# **Enhanced Bagging (eBagging): A Novel Approach** for Ensemble Learning

Goksu Tuysuzoglu<sup>1</sup> and Derya Birant<sup>2</sup> <sup>1</sup>Graduate School of Natural and Applied Sciences, Dokuz Eylul University, Turkey <sup>2</sup>Department of Computer Engineering, Dokuz Eylul University, Turkey

**Abstract:** Bagging is one of the well-known ensemble learning methods, which combines several classifiers trained on different subsamples of the dataset. However, a drawback of bagging is its random selection, where the classification performance depends on chance to choose a suitable subset of training objects. This paper proposes a novel modified version of bagging, named enhanced Bagging (eBagging), which uses a new mechanism (error-based bootstrapping) when constructing training sets in order to cope with this problem. In the experimental setting, the proposed eBagging technique was tested on 33 well-known benchmark datasets and compared with both bagging, random forest and boosting techniques using well-known classification algorithms: Support Vector Machines (SVM), decision trees (C4.5), k-Nearest Neighbour (kNN) and Naive Bayes (NB). The results show that eBagging outperforms its counterparts by classifying the data points more accurately while reducing the training error.

Keywords: Bagging, boosting, classification algorithms, machine learning, random forest, supervised learning.

Received July 31, 2018; accepted December12, 2019 https://doi.org/10.34028/iajit/17/4/10

#### **1. Introduction**

Ensemble learning combines several base models, where a traditional algorithm is used to learn each of them. It aggregates the outputs from a set of different classifiers to correctly classify new data points. Constructing ensemble classifiers is extremely useful for high dimensional and large dataset problems that finding an individual classifier in one step is impossible due to the scale and the complexity of the problem.

Bagging is one of the most popular and successful learning ensemble algorithms for improving classification accuracy. Bagging (bootstrap aggregating) was introduced by Breiman [5] as a technique to aggregate various versions of an unstable estimator, each of which is generated from a bootstrap sample. It has provided considerable performance gains over a single learner in many application domains [25]. However, a drawback of bagging is that it generates the training sets by choosing instances completely randomly from the original dataset and so it doesn't consider previously correct or incorrect classified instances in the selection process. In other words, it doesn't focus the underlying learning algorithm on the training examples that have been misclassified previously. In this paper, we present and compare an enhanced version of bagging method which has specifically aimed to solve this drawback of the method.

The major contributions and novelty of this paper are as follows. First, this paper presents a brief survey of different modifications of bagging, which have developed to overcome the limitations of this method. Second, it proposes a novel modified version of bagging, named enhanced bagging (eBagging), which uses a new bootstrapping method, referred to as prediction error-based bootstrapping (eBootstrapping), instead of traditional random bootstrap technique. Third, it provides experimental studies to demonstrate that eBagging often gives a better performance than bagging, random forest and boosting techniques in the context of classification accuracy when tested and compared on 33 well-known benchmark datasets and various artificial (synthetic) datasets using well-known classification methods decision trees, Support Vector Machines (SVM), Naive Bayes (NB) and k-Nearest Neighbor (kNN). This paper also compares eBagging and Bagging techniques in case there is noise in the data.

The remainder of the article is structured as follows: section 2 provides a state of the art review on the distinct modifications of bagging, which have been performed to improve its performance. Section 3 gives background information on bagging, random forest and boosting techniques. This section also defines two novel concepts proposed in this paper: eBootstrapping and eBagging. In section 4, the experimental studies are presented and the obtained results are discussed. This section also answers the question of how well eBagging performs in situations where there is relatively little noise in the data. Finally, section 5 gives future directions and some concluding remarks.

