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Abstract: In the field of molecular biology, gene expression is a term that encompasses all the information contained in an 

organism’s genome. Although, researchers have developed several clinical techniques to quantitatively measure the expressions 

of genes of an organism, they are too costly to be extensively used. The NIH LINCS program revealed that human gene 

expressions are highly correlated. Further research at the University of California, Irvine (UCI) led to the development of D-

GEX, a Multi Layer Perceptron (MLP) model that was trained to predict unknown target expressions from previously identified 

landmark expressions. But, bowing to hardware limitations, they had split the target genes into different sets and constructed 

separate models to profile the whole genome. This paper proposes an alternative solution using a combination of deep 

autoencoder and MLP to overcome this bottleneck and improve the prediction performance. The microarray based Gene 

Expression Omnibus (GEO) dataset was employed to train the neural networks. Experimental result shows that this new model, 

abbreviated as E-GEX, outperforms D-GEX by 16.64% in terms of overall prediction accuracy on GEO dataset. The models 

were further tested on an RNA-Seq based 1000G dataset and E-GEX was found to be 49.23% more accurate than D-GEX. 
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1. Introduction 

An all inclusive picture of cellular function can be 

obtained by measuring the activity (also known as 

expression) of thousands of genes collectively. In 

molecular biology, this significant domain of work is 

termed as gene expression profiling [4]. Gene 

expression can alternatively be viewed as the direct 

mapping from the genotype to the phenotype, which is 

the observable trait. Functional gene products, such as 

proteins and functional RNAs are synthesized using the 

information obtained from the gene expression. There 

exist several clinical techniques to measure the 

expression of a gene. For instance, DNA microarrays 

measure the relative activity of previously identified 

target genes [8]. Sequence based techniques like RNA-

Seq provide information on the sequences of genes in 

addition to their expression level. Genes are expressed 

by being transcribed into RNA, which in turn may be 

translated into protein. The genetic code of each 

organism stored in its DNA is quantitatively described 

using gene expression. The properties of the expression 

govern the traits that are showcased by the organism. Its 

shape, size, structure and behaviour are controlled by 

the proteins that are synthesized by its DNA. Regulation 

of gene expression is thus critical to an organism’s 

development. Its cellular response under a wide variety 

of conditions such as diseases, genetic mutations, intake 

of medicines and drugs etc., can thus be studied through 

the complete profiling of gene expressions [15]. 

 

2. Related Work 

There are many techniques that are employed to 

measure the gene expression levels of an organism, and 

they can be broadly classified under two categories, 

clinical and statistical. The Connectivity Map (CMap) 

project is one that comes under the former [20]. Even 

with the advent of latest technological innovations, 

whole genome expression profiling is too expensive to 

be used in an academic set up. The CMap project in the 

initial phase was able to perform just 564 genome-wide 

expression profiles using the Affymetrix GeneChip 

microarrays. On the contrary, statistical methods rely on 

inferring the expression of several genes using the 

clinically measured expressions of a select number of 

genes. It was observed that although the human genome 

consisted of approximately 22000 genes, the expression 

levels of most of them were highly correlated. 

Researchers from the Library of Integrated Network-

based Cellular Signatures (LINCS) program employed 

this observation to formulate a cost effective alternative 

to whole genome expression profiling [25]. Researchers 

from the NIH LINCS program employed Principal 

Component Analysis (PCA) and discovered that about 

1000 genes explained close to 80% of the variance in 

the genome-wide expression. They decided to call these 

978 genes as landmark genes, since they could be used 

to predict the expression levels of the rest [8]. Using the 

L1000 Luminex bead technology, the expressions of 

these landmark genes were measured and normalized 

[25]. 



Gene Expression Prediction Using Deep Neural Networks                                                                                                        423 

This landmark expression signature was considered 

to accurately represent the cellular state at any given 

time. To obtain expression values for all the genes, it 

was assumed that the expression of an unmeasured gene 

can be predicted from the measured landmark genes 

using Linear Regression (LR). These clinically 

unmeasured but statistically inferred genes were termed 

as target genes [8]. 

