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Abstract: Speech and music segregation from a single channel is a challenging task due to background interference and 

intermingled signals of voice and music channels. It is of immense importance due to its utility in wide range of applications 

such as music information retrieval, singer identification, lyrics recognition and alignment. This paper presents an effective 

method for speech and music segregation. Considering the repeating nature of music, we first detect the local repeating 

structures in the signal using a locally defined window for each segment. After detecting the repeating structure, we extract them 

and perform separation using a soft time-frequency mask. We apply an ideal binary mask to enhance the speech and music 

intelligibility. We evaluated the proposed method on the mixtures set at -5 dB, 0 dB, 5 dB from Multimedia Information Retrieval-

1000 clips (MIR-1K) dataset. Experimental results demonstrate that the proposed method for speech and music segregation 

outperforms the existing state-of-the-art methods in terms of Global-Normalized-Signal-to-Distortion Ratio (GNSDR) values. 
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1. Introduction 

Singing voice source segregation aims to decompose a 

mixture signal and extract the vocals and music from 

several sources in the mixture. Source segregation can 

be divided into two types: music segregation and speech 

segregation. In Speech segregation, signing voice is 

recovered from the mixed signal which might have 

some background noise as well. Whereas music 

segregation involves the separation of music from the 

mixture signal. The fact that audio signals are so 

intermingled and includes many variations so it is 

essential to segregate the desired signal from the noise. 

The presence of background noise in the audio signal 

makes it challenging for machines to effectively 

segregate the music and speech components. Recently, 

speech and music segregation has gained much 

importance as many existing applications for singer 

identification [26], music annotation [24] and lyrics 

recognition [23] use the information extracted from the 

songs. The main issues in singing source segregation are 

the overlapping of sources in time-frequency domains 

and mixture of both sources in a single channel. 

The single source speech segregation can be 

classified in two ways: the spectrogram factorization 

and pitch-based inference techniques [21]. The 

spectrogram factorization method uses the excess of 

music and speech to decompose the signal into groups 

of repetitive sections. Each section is then allocated to a 

sound source. Whereas, pitch based techniques use the 

contour of extracted voice to separate the singing  vocal. 

But spectrogram factorization and pitch-based 

techniques encounter few limitations. In [16], the  

 
repetition is said to be the foundation of music as an art. 

Music theorists discovered that the repetition concept is 

very significant in examination of the musical 

organization. Most of the existing methods for source 

segregation do not clearly count the repeating structure 

analysis. 

Existing segregation methods can be categorized into 

supervised learning-based [1] and unsupervised 

learning-based approaches. Supervised learning-based 

approaches use labeled data from many sources to 

separate music from the speech component. On the 

contrary, unsupervised learning-based approaches 

perform source separation without having training data 

beforehand. Typical music/voice separation methods 

work by either training music model from non-verbal 

segments [9] or voice signal model using predominant 

pitch contour [10, 14]. In [3], a hybrid model is used to 

train both signals which require vocal segments 

beforehand that can be extracted using audio features 

such as pitch, energy, Mel-Frequency Cepstrum 

Coefficients (MFCCs), etc., Furthermore, other 

complex algorithms such as Robust Component 

Analysis [8] and variations of Negative Matrix 

Factorization (NMF) [25] can be used for monaural 

source separation. However, these methods are 

computationally expensive. In [7], non- NMF model is 

presented for unsupervised separation of voice in single 

source music signal. In speech and music segregation, 

different methods segregate speech from music by 

initially detecting voice/music segments. Classifiers 

such as Neural Networks (NN) and SVM identify voice 

and music segments using the features such as 

Perceptual Linear Predictive coefficients (PLP), 
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MFCCs, and Log Frequency Power Coefficients 

(LFPC). In [20], a method using NMF is proposed to 

segregate the spectrogram into voice and music 

segments [20]. But NMF requires an accurate 

initialization and correct number of constituents for a 

useful segregation. A Deep Neural Networks based 

technique [18] is applied to separate music and vocals 

from a song. In [12] SVMs are used to tag Punjabi 

sentences. 