## Table 1. Summary of bagging variant methods.

| Point's Labor Ragging         If the Mitegrand Step: Capporting Labor Data Johannes         once stand at the same time reasoning construct Labor Data Johannes           2013         Point's Labor Ragging (1)         Seed on the marks of the call responsing to some construct the program of the call seed on the see of the call seed on the call s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                                                | Table 1. Summary of bagging variant                                                                                                                                                                                                       | incurous.                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 2017         Animals and State Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Year | Name of the Bagging Variant                    |                                                                                                                                                                                                                                           | 0 0                                                                                                                               |
| (Atting) [1]         color item in maning of the control item of the comparison of the control item of the comparison of the comparison item of the comparison of the comparison item of the comparison of the comparison item of the comparison item of the comparison item of the comparison of the comparison item of the comparison item of the comparison of the comparison item of the comparison item of the comparison of the comparison of the comparison of the comparison item of the comparison item of the comparison of the compa                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2017 |                                                | bootstraps iteratively with batches composed of instances                                                                                                                                                                                 | Performing best when it integrates the ensemble disagreement                                                                      |
| 2015         Point's Labo Brigging         In the Marginal Styp, Employing Point's Labo Bo Brigging         ones staff at the same turn's retaining accuracy of these iteraness           2016         Local and Over-All Blauder         These of the margies of face. Tempolying Point's Labo Bo Brigging         Competitive retains turn's ensuith and staffic accuracy of these iteraness           2017         Margin Distribution based         Margin distribution of essentibles to closure the sales of the closure iterane scruthing with the sale of the sales of the sale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | (ABBag) [3]                                    | • •                                                                                                                                                                                                                                       |                                                                                                                                   |
| Data Data Decord All standord         example, which affect the probability of its selection in the selection and the selection of the standord of the selection and the selection of the selectio                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2015 |                                                |                                                                                                                                                                                                                                           |                                                                                                                                   |
| MArgin Distrikution based<br>hagging (MAD Bagging) [12]         Margin distribution of cascibles to choose the subter of<br>bagging (MAD Bagging) [12]         Margin distribution of cascibles to choose the subter of<br>bagging (MAD Bagging) [12]         Improved classification accuracy<br>intervent to addistribution of cascibles to poly-<br>termore and identify redundant or indevant attributes<br>(MAD Bagging) [12]         For toostrap instances are obtained from the<br>cascible of why the subters on method is applied to<br>remore and identify redundant or indevant attributes<br>(MAD Bagging) [12]         For toostrap instances are obtained from the<br>cascible of why the<br>cascible of why the<br>cascible of why the<br>cascible of why the<br>subters of why the<br>cascible of why thy<br>the cascible of why thy<br>the cascible of why<br>the                                                                                                                                                                                                                                                        | 2013 |                                                | example, which affect the probability of its selection into                                                                                                                                                                               | Competitive results to best known under-sampling bagging                                                                          |
| Information Gain Based Franter         Gain (LG) Seased frame selection method is applied to<br>remove and identicement intervent intervent intervent intervent intervent intervent<br>(GR-Bagging) [29]         Time remove and identicement intervent<br>intervent intervent intervent intervent<br>intervent intervent intervent intervent<br>intervent intervent intervent<br>intervent intervent intervent<br>intervent intervent intervent<br>intervent intervent intervent<br>intervent intervent intervent<br>intervent intervent<br>intervent<br>intervent intervent<br>intervent<br>intervent intervent<br>intervent<br>intervent intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>intervent<br>int | 2012 |                                                | Margin distribution of ensembles to choose the subset of<br>base classifiers for Bagging through acquiring a sparse<br>weight vector of base classifiers, ranking them according to<br>the calculated weights and then combining the base | When the base classifiers are diverse, more base classifiers would                                                                |
| 2011         Poly-Bagging [23]         from the fitted methods to a number of replicated datases         Batter classification accursponde           2010         Leveraging Bagging [23]         from not fitted methods to a number of replicated datases         Baret classification accursponde         More accursponde           2010         Leveraging Bagging (21)         Control migrovements which are incressing         More accursponde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | Selection for Bagging                          | Gain (IG) based feature selection method is applied to<br>remove and identify redundant or irrelevant attributes.<br>Finally, base learners trained from the new sub data sets are<br>combined via majority voting                        | Redundant and irrelevant features are reduced                                                                                     |
| 2010         Leveraging Bagging (2)         resampling using Poisson distribution and using output<br>detection codes where each classifier on unpared to obtaine Bagging (3M) and/me Bagging<br>(111)         More accurate result with solved execution line for Audount<br>function are used           2010         Bagging with Pan's Aggregation<br>(111)         Out-of bag (COB) somples are combined over through rank<br>aggregation to obtain the locally best performing classifier<br>given the boostraps sample         Definition of the sol of the sol of the sol of the sol<br>obtaines are used           2010         Selecting Base Classifiers on<br>Bagging (SBCB) [37]         The classifier ar advected in terms of evaluation according to<br>bala with your be boost to participation according to<br>bala were the boostrapped classifiers producing very high<br>error rates, which are predicted by the out-of-bag<br>error rates, which ereas at advectation rates and w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2011 | Poly-Bagging [23]                              | from the fitted methods to a number of replicated datasets<br>and then aggregating predictors over a succession of<br>resamplings                                                                                                         | Better classification accuracy for the two-bagged and the three-<br>bagged models                                                 |
| Delto Deliging with Hain Aggregation         aggregation to obtain the locally best performing classifier         Better predictive performance as judged on test instances           2010         Selecting Biase Classifiers and the beginning of the gamma classifiers and the beginning of the phase may not be the sof obtas classifiers that final base classifiers and the best of the classifier and dataset trained at the beginning of the best obtaset producing vary high error rates, a predicted by the out-of-bag error rate, and the remaining ones using the robust location estimate the remaining ones using the robust location estimate trans. The remaining ones using the robust particular by the product of the gamma classifier and the best relation according to biggest error rates, which are aggregation sample procedure on the set of association rules that give the biggest error rates, which are aggregated several classification techniques using a bootstrap sampling procedure on the set of association rules that give the biggest error rates, which are aggregated several classification techniques and ordinary beat rule association rules that give the biggest error rate, and the remaining ones are aggregated several classification techniques and ordinary beat rule association rules combined with weighted voing aggroaches and ordinary beat rule and the classifiers throug berturbus gampling procedure on the set of association rules combined with weighted voing aggroaches and ordinary beat rule association rules combined with weighted voing aggroaches and ordinary beat rule association rules combined with weighted voing aggroaches and ordinary beat rule association rules that give the classifiers throug berturbus during during during beat rule association rules combined with weighted classifiers that rule and the Dakes and process performed facilitates constructing accurate by during aggregating (DepenBage) [13]         The classifier stha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2010 | Leveraging Bagging [2]                         | resampling using Poisson distribution and using output detection codes where each classier will predict a different                                                                                                                       | Forest classifier compared to other bagging methods; ADWIN                                                                        |
| Solecting Base Classifiers on plase may not be the set of base classifiers that the final base classifiers and accuracy in the classifier set of the clas                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2010 | Bagging with Rank Aggregation [11]             | aggregation to obtain the locally best performing classifier                                                                                                                                                                              | Better predictive performance as judged on test instances                                                                         |
| 2008         Robust Bagging [36]         error rates, as predicied by the out-of-bag error rate and to<br>merge over the remaining ones using the robust location<br>stimutor, median         Performance of singler and Thore stable base<br>classifiers as Nearest Mean Classifier and Fisher Linear<br>Discriminant Analysis are implemented           2007         Class-wise Expert base<br>Bagging (CeBag) [31]         Generation of class-wise experts in each aggregation<br>summer the biggest error rates, which are predicted by the out-of-bag<br>error rate, and the remaining ones are aggregated         Improve performance of single SVM, higher diversity<br>Outperforming standard bagging           2005         Post-Bagging [19]         Several classification techniques using a bootstrap samplie is<br>induced using a dependency model method as a Directed<br>Acyclic Graph (DAG); the features without connections to<br>the class attribute in all the DAGs are the eliminated<br>and injecting randomness (BagInRand) [38]         Outperforming on average standard bagging<br>(DepenBag) [18]         Creating diverse component nearest neighbor classifiers<br>through perturbing the training data<br>and injecting randomness to distance metrics<br>and injecting randomness to distance metrics<br>anoption the roweigheled tout form varining data<br>and inj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2010 | e                                              | phase may not be the set of base classifiers that the final base<br>classifiers are selected in terms of evaluation according to                                                                                                          | Larger diversity among base classifiers, the method performs                                                                      |