However, the relative number of the target genes 

(about 21000) with respect to the landmark genes (978) 

vexed the researchers. Assuming linear relationship 

between the target and landmark gene expressions, they 

employed multi-task LR to predict the levels of the 

target genes. They had to build close to 21000 models, 

each one fitted for a specific target gene, in order to 

profile the genome wide gene expression and compare 

with the expression profiles from the L1000 project. 

Although the linear model was highly scalable, it failed 

to capture the non-linear relationships between some 

genes.  

Most of the existing machine learning methods 

encounter issues like improper separation of feature 

extraction and model training, manually defined 

features. Most of the applied features requires domain 

expert in order to reduce the complexity of the data. 

Sometimes these features are extremely laborious and 

expensive Deep learning, as the modern, leading-edge 

machine learning method has received ardent audience 

in the field of artificial intelligence. It has the ability to 

automatically extracts features from sequences and 

discovers complex representations of data patterns 

Poor scalability of non-linear techniques like kernel 

machines steered the researchers away from such 

alternatives [8]. Researchers at the University of 

California, Irvine (UCI) decided that a machine learning 

approach was the way forward [8]. They argued that it 

would enhance the scalability and usher in better data 

representation. The expansive field of deep learning that 

could account for complex hierarchical nonlinear 

relationships was identified as an ideal solution. Deep 

learning, also called hierarchical learning uses multiple 

layers of abstraction to learn complex data 

representations [21]. The study at UCI culminated in the 

formulation of D-GEX, which is a multi-task multi-

layer feed-forward neural network. The neural network 

architecture is akin to that of a multi-layer perceptron 

(MLP). The best performing model with 5 layers (1 

input layer, 3 hidden layers of 9000 nodes each, 1 output 

layer) was reported to be 15% more accurate than the 

LR model [8]. 

D-GEX contains 943 units in the input layer 

corresponding to the 943 landmark genes. D-GEX also 

configured with 9520 units in the output layer 

corresponding to the 9520 target genes. Due to memory 

constrains D-GEX hidden layers are not configured. 

Therefore, random partition was done with 9520 target 

genes into two sets that each contains 4760 target genes. 

Two separate neural networks with each output layer 

corresponding to one half of the target genes was built 

and constructed series of different architecture with 

varying depths. 

This paper identifies certain shortcomings of the D-

GEX project, some of which are general to any deep 

neural network and others that are specific to the human 

genome dataset based on Microarrays [1]. A prime 

culprit belonging to the former category is the vanishing 

gradient problem that plagues any deep neural network 

[14, 15]. Theoretically, deeper and deeper networks are 

able to capture complex non-linear relationships within 

the data. But as the depth of the network grows, it 

becomes increasingly difficult to train the network. This 

is chiefly due to the fact that the errors propagated by 

the back propagation algorithm keeps on diminishing as 

it traverses towards the first layer. Thus there is little or 

no change in weights of the first few layers. As a result, 

these layers are poorly trained. Hence, although deeper 

networks may give better results, training them is 

cumbersome. Thus, the number of hidden layers that 

can be employed is severely restricted. The Gene 

Expression Omnibus (GEO) dataset that is used for 

training consist of 112634 samples of 978x21290 genes 

(978 landmarks versus 21290 targets) [12]. Training 

networks using such a large dataset is computationally 

expensive. Large number of features results in 

extremely slow training [5]. The problem is 

compounded by the fact that large feature size makes it 

much harder to find a good solution too. This problem 

is known as the curse of dimensionality. High 

dimensional datasets are prone to become too sparse, 

i.e., two instances randomly chosen are highly likely to 

be tremendously far away from each other [14]. 

Previously unseen instances may diverge from the 

instances that the network was trained on and thus 

predictions will be inaccurate. Having greater 

dimensions also bring forth the risk of over fitting the 

data [5]. Ideally, the number of training instances for 

training such high dimensional datasets should be 

sufficiently large, but increasing the sample size is not 

always possible [14]. The hidden units are activated 

using the hyperbolic tangent function in the D-GEX 

model [8]. Although hyperbolic tangent is better than 

logistic function because its mean is at 0, the function 

saturates to +1 or -1 as the input increases or decreases, 

respectively. Thus the derivatives are pulled to zero and 

thus the vanishing gradient problem kicks in [14]. As 

the number of hidden layers increase, the fitted model 

may be far from the ideal model. Another key drawback 

of D-GEX was that training was done separately for 

randomly segregated batches of target genes due to 

hardware limitations [8]. This in turn increases the 

overall training time. Also, since the batches were 

randomly chosen, the correlation information between 

the target genes was ignored. 