We suggest a different approach as compared to 

existing algorithms [4, 9, 10, 11, 12, 13, 14, 16, 17, 21] 

for source separation. The basic concept of separation is 

to detect all repeating periods in mixed signal and 

extract the repeating pattern from a non-repeating 

segment. The results obtained from segregation 

algorithm are further enhanced to improve its 

intelligibility.  

In this paper, we segregate music and speech 

components by extracting repeating patterns from the 

mixture signal. We detect repeating structures using 

repeating pattern detection process and then compare 

these patterns with the median model. We extract the 

repeating segments using a time-frequency soft mask. 

We use an Ideal Binary Mask (IBM) filter to enhance 

the segregated speech and music. The use of IBM 

improves the affected target speech by retaining only the 

high energy regions of the music and speech 

components.  

2. Proposed Methodology 

We propose an effective technique to segregate the 

recurring background from the non-recurring 

foreground. The fundamental concept is to detect the 

patterns which repeat periodically in the song, check 

them with a repeating model and then extract the 

repeating structure. The rationale to this approach is, 

music signal contains a rhythm that follows a repeating 

pattern at regular intervals as compared to a speech 

signal which involves distinct variations. To improve 

the segregation performance, we apply an ideal binary 

mask on the extracted components.  

The proposed technique is fast and simple as it does 

not create any feature vector using the acoustic features 

(e.g., LPC, MFCC, ZCR, etc.) to train a classifier (e.g., 

SVM, CNN, etc.,) for speech and music segregation. 

The proposed segregation technique consists of 

repeating patterns identification, modeling repeating 

sections, extracting repeating sections, and applying the 

ideal binary masking. The process flow diagram of the 

proposed system is shown in Figure 1.  

2.1. Repeating Pattern Detection 

Auto-correlation is commonly used to find periodicities 

in a signal. It computes the similarity between the 

current and its previous section with the passage of time. 

The auto-correlation method can be used to find the beat 

spectrum of the signal. The beat spectrum helps to 

compute over-all periodicity of the signal whereas, to 

find local periodicities we calculate the beat spectra over 

successive windows. Thus, beat spectrogram helps to 

deal with variations in periodicities with time. We apply 

Short Time Fourier Transform (STFT) referred as T 

with a hamming window of 𝐴 samples using half 

overlap size on mixture signal y. We take the magnitude 

spectrogram S of mixture signal by keeping the absolute 

values of T and DC part while discarding the symmetric 

part. Provided the window of size 𝑥 ≤ 𝑢, where 𝑢 

denotes the number of time frames, we compute the beat 

spectrum dt of local magnitude spectrogram St for each 

time frame t in S. After computing local beat spectrums, 

we combine them into beat spectra matrix D. Then we 

calculate the auto-correlation of magnitude spectrogram 

S2 and derive matrix Rt. We use S2 to highlight the points 

of periodicities in Rt. In case of stereo type signal, we 

take average of S2 over channels. To achieve the 

complete sound self-similarity D of mixture signal 𝑦 we 

take the mean of Rtover rows. We calculate the local 

magnitude spectrogram St, auto-correlation matrix Rt 

and beat spectrum dt by using Equations (1), (2), and (3). 

Whereas, the beat spectra matrix D is calculated by 

applying Equation (4). 
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channels, x is the window size,t shows lag and l denotes 

the total number of time frames. 

 

 

Figure 1. Process flow of proposed system. 

The beat spectrum concept presented in [5] reveals 

that this technique allows clear understanding of the 

beat pattern in the mixed signal. The beat structure is 

referred to as the beat spectrogram. After receiving the 

beat spectrogram, we discard the first term which 

matches the overall correspondence with the signal. 

(1) 

(2) 

(3) 

(4) 
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Whenever there is a repeating pattern in the signal, 𝐷 

forms a repeating peak at different points and a peak 

demonstrates the repeating organization of the segment. 