| 2007         Bagging (CcBag) [31]         Outperforming standard bagging           2007         Trimmed Bagging [10]         Excluding the bootstrape sampling<br>procedure on the set of association rules component nearst neighbor classifiers in<br>weighted voting approaches and ordinary best rule         Works well for both unstable and stable classifiers           2005         Post-Bagging [19]         Several classification rules component nearest neighbor classifiers         Outperforming on average standard decision tree techniques and<br>enhancing the outputs of best rule           2005         Dependency Bagging<br>(DepenBag) [18]         Bootstrap samples are obtained first and each sample is<br>induced using a dependency model menioned as a Directed<br>Acyclic Graph (DAG); the features without connections to<br>the class attribute in attrining set with hootstrap sampling<br>and injecting andomness to distance metrics<br>mandomization method based on sharing the common parts<br>of the models from an ensemble generated by decision trees<br>degraphy (ranked) ranked particing method and variable selection<br>the granging (AB) [6]         The endundary and high computation on the sample is used to generate an additional<br>subsets           2004         Bagging (AB) [6]         Voting on classifiers induced by (ranked) random antribute<br>subsets         The endundary and high computation or classifiers<br>stability           2003         Double Bagging [17]         The out-of-bag sample is used to generate an additional<br>(classifier induced by (ranked) random antribute<br>subsets         The endundary and high computation of the sample mean in the standard bagging<br>algorithm, robust location estimator for the realized<br>bootstrap sampling and aggregating<br>(SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2008 | Robust Bagging [36]                            | error rates, as predicted by the out-of-bag error rate and to<br>merge over the remaining ones using the robust location                                                                                                                  | classifiers as Nearest Mean Classifier and Fisher Linear                                                                          |
| 2007         Trimmed Bagging [10]         Excluding the bootstrapped classification rules that give the biggest error rate, and the remaining ones are aggregated         Works well for both unstable and stable classifiers           2005         Post-Bagging [19]         Several classification techniques using a bootstrap sampling procedure on the set of association rules combined thirs and each sampling procedure on the set of association rules combined thirs and each sampling (DepenBag) [18]         Outperforming on average standard decision tree techniques and enhancing the outputs of best rule           2005         Dependency Bagging (DepenBag) [18]         Event of association rules combined thirs and each sampling and injecting randomness to distance metrics         The causal discovery process performed facilitates constructing accurate but diverse component nearest neighbor classifiers           2004         Bagging Multiree (BagMDT) [15]         In each boosting iteration, combine the output from various base learners obtained from bootstrap samples, each drawn with replacement from the reweighted training data subbary (Magging) [17]         The endudancy and high computational cost property of bagging the totals (SBagging) [18]           2004         Bagging Multiree (BagMDT) [15]         An optimization method based on sharing the common parts (ABB decision trees the subject or additional classifiers model to incigrate with the base learning model (BagMDT) [15]         The endudancy and high computational cost property of bagging lagorithm, robust Location estimations of classifier's result.           2003         Double Bagging [17]         The out-of-bag sample is used to generate an additional (Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2007 |                                                | Generation of class-wise experts in each aggregation sample                                                                                                                                                                               |                                                                                                                                   |
| 2005         Post-Bagging [19]         procedure on the set of association rules combined with<br>weighted voting approaches and ordinary best rule         Outperforming on average standard decision the eleminates<br>enhancing the outputs of best rule           2005         Dependency Bagging<br>(DepenBag) [18]         Bootstrap samples are obtained first and each sample is<br>induced using a dependency model mentioned as a Directed<br>the class attribute in all the DAGs are then eliminated<br>through perturbing the training set without connections to<br>through perturbing the training set without connections<br>and injecting randomness to distance metrics         Improved accuracy of classifiers, introduced diversity among base<br>classifiers, enhanced performance of stable kNN           2004         Bagging Multitree<br>(BagMDT) [15]         In each boosting iteration, combine the output from various<br>base learners obtained from bootstrap samples, each drawn<br>with replacement from the reweighted training dat<br>subsets         The redundancy and high computational cost property of bagging<br>method is reduced, saturation point is reached earlier than classifier<br>bagging, enhanced diversity is obtained           2003         Double Bagging (AB) [6]         Voting on classifiers induced by (ranked) random attribute<br>classifier model by bootstrap sampling<br>algorithm, robust location estinator for the realized<br>(Bragging) [18]         The eutof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2007 |                                                | biggest error rates, which are predicted by the out-of-bag                                                                                                                                                                                |                                                                                                                                   |
| 2005Dependency Bagging<br>(DepenBag) [18]induced using a dependency model mentioned as a Directed<br>Acyclic Graph (DAG); the features without connections to<br>the class attribute in all the DAGs are then eliminatedThe causal discovery process performed facilitates constructing<br>accurate but diverse component nearest neighbor classifiers<br>through perturbing and injecting randomness to distance metricsThe causal discovery process performed facilitates constructing<br>accurate but diverse component nearest neighbor classifiers<br>through perturbing the training set with bootstrap sampling<br>and injecting randomness to distance metricsThe causal discovery process performed facilitates constructing<br>accurate but diverse component nearest neighbor classifiers<br>through perturbing the training set with bootstrap sampling<br>and injecting randomness to distance metricsThe causal discovery process performed facilitates constructing<br>accurate but diverse component nearest neighbor classifiers2004Baggiong Wultiree<br>(BagMDT) [15]In each boosting iteration, combine the output from varion<br>with replacement from the reweighted training dataThe advantageous predictive potential<br>Lower bias, variance and mean squared error2003Attribute Bagging (AB) [6]Voting on classifiers induced by (ranked) random attribute<br>subsetsThe estimate is unbiased regarding method and variable selection<br>ligher diversity anong base classifiers2003Double Bagging [17]<br>(Bragging) [8]Classifier induced by degreasing<br>algorithm, robust location estimators is used<br>bootstrap estimators is usedImprovement on estimation procedure using smoothing effects an<br>taking average over unstable selection of variables2001Small SubSampled Bagging<br>(Subagging) [28]Optimizing weig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2005 | Post-Bagging [19]                              | procedure on the set of association rules combined with                                                                                                                                                                                   |                                                                                                                                   |
| Bagging with injecting<br>Randomness (BagInRand) [38]through perturbing the training set with bootstrap sampling<br>and injecting randomness to distance metricsintroduced diversity among base<br>classifiers, enhanced performance of stable kNN2004BagBoosting [13]in each boosting iteration, combine the output from various<br>base learners obtained from bootstrap samples, each drawn<br>with replacement from the reweighted training dataThe advantageous predictive potential<br>Lower bias, variance and mean squared error2004Bagging Multiree<br>(BagMDT) [15]An optimization method based on sharing the common parts<br>of the models from an ensemble generated by decision treesThe redundancy and high computational cost property of bagging<br>method is reduced, saturation point is reached earlier than classica<br>bagging, enhanced diversity is obtained2003Attribute Bagging (AB) [6]Voting on classifiers induced by (ranked) random attribute<br>subsetsThe estimater is unbiased regarding method and variable selection<br>bootstrap setimators is used2003Double Bagging [17]<br>(Bragging) [8]Instead of the sample mean in the standard bagging<br>algorithm, robust location estimator for the realized<br>bootstrap setimators is usedThe estimate is unbiased regarding method and variable selection<br>of high erurbing the curacy2001Small SubSampled Bagging<br>(S3Bagging) [28]Optimizing weights in linear combinations of classifier's result<br>applying bagging processReduction in variance while retaining high accuracy<br>With very small subsampling rate is tedious<br>taing subsampling and aggregation<br>(Subagging) [7]Subsampling used instead of the bootstrap for the<br>aggregationImprovement on variance and mean squared error, and gained<br>com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2005 |                                                | induced using a dependency model mentioned as a Directed<br>Acyclic Graph (DAG); the features without connections to<br>the class attribute in all the DAGs are then eliminated                                                           |                                                                                                                                   |
| 2004BagBoosting [13]base learners obtained from bootstrap samples, each drawn<br>with replacement from the reweighted training dataThe advantageous predictive potential<br>Lower bias, variance and mean squared error2004Bagging Multitree<br>(BagMDT) [15]An optimization method based on sharing the common parts<br>of the models from an ensemble generated by decision trees<br>of the models from an ensemble generated by decision trees<br>of the models from an ensemble generated by decision trees<br>of the models from an ensemble generated by decision trees<br>of the models from an ensemble generated by decision trees<br>of the models from an ensemble generated by decision trees<br>of the models from an ensemble generated by decision trees<br>of the models from an ensemble generated by decision trees<br>of the models from an ensemble generated by decision trees<br>of the models from an ensemble generated by decision trees<br>of the models from an ensemble generated by decision trees<br>of the models from an ensemble generated by decision trees<br>of the models from an ensemble generate an additional<br>classifier model to integrate with the base learning model<br>lassifier model to integrate with the base learning model<br>lassifier model to integrate with the base learning model<br>lostotrap estimators is usedThe estimate is unbiased regarding method and variable selection<br>higher diversity among base classifiers2003Double Bagging [18]Instead of the sample mean in the standard bagging<br>algorithm, robust location estimator for the realized<br>bootstrap sampling<br>algorights in linear combinations of classifier's<br>seault<br>applying bagging processImprovement on estimation procedure using smothing effects an<br>taking average over unstable selection of variables2001Subsample Aggregating<br>(Subagging) [28]Classifier i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2005 |                                                | through perturbing the training set with bootstrap sampling<br>and injecting randomness to distance metrics                                                                                                                               | Improved accuracy of classifiers, introduced diversity among base<br>classifiers, enhanced performance of stable kNN              |
| 2004Bagging Multitee<br>(BagMDT) [15]An optimization include based of sharing the continion parts<br>of the models from an ensemble generated by decision trees<br>of the models from an ensemble generated by decision trees<br>of the models from an ensemble generated by decision trees<br>of the models from an ensemble generated by decision trees<br>of the models from an ensemble generated by decision trees<br>of the models from an ensemble generated by decision trees<br>bagging, enhanced diversity is obtained<br>Faster execution time than bagging, improved accuracy and<br>stability2003Double Bagging [17]The out-of-bag sample is used to generate an additional<br>classifier model to integrate with the base learning model<br>algorithm, robust location estimator for the realized<br>bootstrap estimators is used<br>bootstrap estimators is used<br>bootstrap samplingThe estimate is unbiased regarding method and variable selection<br>higher diversity among base classifiers2002Variance Optimized Bagging<br>(Vogging) [12]Optimizing weights in linear combinations of classifier<br>which are acquired by bootstrap sampling<br>ang subsampling and aggregating each classifier's results<br>applying bagging processReduction in variance while retaining high accuracy2001Subsample Aggregating<br>(Subagging) [28]Subsampling used instead of the bootstrap for the<br>aggregationDetermination of the subsampling rate is tedious<br>the performance is highly depended on subsampling rate2009Subsample Aggregating<br>(Subagging) [1]Subsampling test is done via adding Gaussian<br>noise to each weightImprovement on variance and mean squared error, and gained<br>computational efficiency<br>With very small subsampler are using solution<br>decreases1999Weight Aggregation<br>(Wagging) [1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2004 | BagBoosting [13]                               | base learners obtained from bootstrap samples, each drawn                                                                                                                                                                                 | Lower bias, variance and mean squared error                                                                                       |