Here, we present Encoded Gene Expression Predictor 

(abbreviated as E-GEX), which is a combination of an 

autoencoder and a multi-layer feed-forward neural 
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network. E-GEX attempts to systematically alleviate the 

shortcomings of D-GEX by building an autoencoder to 

derive a concise encoded representation of target 

expression signature and then developing an MLP to 

predict the encoded target expression from the original 

landmark signature [8, 23]. We introduced some 

modifications to the MLP network of D-GEX by 

altering the optimization strategy and activation 

function. The performance of E-GEX on the Microarray 

based GEO data and RNA-Seq based 1000G data was 

determined to be better than that of D-GEX, when both 

were trained on the cross-platform quantile normalized 

expression profiles. Additionally, E-GEX was trained 

independently on the GEO data to efficiently predict 

entire target profiles (21290 target genes) using a single 

network, something that D-GEX failed to perform. 

3. Proposed Model  

The key idea of gene expression prediction is to treat it 

as a supervised learning problem [8]. Since the target 

values are expressions of target genes, the learning 

scenario can be simplified to multi-task regression. 

Expression profiles that were generated by the LINCS 

program are used to train and test models built for the 

expression inference. 

3.1. Dataset 

GEO is a publicly available database repository of high 

throughput gene expression data and hybridization 

arrays, chips, microarrays [12]. The GEO expression 

data was made publicly available by the LINCS 

program. It was curated by the Broad Institute from the 

publicly available GEO database. It consists of 112634 

gene expression profiles from the Affymetrix 

microarray platform. The 978 landmark genes and 

21290 target genes of the human genome are 

represented by 22268 probes per profile. The expression 

levels are normalized and fall in the range 4-15 [8]. 

A supplementary Illumina RNA-Seq platform 

dataset, titled as 1000 Genomes (1000G) RNA-Seq 

expression data is also used to train E-GEX. This dataset 

is not derived from the Affymetrix Microarray platform 

and thus is used for testing the cross platform viability 

of the models developed. The expression levels of 462 

profiles of lymphoblastoid cell line samples measured 

in RPKM format based on Gencode V12 annotations 

constitute 1000G [8]. 

The two datasets that are used for training E-GEX are 

derived from different platforms. Also, one Gencode 

probe may include multiple probes of the Microarray 

platform [8]. Using the gene ID and name information 

from the two datasets, probes that were common to both 

platforms were identified and the rest were pruned off. 

After pruning, we were left with 943 landmark genes 

and 9520 target genes, which exactly matched the 

feature set that was used to train D-GEX. Since the 

range of values in GEO Expression dataset and 1000G 

differ, they were quantile normalized with standard 

normal distribution as reference [8]. The normalized 

version of the GEO Expression data, which is called 

GEO-norm, is used for training the models. The 

normalized 1000G dataset is set aside for testing and 

inferring the cross platform viability of E-GEX. The 

original GEO dataset is used to build a complete model 

that can predict the entire target signature from the 

landmark expression. 

3.2. Encoding Target Expressions 

Principal Component Analysis (PCA) is applied on the 

target gene set to identify whether the target genes are 

further correlated [8]. PCA projected the 21290 target 

genes into a 508 features, retaining about 99% of the 

variance in the target data, without significant 

reconstruction error (approximately 0.22).  

 

Figure 1. Principal components analysis on target expressions. 

Hence, it is inferred that the target expression can 

ideally be represented using much less number of 

features than 21290, without compromising much on 

the accuracy. Although PCA is used to validate our 

attempt to encode the target signature, the projections 

made by PCA are based on an assumption of linearity 

[26]. Instead, autoencoders are used to find complex 

nonlinear encodings of the target expressions [6, 22]. 

 

Figure 2. Deep Autoencoder with 3 hidden layers. 