We apply an efficient process to automatically compute 

the repeating pattern duration. The idea is to find the 

period with highest mean energy calculated among its 

integer multiples. To find this, we take each potential 

interval k in D and observe its integer multiples 

j(i,e,2k,3k etc) for highest peaks in the respective 

neighborhood [𝑗 − ∆, 𝑗 + ∆] where ∆ shows the distance 

and is a function of k. If its integer multiples have the 

highest peaks, we add their values and subtract the 

neighborhood’s mean value to avoid the background 

interferences. We compute the mean energy by dividing 

the sum of highest peaks by all multiples of 𝑘 that are in 

D. We refer the period Pt as the interval 𝑘 which offers 

the highest peak values of mean so we can find the 

strongest peaks showing the repeating pattern of the 

mixed signal y. We ignore the longest lag terms to 

measure similarity between the segments because 

longest terms of autocorrelation are unreliable. To 

establish a repeating structure model, we need minimum 

of three complete repeating cycles in D. To 

accommodate the beat deviations we introduce a 

variable 𝛿 referred to as fixed variation and its length is 

set to 2 intervals. It means that the value of largest peak 

in the neighborhood is maximum of [𝑘 − 𝛿,𝑘 + 𝛿]. In 

Figure 2 we illustrate the repeating pattern of the mixed 

signal where each peak shows the repeating interval. 

 

Figure 2. Repeating pattern of a mixed signal. 

2.2. Modeling Repeating Sections 

Once we get the repeating intervals 𝑃𝑡′𝑠, we use them to 

timely divide spectrogram S into g sections whose 

length is same as Pt. We compute median of each 

element of time-frequency bin at time t to obtain the 

repeating section and consider this median to be 

repeating section model O. We derive this model as: 
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Where g represents the maximum number of repeating 

sections and Pt indicates the length of repeating interval 

for frame t.  
The vocal representation is different from the music 

in time-frequency domain and it is usually scattered. 

The repeating structure forms the time-frequency bins 

of minor variations, whereas the vocal structure that 

doesn’t repeat periodically has larger variations. This 

model retains the repeating sections and discards the 

sections of longer variations. We refer to this model as 

median model [17] which proved effective to 

differentiate repeating sections from the non-repeating 

sections. We use median to get the first steady segment 

from the beat band because we need at least 3 stable 

segments to establish a median model. 

2.3. Extracting Repeating Sections  

After getting the repeating segment model O, we 

compare each segment g of the mixture spectrogram S 

with the repeating segment, which is the median of all 

segments of mixture spectrogram. Now we calculate the 

repeating spectrogram Q from the mixture spectrogram 

S. For (S-Q),Q (repeating spectrogram) must be less 

than or equivalent to S (e.g., 𝑄 ≤ 𝑆). We compute the 

element-wise minimum between S and O. If the 

repeating segment is smaller than a segment of the 

mixture spectrogram, then we replace this segment with 

the repeating segment. The rationale is that if the value 

of a segment of the mixture spectrogram is larger than 

the repeating segment, it indicates that this segment 

contains more non-repeating information. In order to 

remove the non‐repeating pattern, we need to replace 

this segment with the repeating segment. Otherwise, if 

the value of a segment is smaller than the repeating 

segment, it means that this segment contains less non‐
repeating patterns and we retain it. After comparison 

and replacement, the new spectrogram we derive is 

called the repeating spectrogram. Once we obtain the 

repeating spectrogram, we start to remove the non-

repeating segment from the mixture spectrogram. We 

calculate the repeating spectrogram as follows: 

       , min , , ,Q h t O h t S h t   

We normalize Q by S to derive a soft time-frequency 

mask G using the repeating spectrogram model Q. This 

mask is designed on the idea that repeating time-

frequency bins at some period 𝑃𝑡  gets values closer to 1 

in G. The values of non-repeating frequency bins at 

some period Pt tend to be closer to 0 in G. We refer to 

the repeating time-frequency bins as background 

(music) and non-repeating time-frequency bins are 

referred to foreground (speech). We derive soft time-

frequency mask by applying Equation (7).  
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Once this mask G is symmetrized, then we apply G to 

STFT of mixed signal y. We take ISTFT of the resultant 

STFT of mask G to obtain the music signal. We obtain 

the speech signal by subtracting music signal from the 

mixed signal y. For rest of the paper, we call it as 

Repeating Section Segregation Algorithm (RSSA). 