| 2003Althoute Bagging (AB) [6]subsetsstability2003Double Bagging [17]The out-of-bag sample is used to generate an additional<br>classifier model to integrate with the base learning model<br>algorithm, robust location estimator for the realized<br>bootstrap estimators is usedThe estimate is unbiased regarding method and variable selection<br>higher diversity among base classifiers2003Bootstrap Robust Aggregating<br>(Bragging) [8]Instead of the sample mean in the standard bagging<br>algorithm, robust location estimator for the realized<br>bootstrap estimators is usedImprovement on estimation procedure using smoothing effects and<br>taking average over unstable selection of variables2002Variance Optimized Bagging<br>(Vogging) [12]Optimizing weights in linear combinations of classifiers<br>which are acquired by bootstrap sampling<br>using subsampling and aggregating each classifier's results<br>applying bagging processReduction in variance while retaining high accuracy2001Subsample Aggregating<br>(Subagging) [7]Subsampling used instead of the bootstrap for the<br>aggregationImprovement on variance and mean squared error, and gained<br>computational efficiency2000Subsample Aggregating<br>(Wagging) [1]Sampling from training set is done via adding Gaussian<br>moise to each weightFacilitating some contorl on the bias-variance trade-off<br>Higher diversity among base classifier1998Nice<br>Bagging [27]Only the bootstrap versions of the applied classifier which<br>obtain lower error rate than the original classifier on the<br>obtain lower error rate than the original classifier on theMore stable results and lower shifting effect compared to bagged<br>classifier ron quiving batet results than ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2004 |                                                | of the models from an ensemble generated by decision trees                                                                                                                                                                                | method is reduced, saturation point is reached earlier than classical<br>bagging, enhanced diversity is obtained                  |
| 2003Double Bagging [17]classifier model to integrate with the base learning modelhigher diversity among base classifiers2003Bootstrap Robust Aggregating<br>(Bragging) [8]Instead of the sample mean in the standard bagging<br>algorithm, robust location estimator for the realized<br>bootstrap estimators is usedImprovement on estimation procedure using smoothing effects and<br>taking average over unstable selection of variables2002Variance Optimized Bagging<br>(Vogging) [12]Optimizing weights in linear combinations of classifiers<br>which are acquired by bootstrap samplingReduction in variance while retaining high accuracy2001Small SubSampled Bagging<br>(S3Bagging) [28]Classifier induced by decreasing the size of the training set<br>using subsampling and aggregating each classifier's results<br>applying bagging processDetermination of the subsampling rate is tedious<br>The performance is highly depended on subsampling rate2000Subsample Aggregating<br>(Subagging) [7]Subsampling used instead of the bootstrap for the<br>aggregationImprovement on variance and mean squared error, and gained<br>computational efficiency<br>With very small subsample ratios performance dramatically<br>decreases1999Weight Aggregation<br>(Wagging) [1]Sampling from training set is done via adding Gaussian<br>noise to each weightFacilitating some control on the bias-variance trade-off<br>Higher diversity among base classifiers1998Nice<br>Bagging [27]Only the bootstrap versions of the applied classifier on the<br>obtain lower error rate than the original classifier on the<br>Bagging [27]More stable results and lower shifting effect compared to bagged<br>classifier not teiving better results than bagging in general <td>2003</td> <td>Attribute Bagging (AB) [6]</td> <td>subsets</td> <td>stability</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2003 | Attribute Bagging (AB) [6]                     | subsets                                                                                                                                                                                                                                   | stability                                                                                                                         |
| 2003Bootstrap Robust Aggregating<br>(Bragging) [8]Instead of the sample mean in the standard bagging<br>algorithm, robust location estimator for the realized<br>bootstrap estimators is usedImprovement on estimation procedure using smoothing effects and<br>taking average over unstable selection of variables2002Variance Optimized Bagging<br>(Vogging) [12]Optimizing weights in linear combinations of classifier<br>which are acquired by bootstrap samplingReduction in variance while retaining high accuracy2001Small SubSampled Bagging<br>(S3Bagging) [28]Classifier induced by decreasing the size of the training set<br>using subsampling and aggregating each classifier's results<br>applying bagging processDetermination of the subsampling rate is tedious<br>The performance is highly depended on subsampling rate2000Subsample Aggregating<br>(Subagging) [7]Subsampling used instead of the bootstrap for the<br>aggregationImprovement on variance and mean squared error, and gained<br>computational efficiency<br>With very small subsample ratios performance dramatically<br>decreases1999Weight Aggregation<br>(Wagging) [1]Sampling from training set is done via adding Gaussian<br>noise to each weightFacilitating some control on the bias-variance trade-off<br>Higher diversity among base classifiers1998Nice<br>Bagring [27]Only the bootstrap versions of the applied classifier on the<br>obtain lower error rate than the original classifier on the<br>obtain lower error rate than the original classifier on the<br>classifier on the<br>Bagging [27]More stable results and lower shifting effect compared to bagged<br>classifier on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2003 | Double Bagging [17]                            | The out-of-bag sample is used to generate an additional<br>classifier model to integrate with the base learning model                                                                                                                     | The estimate is unbiased regarding method and variable selection,<br>higher diversity among base classifiers                      |
| 2002       Variance Optimized Bagging<br>(Vogging) [12]       Optimizing weights in linear combinations of classifiers<br>which are acquired by bootstrap sampling       Reduction in variance while retaining high accuracy         2001       Small SubSampled Bagging<br>(S3Bagging) [28]       Classifier induced by decreasing the size of the training set<br>using subsampling and aggregating each classifier's results<br>applying bagging process       Determination of the subsampling rate is tedious<br>The performance is highly depended on subsampling rate         2000       Subsample Aggregating<br>(Subagging) [7]       Subsampling used instead of the bootstrap for the<br>aggregation       Improvement on variance and mean squared error, and gained<br>computational efficiency         1999       Weight Aggregation<br>(Wagging) [1]       Sampling from training set is done via adding Gaussian<br>noise to each weight       Facilitating some control on the bias-variance trade-off<br>Higher diversity among base classifiers         1998       Nice<br>Bagging [27]       Only the bootstrap versions of the applied classifier on the<br>Bagging [27]       More stable results and lower shifting effect compared to bagged<br>classifier, not giving better results than bagging in general                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2003 | Bootstrap Robust Aggregating<br>(Bragging) [8] | Instead of the sample mean in the standard bagging algorithm, robust location estimator for the realized                                                                                                                                  | Improvement on estimation procedure using smoothing effects and                                                                   |
| Small SubSampled Bagging<br>(S3Bagging) [28]       Classifier induced by decreasing the size of the training set<br>using subsampling and aggregating each classifier's results<br>applying bagging process       Determination of the subsampling rate is tedious<br>The performance is highly depended on subsampling rate         2000       Subsample Aggregating<br>(Subsample Aggregating<br>(Subagging) [7]       Subsampling used instead of the bootstrap for the<br>aggregation       Improvement on variance and mean squared error, and gained<br>computational efficiency         1999       Weight Aggregation<br>(Wagging) [1]       Sampling from training set is done via adding Gaussian<br>noise to each weight       Facilitating some control on the bias-variance trade-off<br>Higher diversity among base classifiers         1998       Nice<br>Bagging [27]       Only the bootstrap versions of the applied classifier on the<br>obtain lower error rate than the original classifier on the<br>Bagging [27]       More stable results and lower shifting effect compared to bagged<br>classifier; not giving better results than bagging in general                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2002 | 1 00 0                                         | Optimizing weights in linear combinations of classifiers                                                                                                                                                                                  | Reduction in variance while retaining high accuracy                                                                               |
| 2000       Subsample Aggregating<br>(Subagging) [7]       Subsampling used instead of the bootstrap for the<br>aggregation       Improvement on variance and mean squared error, and gained<br>computational efficiency<br>With very small subsample ratios performance dramatically<br>decreases         1999       Weight Aggregation<br>(Wagging) [1]       Sampling from training set is done via adding Gaussian<br>noise to each weight       Facilitating some control on the bias-variance trade-off<br>Higher diversity among base classifiers         1998       Nice<br>Bagging [27]       Only the bootstrap versions of the applied classifier on the<br>obtain lower error rate than the original classifier on the<br>Bagging [27]       More stable results and lower shifting effect compared to bagged<br>classifier; not giving better results than bagging in general                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2001 | Small SubSampled Bagging                       | Classifier induced by decreasing the size of the training set<br>using subsampling and aggregating each classifier's results                                                                                                              |                                                                                                                                   |
| 1999         Weight Aggregation<br>(Wagging) [1]         Sampling from training set is done via adding Gaussian<br>noise to each weight         Facilitating some control on the bias-variance trade-off<br>Higher diversity among base classifiers           1998         Nice<br>Bagging [27]         Only the bootstrap versions of the applied classifier on the<br>obtain lower error rate than the original classifier on the<br>classifier not eiving better results than bagging in general                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2000 |                                                | Subsampling used instead of the bootstrap for the                                                                                                                                                                                         | computational efficiency<br>With very small subsample ratios performance dramatically                                             |
| 1998 Nice obtain lower error rate than the original classifier on the classifier not giving better results than bagging in general                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1999 |                                                | noise to each weight                                                                                                                                                                                                                      | Facilitating some control on the bias-variance trade-off                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1998 |                                                | obtain lower error rate than the original classifier on the                                                                                                                                                                               | More stable results and lower shifting effect compared to bagged<br>classifier; not giving better results than bagging in general |