Autoencoders are artificial neural networks capable 

of learning efficient coding of the input data without any 

supervision [2]. Basically, an autoencoder learns to 

copy their inputs to their outputs. The coding can be 

viewed as the manifestation of the autoencoders attempt 

to learn the identity function under constraints like 

limiting the number of internal nodes [14]. An 
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autoencoder typically consists of two phases - an 

encoder phase and a decoder phase. The number of 

neurons in the output layer must be equal to that of the 

number of inputs. By stacking autoencoders one above 

another to form a deep autoencoder, it can learn much 

more complex coding [14, 31]. A deep autoencoder is 

symmetrical about its central hidden layer. Training can 

be made easier by tying the weights, a technique in 

which the weights of the encoder phase are reused for 

the decoder phase after being transposed [14, 32]. 

Autoencoders learn by reducing the error in 

reconstructing the input data [2]. For E-GEX, two 

autoencoders are separately trained - one to encode the 

whole target set (21290 genes) and another to encode 

the target genes in GEO-norm. The target expressions 

are encoded into a 2000 feature representation. The 

chosen feature length is approximately 4 times the 

number of features suggested by PCA to account for 

nonlinearity. For ease of training, deep architectures 

with 3 hidden layers are selected. Different number of 

nodes are tried for the first and third layer (5000, 6000, 

8000), with the innermost encoding layer consisting of 

2000 neurons [8]. This is the first phase of E-GEX. 

3.3. Predicting Target Expressions 

The principal objective of our work is to find a single 

deep neural network model that can predict target 

expressions, given the corresponding landmark 

expressions. A Multilayer Perceptron (MLP), which is 

a multilayer feed-forward neural network is used for 

building this prediction model. Except the input layer 

nodes, each node in an MLP is a neuron with a nonlinear 

activation function. Formally, an MLP can be 

considered as a non-linear transformation NM RRf : , 

where M is the size of the input vector and N is the size 

of the output vector [8]. The inputs to the hidden layer 

are calculated as the weighted sum of the inputs. The 

input to the output layer is the weighted sum of the 

hidden layer activations. The number of hidden layers 

can be increased, forming a deep network that 

introduces greater levels of abstraction. 

The second phase of E-GEX is an MLP with 943 

nodes in the input layer and 2000 nodes in the output 

layer. The number of hidden layers and number of nodes 

per hidden layer are varied to find a best fit model. The 

following subsections describe the various parameters 

and constraints that were chosen while constructing the 

E-GEX MLP. 

1) Activation: The hyperbolic tangent function used in 

D-GEX can capture the non-linearity, but it is prone 

to the vanishing gradients problem since it saturates 

to 1 for high/low input values [8]. The Restricted 

Linear Units (ReLU) were introduced as a 

compromise between fully linear units and nonlinear 

units [16]. But the output of ReLU is pulled to 0 for 

negative values. The Exponential Linear Unit (ELU) 

was derived as an alternative to ReLU in neural 

networks [10]. The exponential linear function is 

defined as 





 .if x)α(e

.if x>x
f(x)=

x 01

0
   (1) 

ELUs are not vulnerable to the vanishing gradient 

problem since they are continuous everywhere, even at 

the origin, as depicted in Figure 3. The calculation of the 

derivative is a bit more involved for ELUs than for 

hyperbolic tangents or ReLU, but they converges faster 

[14]. 

 

Figure 3. Exponential linear function. 

In recent times, ELUs have become the norm in deep 

neural networks. All but the output layer in the E-GEX 

MLP are composed of ELUs. The output layer neurons 

are linear units since the output values are continuous 

[8]. 