After performing this subtraction, we obtain the 

segregated music and speech components. Finally, an 

(IBM) is applied on these segregated components to 

obtain the enhanced music and speech signals. 

2.4. Speech and Music Enhancement 

In a cocktail party environment that comprises of 

various background noises, human speech 

communication usually degrades [2]. So, the presence 

of noise makes it difficult to separate the target signal. 

Similarly, separated speech and audio signals from the 

proposed method RSSA also gets some artifacts in terms 

of background noise. The ideal binary masking is useful 

as the decision making process becomes easy and the 

algorithm runs in a repetitive manner to estimate the 

sources. We apply IBM on the output of RSSA for 

speech enhancement. 

2.4.1. Ideal Binary Mask 

 An IBM requires the target signal energy S(t,f) and a 

masker signal energy N(t,f) to enhance the desired 

speech signal. IBM is created by comparing the target 

signal energy of each component and the masker energy 

with a local Signal-to-Noise ratio criterion (LC). The 

noisy signal Yk is the scaled version of target signal Sk 

and masker signal Nk. The noisy signal Yk for IBM is 

formed as: 

k k kY S N    

Where Yk represents the noisy signal which we provide 

as input to IBM for enhancement. LC and IBM are 

computed as follows: 
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In Equation (10), local criterion for the IBM is 

calculated by taking the log of absolute squares of target 

signal energy S(t,f) and masker signal energy N(t,f). If 

the difference of target energy and masker energy is 

greater than LC, then the time-frequency unit is 

assigned to target source otherwise it is set to 0. The 

masker signal Nk is the noise we add to target signal Sk. 

We take the speech/music output of RSSA as noise to 

form the noisy signal. The target signal 𝑆𝑘 is referred to 

as a clean signal for convenience of discussion in the 

paper. We extract the clean signals for speech and music 

from the dataset as it has separate channels for each 

source. The input signal for IBM is referred to as noisy 

signal for the rest of the paper. Now the value selection 

for threshold LC is important because it can increase the 

speech intelligibility. The LC value for IBM lies in the 

range of 0 to -12 depending upon the application. A 

study [13] shows that the value of LC=-6 is better than 

commonly chosen value 0. For T-F analysis of IBM, 

both the target signal and masker is available for mixing. 

Discrete-time STFT is performed on the noisy and clean 

target signals. 

3. Performance Evaluation 

We used Signal-to-Distortion Ratio (SDR), Signal-to-

Interference Ratio (SIR), Signal-to-Artifacts Ratio 

(SAR) and Global-Normalized-Signal-to-Distortion 

Ratio (GNSDR) for performance evaluation.  

3.1. Dataset 

For our proposed system we use a standard dataset 

named MIR-1K [11] comprising of 1000 songs samples 

in WAVE format recorded at sampling rate of 16-kHz. 

These samples are collected from 110 Chinese karaoke 

songs. The voice and music is recorded separately on 

left and right channels respectively. We used 1000 

songs clips of MIR-1K dataset to create three different 

mixture sets. We mix each clip of dataset into a single 

channel mixture using three different voice-to-music 

ratios of (-5, 0, 5 dB). For -5 dB music sound is louder, 

at 5 dB voice is louder whereas, at 0 dB song has the 

same effect as the original sample. 

3.2. Performance Metrics 

For source separation performance measurement, we 

use the BSS_EVAL toolbox3 [22]. It consists of a set of 

measures which calculate the quality of segregation 

among a source and its estimation. The estimate r̂ of a 

source r is decomposed as follows:  
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Where rtarget is an acceptable distortion of source r, ointerf, 

onoise and oartif denote the interferences of unwanted 

sources, the perturbation noise, and the artifacts 

introduced by the separation algorithm respectively [6]. 