## 2. Related Work

The aggregation of various classifiers, referred as a classifier ensemble, has previously managed to enhance classification accuracy in lots of application areas compared to single classifiers. Bagging is one of the most commonly used ensemble learning methods because of its proven performance improvements in classification task [21, 24, 25]. Therefore, remarkable amount of research has been put forth in recent years by introducing new bagging variants. Almost every year, a new bagging algorithm is developed in order to make up for the missing properties of the previous ones. Table 1 presents a brief summary of the previously proposed bagging versions up to the present. It is apparent that there are two key issues which make the difference among the models. At first, the way of splitting the original training data set into subsets, i.e. the bootstrap technique to be performed, should be taken into consideration. The second one is the determination of the learning method to train base classifiers [20].

Differently from the previous works, in this study, the proposed eBagging algorithm, which is a novel version of the standard bagging method, presents a new direction to the existing instance-based ensemble learning models by performing a new bootstrap technique, eBootstrap. In the following section, its implementation is explained in detail.

## 3. Materials and Method

## **3.1. Background Information**

Bagging, random forest and boosting are among the mostly applied ensemble learning methods due to their good performance in improving classification accuracy. These techniques construct diverse classifier ensembles by manipulating the training dataset and then classify new data by a voting mechanism.

### 3.1.1. Bagging

Bagging is an ensemble learning approach which creates multiple exemplars of a learner to result in an aggregated predictor whose output is obtained using a combination rule (i.e., majority voting) on the outputs of each constructed subspace. Generation of the multiple exemplars is done via making bootstrap replicates of the learning set in which instances are randomly drawn from the entire training data with replacement by placing the same number of instances to each ensemble subspace. Bagging provides a way of presenting variability between different models within a committee.

### 3.1.2. Random Forest

It is an ensemble learning method which is comprised of a number of individual decision trees. The difference from the decision tree algorithm is that the operations of finding the root node and partition of nodes run randomly. The procedure is practised as follows. Firstly, the original data is randomly sampled as in bagging to build each tree. Then, randomly selected features as in the random subspace method are used to produce the best split point. In other words, two types of randomness are present in the selection of either feature or instance. Instead of looking for the most significant feature when partitioning a node, it searches the best attribute within a random subset of attributes. In this way, a wide diversity is obtained in addition to a better model. If there are enough trees in the forest, the risk of overfitting is reduced.