2) Initialization: Randomized initialization of weights 

and biases is a huge deterrent in deep neural networks 

because it can direct the cost function to local minima 

[14]. Also, the training may go on indefinitely 

without finding an optimal solution. As an 

alternative, researchers suggested sampling from a 

normal distribution so that the total variance of the 

inputs of each layer and the total variance of the 

outputs are similar [11]. Also the gradients would 

have the same variance before and after flowing 

through a layer when such an initialization strategy is 

used. The fan-in and fan-out of each layer is used to 

select the mean and standard deviation of the Normal 

distribution from which sampling is done [14]. The 

Glorot Initialization scheme samples from a normal 

distribution with mean 0 and standard deviation, 

outputinput nn 

2
=   (2) 

or an uniform distribution between -r and +r where 

outputinput nn
r



6
=   (3) 

This generic scheme was modified through derivation 

of formulas suited specifically to specific activation 

functions [11]. The above mentioned r and were found 

suitable for logistic functions. For Rectified Linear 

Units (ReLU) and its variants like ELU the parameters 

r and are multiplied by a factor of √2. This variance 

scaling initializer scheme, also known as He 
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initialization is used for the lower layers of the E-GEX 

MLP [14]. Since the MLP is used for regression, the 

initial values of output layer is sampled from a uniform 

distribution in the range [-1x10-4, 1x10-4] [8]. Selection 

of appropriate activation functions and initialization 

schemes can alleviate the vanishing gradient problem. 

3) Optimization: Standard back-propagation is the most 

widely adopted technique for updating weights in 

neural networks [28]. Researchers have developed a 

variety of techniques to optimize back propagation 

and thus train neural networks faster. Gradient 

descent is the most common technique for 

optimization [14]. Momentum optimization method 

was derived as a way to accelerate the simple gradient 

descent optimization [14, 27]. Gradient descent 

simply updates the weights by subtracting the 

gradient of the cost function )(J  multiplied by the 

learning rate [14]. 

   ))(( J
θ

αθ=θ



    (4) 

The key idea in Momentum optimization is to give 

sufficient weight to the previous gradients and not just 

the current derivative. Each epoch adds the local 

gradient to the momentum vector m and it updates the 

weights using this parameter [27]. 

        ))((= 


 Jmm



 ,                   (5) 

 Where  is momentum, and  

m =                    (6) 

Nesterov Accelerated Gradient (NAG) is a small variant 

of the momentum optimization, which has been 

empirically observed to be faster than the momentum 

technique [14, 24]. The chief idea is to measure the 

gradient of the cost function not at the local position, but 

slightly ahead in the direction of the momentum. 

))((= mJmm 


 



   (7) 

m =  

In general the momentum vector will be pointing in the 

direction of the optimum and thus it will be slightly 

more accurate to use the gradient a bit farther in that 

direction than at the current position [24]. Although the 

modification is slight, it helps in rolling down the cost 

slope a bit faster [14]. Optimisation of all the feed-

forward networks trained as part of this work is done 

using NAG. 

4) Regularization: Neural networks have a tendency to 

overfit the data on which it was trained [15]. A 

collection of regularization techniques aims at 

creating the most generalized neural network models. 

Simple regularization techniques like L1 and L2 

regularization imposes restrictions on the weights of 

the network by limiting their range. Dropout is the 

most popular regularization technique for deep 

neural networks [14, 30]. The approach is very 

simple - at every training step, every neuron (except 

the output neurons) is temporarily dropped out of the 

network with a probability p. The dropped neurons 

will be completely ignored during this training step, 

but may become active in the next one [3]. The 

hyperparameter p is termed as the dropout rate. 

Dropout prevents neurons from co-adapting with its 

neighbours and thus they learn to become useful on their 

own. Also, they cannot rely on just a section of the input 

neurons and has to pay attention to all of them [14]. 

Thus, a more robust network that generalizes well will 

be obtained. Dropping is strictly restricted to the 

training phase. During the testing phase, each of the 

input connection weight is multiplied by a factor of (1-

p) to adjust for the increase in the number of neurons 

[3]. Although dropout may delay convergence, it 

produces a good generalized model [14]. 

Early stopping is another form of regularization 

where training is pre-empted when the performance on 

a validation set (which the network does not see while 

training) keeps on reducing for a series of consecutive 

epochs [7]. The models are check pointed at regular 

intervals and when a better model is not obtained for k 

epochs, training is terminated and the previously check 

pointed model is restored for testing and further analysis 

[14]. Assigning small values for k can lead to extensive 

early stopping due to slight kinks in the cost function. 

Both early stopping and dropout regularization are used 

together while training the MLP networks. 

