E., and Golub T., “The

Connectivity Map: Using Gene-Expression

Signatures to Connect Small Molecules, Genes,

And Disease,” Science, vol. 313, pp. 1929-1935

2006.

[21] Lecun Y., Bengio Y., and Hinton G., “Deep

Learning,” Nature, vol. 521, no. 7553, pp. 436-

444, 2015.

[22] Le Q., Ranzato M., Monga R., Devin M., Chen K.,

Corrado G., Dean J., and Ng A., “Building High-

Level Features Using Large Scale Unsupervised

Learning,” in Proceedings of the 29th

International Conference on Machine Learning,

Scotland, pp. 8595-8598, 2011.

Gene Expression Prediction Using Deep Neural Networks 431

[23] Lin C., Jain S., Kim H., and Bar-Joseph Z., “Using

Neural Networks For Reducing The Dimensions

Of Single-Cell RNA-Seq Data,” Nucleic Acids

Research, vol. 45, no. 17, pp. 1-11, 2017.

[24] Nesterov Y., “A Method of Solving A Convex

Programming Problem with Convergence Rate

O(1/k^2),” Doklady Mathematics, vol. 27, no. 2,

pp. 372-376, 1983.

[25] NIH LINCS Program. http://lincsproject.org/,

Available at: www.lincsproject.org, Last Visited,

2018.

[26] Pierson E. and Yau C., “ZIFA: Dimensionality

Reduction for Zero-Inflated Single-Cell Gene

Expression Analysis,” Genome Biology, vol. 16,

no. 1, 2015.

[27] Polyak B., “Some Methods of Speeding Up the

Convergence of Iteration Methods,” USSR

Computational Mathematics and Mathematical

Physics, vol. 4, no. 5, pp. 1-17, 1964.

[28] Rumelhart E., Hinton E., and Williams J.,

“Learning Representations by Back-Propagating

Errors,” Nature, vol. 323, no. 6088, pp. 533-536,

1986.

[29] Senior A., Heigold G., Ranzato M., and Yang K.,

“An Empirical Study of Learning Rates in Deep

Neural Networks for Speech Recognition,” in

Proceedings of IEEE International Conference on

Acoustics, Speech and Signal Processing,

Vancouver, pp. 6724-6728, 2013.

[30] Srivastava N., Hinton G., Krizhevsky A.,

Sutskever I., and Salakhutdinov R., “Dropout: A

Simple Way to Prevent Neural Networks from

Overfitting,” The Journal of Machine Learning

Research, vol. 15, no. 1, pp. 1929-1958, 2014.

[31] Vincent P. and Larochelle H., “Stacked Denoising

Autoencoders: Learning Useful Representations

in a Deep Network with a Local Denoising

Criterion Pierre-Antoine Manzagol,” Journal of

Machine Learning Research, vol. 11, pp. 3371-

3408, 2010.

[32] Vincent P., Larochelle H., Bengio Y., and

Manzagol P., “Extracting And Composing Robust

Features With Denoising Autoencoders,” in

Proceedings of The 25th International Conference

on Machine Learning, NY, pp. 1096-1103, 2008.

Raju Bhukya has received his B.Tech

in Computer Science and Engineering

from Nagarjuna University in the year

2003, M.Tech degree in Computer

Science and Engineering from Andhra

University in the year 2005 and P.hD

in Computer Science and Engineering from National

Institute of Technology (NIT) Warangal in the year

2014. He is currently working as an Assistant Professor

in the Department of Computer Science and

Engineering in National Institute of Technology,

Warangal, Telangana, India. He is currently working in

the areas of Bio-Informatics and Data Mining.

Achyuth Ashok is M.Tech student of

CSE department at NIT Warangal. He

has interest in analyzing information

contained in genome sequences using

deep learning to predic DNA

sequences and time involved in DNA

Sequence Analysis.