### 3.1.3. Boosting

It is another commonly known ensemble learning strategy where weighted resampling procedure is performed by sequentially updating selected instances to the ensemble subspace by giving more weight to difficult examples, i.e. the most informative instances, which are not correctly classified in the previous steps. Weighted majority voting is applied as the combination rule for the ensemble outputs. Boosting facilitates the reduction of bias of otherwise stable learners such as univariate decision trees also known as decision stumps or linear classifiers. The most popular boosting algorithm is AdaBoost, which is an abbreviation for Adaptive Boosting. It is basically a machine learning method where multiple "weak classifiers" are combined into a single "strong classifier" by optimizing the weights in each iteration.

When bagging and boosting are compared, boosting leads to greater reduction in error [25] because it concentrates on the challenging elements in the training set during the sample selection. However, boosting suffers from being hard to parallelize because the inputs of one model depend on the outputs of others. In this work, we present a new ensemble (eBagging) which the method takes best characteristics of these two techniques. While both approaches substantially improve predictive accuracy, eBagging shows the greater benefit.

## **3.2. Error-based Bootstrapping**

Fundamentally, bagging relates to the bootstrap approach where the training sets are randomly selected with replacement from the original instances. By following this procedure, it is possible that several records may appear more than once as a result of resampling while others may not be present in the training set. The disadvantage with traditional bootstrap method is that training subsets produced by random selection with replacement are not especially concentrated on misclassified instances. In other words, the hard-to- classify examples may not present in the training sets, so the learning algorithm cannot focus on those data points to minimize the training errors. To overcome this drawback, we propose a novel bootstrapping model, named eBootstrapping, that ensures the presence of misclassified instances in training sets to encourage their correct classification.

Consider the dataset  $D=\{o_1, o_2, ..., o_n\}=\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$  with  $y_i$  as the class output and  $x_i$  as a *p*-dimensional explanatory variable for the *i*<sup>th</sup> object  $o_i$ , so  $o_i = (x_i, y_i)$  for (i = 1, ..., n), where *n* is the number of objects (instances) in the dataset. Assume that we have *k* different class labels, in this case,  $y_i \in Y = \{1, ..., k\}$ .

• *Definition* 1. (Bootstrapping). If we have *n* data instances denoted by

$$D = \{o_1, o_2, ..., o_n\}$$
(1)

Then randomly generated sample with the same size n and with the equal probability (1/n for each observation)

$$D^* = \{o_1^*, o_2^*, ..., o_n^*\}$$
(2)

Called the bootstrap sample or bootstrap resample and denoted by adding a star to the symbols. The star symbol \* represents zero or more instances. This means that  $D^*$  is likely to contain repeats. Similarly, just as  $\bar{o}$  is the mean of the original dataset, we write  $\bar{o}^*$  for the mean of the resamples' data.

To create an ensemble E, we get b independent bootstrap samples and denote by

$$E = \left\{ D_1^*, D_2^*, ..., D_b^* \right\}$$
(3)

For a given dataset of *n* examples, each example has a probability  $(1-1/n)^n$  of not be included in the bootstrap sample. If *n* is large, the probability approaches 1/e = 0.368, which means 36.8% of the original examples would not be selected, called out-of-bag instances.

$$\lim_{n \to \infty} \left( 1 - \frac{1}{n} \right) = \frac{1}{e} \approx 0.368 \tag{4}$$

This also means that on average 36.8% of the "difficult" examples (misclassified) would not take part in training set and for this reason the underlying learning algorithm may not provide a good compromise between bias and variance on classification. To get over this drawback, we propose a novel bootstrapping method, eBootstrapping, which gives priority to the difficult instances.

• *Definition* 2. (eBootstrapping). Given a dataset with size *n*,

$$D = \{o_1, o_2, ..., o_n\}$$
(5)

Misclassified instances are identified by a *prior* classifier in the pre-training step and denoted by M

$$M = \{o_1, o_2, ..., o_m\}$$
(6)

Where m is the number of incorrectly classified instances and it is smaller than instance size n.

Classified instances are the rest of the dataset (correctly classified instances) and denoted by C

$$C = \{o_{m+1}, o_{m+2}, \dots, o_n\}$$
(7)

Where  $D = M \cup C$  and  $M \cap C = \emptyset$ .

eBootstrapping is a prediction error-based bootstrapping method which generates a dataset that includes all misclassified instances in M and some correctly classified instances taken with replacement from C.

An eBootstrap sample of D is a collection of n instances

$$D^* = \{o_1, o_2, ..., o_m, o_{m+1}, o_{m+2}, ..., o_n\}$$
(8)

Where each value  $o_i$  is a distinct instance from M for  $(1 \le i \le m)$ , and each value  $c_j^*$  is a randomly selected instance from C with replacement and with equal probability  $Pr(c_j^* = o_t) = 1/(n-m)$  for  $(m+1 \le j, t \le n)$  and  $(m+1 \le t \le n)$ . The star symbol \* represents zero or more instances. In particular, repeated values  $c_{j1}^* = c_{j2}^* = o_t$  are allowed. Since the sample size of  $D^*$  is n, repeated values  $c_j^*$  means that some values in C must be left out. To form b independent eBootstrap samples, we repeat this process b times and denote by  $E = \{D_1^*, D_2^*, ..., D_b^*\}$ .

As shown in Figure 1, an ebootstrap sample includes members of the original dataset with all misclassified members appearing, some correctly classified members appearing zero times, some appearing only once, some appearing twice, and so on. Replacement results in repetition of correctly classified values in ebootstrap samples. eBootstrap samples have the same sample size as the original sample. As an example, consider a dataset  $D = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$  with size n = 10. The eBootstrap sample  $D^* = \{1, 2, 3, 8, 6, 6, 4, 10, 9, 6\}$  has three repeats of the same number (6). The order of the elements in the resample plays no role. The out-of-bag set consists of two elements  $\{5, 7\}$ .

|                     | mis | class | sified | 1  | С  | lass | ifie | ł  |   |    | _   |    |     |
|---------------------|-----|-------|--------|----|----|------|------|----|---|----|-----|----|-----|
| Original sample     | 1   | 2     | 3      | 4  | 5  | 6    | 7    | 8  | 9 | 10 |     |    |     |
|                     |     |       |        |    |    |      |      |    |   |    |     |    |     |
| eBootstrap Sample 1 | 1   | 2     | 3      | 8  | 6  | 6    | 4    | 10 | 9 | 6  |     | 5  | 7   |
| eBootstrap Sample 2 | 1   | 2     | 3      | 5  | 7  | 10   | 4    | 10 | 8 | 9  |     | 6  |     |
| eBootstrap Sample 3 | 1   | 2     | 3      | 4  | 4  | 7    | 9    | 8  | 6 | 10 |     | 5  |     |
| eBootstrap Sample 4 | 1   | 2     | 3      | 7  | 10 | 6    | 8    | 4  | 5 | 9  |     |    |     |
| eBootstrap Sample 5 | 1   | 2     | 3      | 9  | 4  | 9    | 6    | 7  | 5 | 9  |     | 8  | 10  |
|                     | _   |       | in ba  | ag |    |      |      |    |   |    | out | of | bag |

Figure 1. An example of eBootstrapping.