5) Hidden Layers: Despite the widespread popularity of 

deep learning, there is still no universal consensus on 

the ideal number of hidden layers and the number of 

neurons per hidden layer to be used to construct the 

neural networks. Derivation of a global solution is 

cumbersome since these parameters are very much 

application dependent. Nevertheless, researchers 

have come up with certain workarounds where the 

ideal hidden layer configuration is deduced from 

other known parameters. For instance, irrespective of 

the nature of the data, the number of neurons per 

hidden layer can be derived using the cardinality of 

the dataset and the sample size. One popular rule of 

thumb is that a standard 2-layer feed-forward neural 

network with 
2

22)(





m

N
Nm neurons in the first 

hidden layer and )

2

(

m

N
m neurons in the second 

hidden layer can represent N distinct input samples 

with any desired precision, where m is the number of 

output neurons [17]. For our work, such a 2 hidden 

layer model consisting of 11850 and 11826 nodes 

respectively is adopted (our chosen m=2000 and 

N≈70000, the number of training samples). An E-

GEX model is also constructed bereft of the 



Gene Expression Prediction Using Deep Neural Networks                                                                                                        427 

autoencoder stage to compare the effectiveness of 

this configuration with the best performing D-GEX 

network consisting of 3 hidden layers of 9000 nodes 

each [8]. In this model, m = 4760 (one half of the 

target expressions) and N 70000, thus producing 2 

hidden layers of approximately 18000 nodes each. 

Due to hardware limitations, ultimately only 12000 

nodes are used in each of the hidden layers. 

6) Hyperparameters: Parameters of the learning 

algorithms that are implicitly introduced into the 

model are collectively known as hyperparameters 

[14]. The step size in gradient descent is controlled 

by a hyperparameter called learning rate [29]. 

Learning rate of E-GEX MLP is initialized to 5x 10-

4. For optimal learning, this value is 

programmatically tuned using a decay rate of 0.9 

until it reaches a minimum of 1x10-5 [8]. The tuning 

is done based on the prediction performance on a 

subset of the training set. For the acceleration using 

NAG, momentum hyperparameter is set as 0.9 [8, 

14]. Dropout is performed with a dropout rate of 

10%, which means that 90% of the internal nodes are 

retained during each epoch [8]. 

3.4. Model Selection 

The target encoded GEO-norm dataset is partitioned 

into 3 disjoint sets - GEO-norm-tr, GEO-norm-val and 

GEO-norm-ts for training, validation and testing 

respectively. Instead of randomly segregating the 

sample profiles, we have adopted k-means clustering to 

ensure good representation and thus prevent overfitting 

[8, 13].  

Appropriate value of k for clustering is normally 

identified as the elbow point in the plot of k versus 

squared error [13]. The plot in Figure 4 does not 

showcase a clear elbow and k was chosen as 20 because 

the error appears to be quite stagnant after that. From 

each cluster, a maximum of 4500 expression profiles are 

written onto GEO-norm-tr and 700 onto GEO-norm-val. 

The remnants of each cluster, if any, are added to GEO-

norm-ts. 

 

Figure 4. Plot of k vs sum of squared error. 

The same approach is used to partition the original 

GEO dataset into GEO-tr, GEO-val and GEO-ts. In each 

case, the performance on the validation set is monitored 

every 5 epochs. Training will be stopped early if the 

latest model performs worse than the model 25 epochs 

prior to it. Thus the model with the least validation error 

will be chosen as the best performer. Mean Absolute 

Error (MAE) is the metric that is used to measure 

performance [8, 19]. For n samples, 

,

||

= 1=

N

yy

MAE
ii

n

i


                     (8) 

Where 
iy s are the actual values and yi s are the 

predicted values [8, 19]. Different models are compared 

based on their MAE on the respective test sets. The 

quantile normalized 1000G dataset is exclusively used 

as a test set to validate cross platform application of E-

GEX. 

4. Experimental Results 

Each of the autoencoder architectures were trained for 

150 epochs and saved after their reconstruction errors 

were recorded. The encoded target expressions were 

written onto disk for training the prediction networks. 

Training of E-GEX MLP networks were done for a 

maximum of 250 epochs. The test sets were run through 

the saved MLP models to obtain the predicted target 

encodings, which were decoded using the saved 

autoencoder models. The final decoded target 

expressions were used to compute the MAE of the 

models. 