The performance measures: (SDR), Source-to-

Interferences Ratio (SIR) and Source-to-Artifacts Ratio 

(SAR) are computed as follows: 
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High values of SDR, SIR, SAR indicate better 

segregation of speech and music. We select these 

metrics as they are commonly used to evaluate the 

performance of segregation algorithms. These 

measurements are well correlated to human assessments 

of signal quality. Following the framework applied in 

[7], we calculate the Normalized Signal to Distortion 

Ratio (NSDR) which shows the SDR enhancement 

between estimate  r̂ of a source r and the mixture y as 

shown in Equation (15). With NSDR values we further 

compute the GNSDR by applying Equation (16). 

GNSDR represents the overall segregation performance 

and calculated in the proposed method by taking mean 

of NSDR over all mixtures set yk weighted by their 

length vk. The higher values of NSDR and GNSDR 

depict better segregation of speech and music signals. 
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3.3.  Experimental Setup 

We mix each song clip at voice-to-music ratio of -5, 0 

and 5 dB to form a single channel signal. We compute 

STFT of all mixtures using half-overlapping hamming 

window of 40 milliseconds at 16 kHz. Then we take 

absolute spectrogram of the input sample. To get more 

precise repeating pattern, we use adaptable window and 

step size calculated by using Equation (1). Then we 

derive soft-time frequency mask by applying Equation 

(7). To separate voice from the music signal we also 

apply high-pass filter of 100 Hz cut off frequency which 

retain the elements of 100 Hz energy in voice segment. 

Whereas, transferring the energy point below 100 to 

music segment. The reason for selecting the cut off 

frequency value of 100 Hz is that the singing voice is 

usually above 100 Hz. For improvement of separated 

voice and music signals we apply the ideal binary mask 

on separated results. We apply IBM on all three 

mixtures of -5, 0 and 5 dB.  

For IBM computation three types of signals are 

involved i.e. clean signal/target signal, noisy signal 

(mixture of clean signal and noise/masker) and the 

output/processed signal. We set the Signal-to-Noise-

Ratio (SNR) of noisy speech as 0 dB and LC to -5 dB. 

The analysis frame duration and analysis frame shift 

values are set to 32ms and 4ms respectively. For IBM, 

the time-frequency units which have larger energy than 

the masker is retained while others are set to zero. This 

is an iterative process and continues till the target source 

is estimated. 

3.4. Experimental Results and Discussion 

We evaluated the performance of the proposed method 

on MIR-1K dataset. The basic idea to separate voice 

from music is to detect repeating intervals in the input 

signal. We detect repeating intervals using the auto-

correlation method which finds the similarity of an 

interval from its previous samples. Once we compute 

similar segments of the signal then we use them to find 

stable repeating segments of the entire signal using 

repeating section model. We finally extract repeating 

spectrogram and apply soft mask on repeating 

spectrogram to separate music from the voice. Figures 3 

and 4 illustrates the segregation results of RSSA for 

voice and music in terms of GNSDR, SDR, SIR and 

SAR. It can be observed from Figure 3 that the results 

for speech segregation are improved with increased 

voice-to-music ratio in the mixture signal. Whereas, 

almost the opposite trend in the results are observed for 

music segregation as shown in Figure 4. The reason 

behind this effect is that at -5 dB music has more 

contribution in mixture signal as compared to the 

speech. Since music is already dominant, so it is easy to 

segregate music from the speech. On the other hand, for 

speech segregation best results are obtained at 5 dB as 

speech has more proportion at 5 dB in comparison of the 

music signal.  

 

Figure 3. Segregation Results for voice using RSSA at -5, 0 and 5 

dB Voice-to-Music Ratio. 

 

Figure 4. Segregation Results for music using RSSA at -5, 0 and 5 

dB Voice-to-Music Ratio. 