#### **3.3. Enhanced Bagging (eBagging)**

eBagging improves the traditional bagging technique by replacing the bootstrap method by eBootstrap. The key difference is the creation of training sets by giving higher chance for selection to hard-to-classify instances which are misclassified by the prior learner. As shown in Figure 2, the proposed eBagging technique contains four steps:

- *Step1: Pre-training* A prior classifier is applied on the original dataset and the dataset is divided into two parts: one part that contains correctly classified instances and the others (incorrectly classified).
- *Step 2: eBootstrapping* eBootstrapping is used to construct different training sets by directly pushing misclassified instances and resampling with replacement from classified instances. So, the difficult instances are always included in each subset of data. This step both provides diversity and allows the learning algorithm to focus on hard-to-classify examples and so it gives us a reasonable starting point.
- *Step 3: Training* The base classifiers are trained on different subsets of the training patterns. In this study, the learning algorithms used in pre-training and training steps (in other words the learning algorithms of prior classifier and base classifier) are planned to be same, but different learning algorithms can also be tried in the future studies.
- *Step* 4: *Combining* (*Aggregating*) The base classifiers perform classification task and the final prediction is made by applying majority voting to the outputs of each ensemble subset. If classifiers disagree with each other, then the incorrect errors of the different classifiers can be removed by the voting mechanism.

Boosting technique (i.e., AdaBoost algorithm) also tries to classify the hard-to-classify examples accurately, and ignores the ones which are easy-to-classify. However, our proposed method is different from boosting in twofolds. First, eBagging generates training sets from the original dataset in parallel, so it is not an iterative approach as boosting. Second, eBagging doesn't assign weight values to each instance as boosting. Instead of that, eBagging is directly copied all difficult examples into all training sets.

#### Algorithm 1 eBagging

```
Inputs
```

Dataset  $D = \{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$  where  $y_i \in Y = \{1, ..., k\}$ L:Learning algorithm for prior and base classifiers t:ensemble size n:the number of instances k:the number of classes x:an unlabelled instance to classify

Process#Step1: Pre-trainingh=L(D)#train to build prior classifier $C=\emptyset, M=\emptyset$ #generate new datasetsfor(i=1 to n) $\{$  $if(h(x_i)=y_i)$ #correctly classified instances $C.add(x_i, y_i)$ 

```
else

M.add(x_i,y_i) #misclassified instances

}

#Step2: eBootstrapping

for(i=1 to t)

{

D_i=\emptyset

D_i=D_iUM

while(D.length!=m)

{

r=random.next(1,C.length)

D_i.add(C_r)

}

#Step3: Training

h_i=L(D_i)
```

*Output* #Step4:Combining  $H(x)=voting(h_1(x), h_2(x), ..., h_n(x))$  #final hypothesis

$$= \underset{y \in Y}{\operatorname{argmax}} \underbrace{\Sigma_{i}^{t}}_{i} : y = h_{i}(x)^{t}$$



Figure 2. The general framework of Enhanced Bagging (eBagging) algorithm.

The effectiveness of our method depends on constructing a diverse, yet accurate, collection of classifiers. By eBagging, we obtain a good compromise between a lack of diversity and a overfitting situation. premature Algorithm 1 demonstrates the pseudo code of the proposed eBagging algorithm. A classifier (or a hypothesis) is a mapping from x to y. Given set D containing nexamples, misclassified instances are identified by a prior classifier in the pre-training step and denoted by M. Classified instances are the rest of the dataset and denoted by C. Datasets  $D_1...D_t$  are generated by including all misclassified instances in M and some correctly classified data points taken with replacement from C. After training, a new instance is classified by voting.

In Table 2, there is a brief summary of the properties of eBagging, bagging, random forest and boosting techniques in terms of given criteria.

|                                       | eBagging                                                                              | Bagging                  | Random Forest                                           | Boosting                                             |
|---------------------------------------|---------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------|------------------------------------------------------|
| Training set construction             | misclassified samples + random<br>resampling                                          | random resampling        | random resampling+random<br>feature subset              | weighted resampling                                  |
| Model construction                    | parallel                                                                              | parallel                 | parallel                                                | iterative (incremental)                              |
| Weight assignment to<br>each instance | no                                                                                    | no                       | no                                                      | yes                                                  |
| Classifiers                           | inducer independent                                                                   | inducer independent      | inducer dependent (decision<br>tree)                    | inducer independent                                  |
| Training datasets                     | giving higher preference to<br>misclassified samples                                  | random                   | random                                                  | giving higher preference to<br>misclassified samples |
| Goal to achieve                       | increase the performance of the base learners with a prior learner                    | minimize variance        | minimize variance                                       | increase predictive force                            |
| Aim                                   | find a good trade-off between<br>variance and bias that minimizes<br>prediction error | decrease variance        | increase diversity                                      | decrease bias                                        |
| Methods where this is used            | error-based random subspace                                                           | random instance subspace | random instance subspace and<br>random feature subspace | gradient descent                                     |
| Function to combine                   | majority voting                                                                       | majority voting          | majority voting                                         | weighted majority voting                             |
| Inducer number                        | single inducer                                                                        | single inducer           | single inducer                                          | single inducer                                       |
| Base learner                          | simple or complex                                                                     | complex                  | simple                                                  | simple                                               |
| Effect                                | loss minimization                                                                     | risk minimization        | risk minimization                                       | margin maximization                                  |

Table 2. Comparison table of eBagging, Bagging, Random Forest and Boosting techniques.

#### 4. Experimental Work

In this study, the proposed eBagging method was compared with single (no ensemble strategy used), standard bagging ensemble, random forest and AdaBoost learners. As a base learner for ensemble methods, SVM, kNN, Decision Tree (C4.5) and NB algorithms were individually applied. Many studies have taken these methods as base learners in bagging [16, 30, 33] even though bagging is not generally favorable to work with stable algorithms such as SVM, kNN and NB. We aimed to handle this stiuation with our additional improvements in eBagging to see whether it is useful or not.

Weka open source data mining library was used to develop the models [32]. Classification accuracies, pairwise comparisons showing win/tie/loss status and average error rates of the applied algorithms are presented in this section. Statistical test results were also given to verify the obtained outputs. In addition, we explored the effect of classification noise on the performance of eBagging technique.