Some MLP networks were also trained using the 

actual expression values, bypassing the autoencoder 

phase. These models serve the purpose of evaluating the 

performance improvement achieved solely by the 

modifications made to the MLP network [8, 17]. All the 

models were trained and tested using the Tensorflow 

library in Python on an i7-3770 CPU@ 3.40GHz x8 

[14].  

4.1. Performance of Models on GEO-norm  

Two 3-layer feed-forward networks with 9000 nodes in 

each layer were trained on GEO-tr for 250 epochs, one 

for target genes 0-4760 and another for genes 4760-

9520. The parameters were directly adapted from the 

best performing D-GEX model [8]. Activation of lower 

layers was done using hyperbolic tangent function. 

Output units had linear activation. Momentum 

technique was used for optimization. Dropout was 

performed with 10% dropout rate. This model served as 

the benchmark that was used to select the best 

performing E-GEX network. 

Firstly, we measured the performance of the 

modified feed-forward network that addresses certain 

shortcomings of D-GEX. We constructed and trained 

two 2-hidden layer models with 12000 nodes in each 

layer. The activation function for lower layers was the 

exponential linear function, and linear function for the 
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output layer. Early stopping regularization was used 

alongside dropout with 10% dropout rate. Optimization 

was done using NAG technique. MAE of both the 

networks was combined to produce the total error rate 

for genes 0-9520, which is described in Table 1. It can 

be observed that these modifications brought forth a 

16.64% improvement in test error over D-GEX. 

Table 1. Validation and test errors of different models. 

Model Error on GEO-val Error on GEO-ts 

D-GEX 1.1342 1.2927 

E-GEX MLP 0.8988 1.0789 

E-GEX 0.9833 1.0775 

Secondly, we encoded the target genes into a 2000-

feature representation using a deep autoencoder with 3 

hidden layers. The number of nodes in the first and last 

hidden layers was varied to find the configuration that 

resulted in the least reconstruction error. From Table 2, 

it is evident that the 6000x2000x6000 configuration 

produced the best 3-layer encoding. 

Table 2. Three-hidden layer autoencoders with tied weights. 

Number of Nodes in 

layers 1 and 3 

Reconstruction 

Error 

Training time per 

epoch (minutes) 

5000 0.5346 40 

6000 0.4468 45 

8000 0.4971 55 

The second phase of E-GEX is identical to the E-

GEX MLP described above, with the exception of its 

hidden layer configuration which was tweaked to 

accommodate the change in the number of output nodes. 

The number of nodes in the first two hidden layers was 

11850 and 11826, respectively [17]. The decoded target 

predictions were compared to the original target 

expressions to derive the final error rate mentioned in 

Table 1. The encoded prediction model showcased 

performance slightly superior to E-GEX MLP. It can be 

observed that the reconstruction error of 0.4478 can be 

reduced substantially by training a deeper autoencoder, 

which would further pull down the overall predictive 

error. Figure 5 establishes the superiority of E-GEX 

model over D-GEX, in terms of the validation errors. 

The expressions of each target gene predicted by E-

GEX and D-GEX were compared, which is represented 

in Figure 8. E-GEX produced better predictions for 

99.87% of the target genes, with or without the 

autoencoder phase. 

4.2. Testing E-GEX on 1000G 

All the three models described above were tested on the 

1000G dataset, and the results are described in Table 3. 

Al-though the predictive errors of D-GEX and E-GEX 

MLP were found to be identical, encoding the target 

before prediction boosted prediction accuracy by 

49.23%. 

 
a) Without autoencoder. 

 
b) With autoencoder. 

Figure 5. Comparison of validation errors. 

Table 3. Predictive errors on 1000G. 

Model Genes (0-4760) Genes (4760-9520) Total 

D-GEX 0.7756 0.7757 1.5513 

E-GEX MLP 0.7750 0.7754 1.5504 

E-GEX 0.3794 0.4082 0.7876 

 

From Figure 6 we observed that the predictive error 

on 1000G by D-GEX was almost halved by E-GEX, 

although the models were trained on GEO-norm. Thus, 

E-GEX can be employed across platforms, much more 

effectively than D-GEX. 