The segregation results shown in Figures 3 and 4 

contain the noise and other artifacts that must be 

removed to further improve the quality of segregated 

signals (speech/music). For this we apply IBM on the 

output of RSSA in order to enhance the speech and 

music signals. IBM application enhances the quality of 

the segregated music and speech signals by removing 

the noise and other artifacts. IBM is applied on the 

output of RSSA for speech and music signals and results 

(15) 

(16) 
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are presented in Figures 5 and 6. 

Shown in Figures 5 and 6 are the enhanced results in 

terms of GNSDR only, as this is the average value of 

segregation for complete dataset. Hence provides better 

measure of segregation for the entire data. IBM 

compares noisy signal energy with the clean signal 

energy based upon a local criterion as discussed in the 

methodology section, whereas retaining high target 

energy parts and discarding the rest. It can be observed 

from Figure 5 that combining RSSA with the IBM 

provides better results for both the music and speech 

signals. Moreover, IBM performs best at 5 dB due to 

high speech-to-music ratio. 

 

Figure 5. Segregation Results of RSSA and RSSA+ IBM for Voice 

-5, 0 and 5 dB Voice-to-Music Ratio. 

 

Figure. 6. Segregation Results of RSSA and RSSA+ IBM for Music 

-5, 0 and 5 dB Voice-to-Music Ratio. 

To further elaborate on the performance of IBM, we 

show amplitude waveforms and frequency 

spectrograms (Figures 7 and 8). The first column shows 

the amplitude waveform at different stages of the 

algorithm (i.e., target signal, noisy signal and processed 

signal) from top to bottom respectively. The second 

column shows the frequency spectrograms of respective 

stages.  

 

Figure 7. IBM results for Music. 

 

Figure 8. IBM results for Speech. 

It is evident from Figures 7 and 8, that in case of 

music signal, amplitude waveform and frequency 

spectrogram is nearly same for both target and noisy 

music signal. The SNR value of music and speech signal 

is negative after the application of RSSA. The value of 

SNR represents the quality of a signal, where positive 

value indicates noise free signal and negative value 

indicates the noisy signal. After applying IBM, quality 

of the signal improves as IBM retains high energy of 

target signal while discarding low energy components. 

High energy components are more likely to be a target 

signal compared to low energy components. An 

important factor in the speech intelligibility is the right 

choice of LC. We check the range of LC’s between -6 

dB to 6 dB. In our case the values greater than LC=-5 

yield poor results. Whereas, LC=-6 provides better 

results in terms of SNR again but LC=-5 provides the 

best results over all three mixture set (-5, 0 and -5 dB). 

The application of IBM in combination of RSSA 

provides better segregation performance in terms of 

GNSDR. 

Shown in Figure 9 is the performance comparison of 

the proposed method against existing state-of-the-art 

methods for music and speech segregation. The 

proposed method outperforms state-of-the-art methods 

at -5 dB and 5 dB mixtures while generating comparable 

results at 0 dB. The results are only compared for speech 
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segregation as majority of the existing methods have 

presented the results of speech segregation only. We 

report the comparative analysis using GNSDR value for 

segregated speech signal as it provides the performance 

measure on the entire dataset. The performance of 

existing segregation methods [10] degrades 

significantly on GNSDR value at-5 dB because their 

technique performs well on higher voice-to-music ratio. 

Note that the proposed method achieves highest 

GNSDR values at -5 dB because music contribution is 

higher at-5 dB mixture and RSSA extract the repeating 

patterns effectively. In addition, IBM enhances the 

segregated output which ultimately increases the 

GNSDR values. The proposed method achieves 

GNSDR values of 12.91, 8.67 and 7.97 at -5 dB, 0 dB 

and 5 dB respectively. The proposed method achieves 

reasonably good efficiency with better segregation 

results by combining the RSSA with improved binary 

masking approach. 

 

Figure 9. Comparison of proposed method with Hsu [10], Li [14], 

Ozerov[15], Tachibana [19], Huang[8], Ikemiya [11],Tzung Chien 

[1]. 
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