 

Figure 6. Performance of different models on 1000G dataset. 

4.3. Performance of E-GEX on full GEO data 

Encouraged by the performance of E-GEX on GEO-

norm, a similar model was constructed and trained for 

the entire GEO dataset with 978 landmark genes and 

21290 target genes. An autoencoder with 3 hidden 

layers of 8000, 2000 and 8000 nodes respectively was 

used to encode the target expressions. The parameters 
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for the predictive network were directly adapted from 

the previous model. Several hidden layer configuration 

were tried, but it is clear from Table 4 and Figure 7 that 

the 11850 x11826 configuration was the best among the 

lot. 

 
Figure 7. Effect of hidden layer configuration of E-GEX on 

validation loss. 

Table 4. Validation Errors in 2-hidden layer feed-forward networks 
of E-GEX. 

Number of 

nodes in layer 1 

Number of nodes 

in layer 2 

Mean Absolute 

Error (MAE) 

3000 3000 0.464 

3000 6000 0.423 

6000 6000 0.389 

6000 9000 0.351 

9000 9000 0.334 

11850 11826 0.257 

The candidate configurations were adopted from the 

different models that were tried as part of the D-GEX 

project. The 3-hidden layer 9000x9000x9000 

configuration produced the best result on normalized 

GEO data in D-GEX. Since the output nodes have been 

significantly reduced by the encoding phase, there was 

no need to look beyond 2-hidden layer feed-forward 

networks. 

Deeper MLPs would usher in performance 

deficiencies in the form of the vanishing gradient 

problem since we are not employing higher order 

derivatives [15]. For the consolidated model that 

performs genome- wide microarray based profiling, the 

MAE on the test set was observed to be 1.8484. The 

principal contributor to this quantity was the 

reconstruction error of the autoencoder, which was 

close to 1.81. Although deeper encoders can produce 

better representations with minimum reconstruction 

error, hardware limitations hampered our attempts to 

increase the depth of the autoencoders. 

 

 

 

 

 

 

 

 

 

a) Without autoencoder. 

 

b) With autoencoder. 

Figure 8. Comparison of Gene-wise errors. 

5. Conclusions and Future Work 

Characterising the gene expression patterns of genes 

under various biological environments is a fundamental 

problem in molecular biology. Cost constraints steer 

researchers away from explicit profiling through 

laboratorial techniques like the L1000 Luminex bead 

technology [25]. E-GEX presents a statistical approach 

to profile thousands of genes at once using deep neural 

networks. It is an extension of the D-GEX project, 

which used separately trained Multilayer Perceptron 

networks to predict expressions of randomly partitioned 

sets of target genes [8]. The autoencoder phase of E-

GEX overcomes this redundancy and enables the 

construction of a single trained MLP to profile complete 

genome expressions. In addition to that, modifications 

are made to the MLP network in terms of its activation 

function, optimization technique, regularization 

strategy and hidden layer configuration. These 

alterations alone resulted in a 16.64% improvement in 

performance on the normalized GEO data. The MLP 

training procedure is simplified using the autoencoder 

phase. Since the mean absolute error on the RNA-Seq 

based 1000G data is lesser than that of the test error on 

GEO dataset, it can be inferred that good generalization 

has been achieved. The E-GEX model brought forth a 

49.23% performance boost over D-GEX on the 1000G 

data. Thus we strongly believe that E-GEX is an 

efficient and accurate model for gene expression 

prediction. In the current implementation, the depth of 
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the autoencoder is severely restricted due to hardware 

limitations. Architectures with more number of hidden 

layers with a gradual decrease in the number of neurons 

in each successive layer of the encoder phase can further 

reduce the reconstruction error which would result in 

better encoding [31]. Forage into recent developments 

in multi-GPU techniques would accelerate training and 

also enable us to accommodate deeper architectures [8, 

9]. Deep networks could be efficiently trained layer by 

layer in a greedy manner using GPUs. Recurrence of the 

vanishing gradient problem in such deep networks could 

be tackled using the Batch Normalization technique for 

weight tuning [18]. 
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