#### 4.1. Dataset Description

In the experimental studies, 33 datasets taken from UCI Machine Learning Repository [22] were used. Table 3 shows the basic properties of the datasets by noting the release year of the dataset, their respective number of records, the number of dimensions including the class attribute and how many classes they contain. In addition to well-known benchmarks, synthetic datasets with different characteristics were also handled and their properties are given in the next section.

| ID | Dataset Name  | Year | Attributes | Instances | Number of Classes | ID | Dataset Name    | Year | Attributes | Instances | Number of Classes |
|----|---------------|------|------------|-----------|-------------------|----|-----------------|------|------------|-----------|-------------------|
| 1  | arrhythmia    | 1998 | 280        | 452       | 16                | 18 | letter          | 1991 | 17         | 20000     | 26                |
| 2  | audiology     | 1992 | 70         | 226       | 24                | 19 | liver-disorders | 1990 | 7          | 345       | 2                 |
| 3  | breast-cancer | 1988 | 10         | 286       | 2                 | 20 | lymph           | 1988 | 19         | 148       | 4                 |
| 4  | car           | 1997 | 7          | 1728      | 4                 | 21 | nursery         | 1997 | 9          | 12960     | 5                 |
| 5  | dermatology   | 1998 | 34         | 366       | 6                 | 22 | page-blocks     | 1995 | 11         | 5473      | 5                 |
| 6  | diabetes      | 1990 | 9          | 768       | 2                 | 23 | segment         | 1990 | 20         | 2310      | 7                 |
| 7  | ecoli         | 1996 | 8          | 336       | 4                 | 24 | sick            | 1987 | 30         | 3772      | 2                 |
| 8  | glass         | 1987 | 10         | 214       | 7                 | 25 | sonar           | 1988 | 61         | 208       | 2                 |
| 9  | haberman      | 1999 | 4          | 306       | 2                 | 26 | soybean         | 1988 | 36         | 683       | 19                |
| 10 | heart-c       | 1988 |            | 303       | 5                 | 27 | spambase        | 1999 | 58         | 4601      | 2                 |
| 11 | heart-h       | 1900 | 14         | 294       | 5                 | 28 | tae             | 1997 | 6          | 151       | 3                 |
| 12 | heart-statlog | 1992 |            | 270       | 2                 | 29 | tic-tac-toe     | 1991 | 10         | 958       | 3                 |
| 13 | hepatitis     | 1988 | 20         | 155       | 2                 | 30 | vehicle         | 1987 | 19         | 846       | 4                 |
| 14 | hypothyroid   | 1987 | 30         | 3772      | 4                 | 31 | wine            | 1991 | 14         | 178       | 3                 |
| 15 | ionosphere    | 1989 | 35         | 355       | 2                 | 32 | waveform-5000   | 1988 | 41         | 5000      | 3                 |
| 16 | iris          | 1988 | 5          | 150       | 3                 | 33 | Z00             | 1990 | 17         | 101       | 7                 |
| 17 | kr-vs-kp      | 1989 | 37         | 3196      | 2                 |    |                 |      | •          |           |                   |

Table 3. Experimental datasets and their characteristics.

#### 4.2. Comparison of the Applied Methods

Five different cases were taken into consideration as classifiers' performances were compared: classification accuracy for benchmark datasets and artificial datasets (shown in Table 4 and Table 7), win/tie/loss status

showing pairwise comparisons of the applied methods (displayed in Table 5), the average error rates relative to each other (demonstrated in Figure 3), the results of statistical tests (Friedman and Quade) and the effect of classification noise (in Figure 5). Classification accuracies of the applied algorithms were obtained

using 10-fold cross-validation. In the implementations of the ensemble learners, the number of iterations to be performed (ensemble size) were determined as Weka's default parameter, 10. The number of neighbors, N for kNN classifier was selected as  $\log_2(n)$  where n indicates the number of instances in the respective dataset. The default N parameter of Weka is 1, however, it does generally not make sense to choose the parameter N so small when large numbers of data points are available

in the dataset.  $N=\log_2(n)$  is a reasonable choice because if N is determined as too large or too small, the probability of overfitting dramatically increases [14, 26, 35]. The classifier parameters of SVM, C4.5 and NB classifiers were left as default Weka parameters.

| DATASET /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eBagging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bagging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Single                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AdaBoost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eBagging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bagging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Single                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AdaBoost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| arrhythmia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 78.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 75.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 64.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 64.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 64.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 62.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 62.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| audiology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 81.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 77.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 84.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 75.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 71.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 73.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 77.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| breast-cancer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 73.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 73.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 69.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 69.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 73.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 72.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 71.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 64.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| car                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 92.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 93.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 92.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 96.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 85.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 85.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 90.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| dermatology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 94.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 96.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 93.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 98.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 96.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 97.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 96.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| diabetes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 79.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 74.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 73.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 74.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 72.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 76.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 76.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 76.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 76.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ecoli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 87.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 84.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 84.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 84.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 81.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 86.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 86.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 85.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 85.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| glass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 81.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 74.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 66.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 74.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 74.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 49.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| haberman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 72.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 72.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 68.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 75.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 76.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 75.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| heart-c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 83.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 78.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 77.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 79.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 82.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 84.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 83.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 83.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 84.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| heart-h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 81.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 79.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 80.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 77.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 78.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 84.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 83.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 83.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 86.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| heart-statlog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 85.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 78.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 76.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 77.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 80.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 85.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 83.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 83.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 82.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| hepatitis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 86.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 83.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 83.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 85.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 85.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 84.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 85.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| hypothyroid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 99.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 99.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 99.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 95.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 95.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 95.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 95.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ionosphere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 94.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 92.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 91.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 92.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 93.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 83.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 83.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 82.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 92.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| iris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 96.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 94.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 96.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 93.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 96.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 96.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 96.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 93.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| kr-vs-kp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 99.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 99.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 99.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 99.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 87.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 87.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 87.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 94.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| letter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 91.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 92.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 87.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 64.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 64.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 64.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 64.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| liver-disorders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 76.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 69.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 68.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 68.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 71.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 57.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 57.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 67.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| lymph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 84.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 79.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 77.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 81.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 83.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 82.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 83.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| nursery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 97.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 97.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 97.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 99.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 90.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 90.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 91.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| page-blocks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 97.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 97.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 96.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 99.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 89.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 90.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 90.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 91.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 97.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 97.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 96.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 97.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 97.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 89.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 80.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| segment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 97.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 97.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 98.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 97.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 98.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 92.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 92.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 93.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| sick                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 93.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| sonar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 87.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 77.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 71.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 77.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 77.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 71.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 68.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 67.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| soybean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 93.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 92.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 91.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 91.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 92.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 92.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 92.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 92.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 92.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| spambase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 94.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 94.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 92.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 94.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 79.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 79.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 79.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 79.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| tae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 69.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 59.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 65.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 68.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 53.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 54.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 54.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 54.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| tic-tac-toe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 89.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 93.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 84.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 92.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 71.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 69.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 83.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| vehicle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 85.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 74.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 72.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 76.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 46.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 45.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 44.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 44.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| wine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 95.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 93.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 93.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 97.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 96.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 98.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 97.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 96.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 96.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| waveform-5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 87.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 81.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 81.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 80.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 79.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 79.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ZOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 96.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 93.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 92.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 05.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 05.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 06.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 05.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 95.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 97.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 95.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 95.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 91.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Average Accuracy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 88.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 85.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 83.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95.05<br>85.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 95.05<br>86.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 96.63<br>80.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95.05<br>79.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 79.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Average Accuracy<br>DATASET /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 79.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 88.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 85.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 83.76<br>kNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 86.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 80.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 79.34<br>SVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 79.12<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DATASET /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 83.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 85.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 86.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 80.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 79.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 79.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DATASET /<br>METHOD<br>arrhythmia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 88.37<br>eBagging<br>60.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 85.66<br>Bagging<br>58.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 83.76<br>kNN<br>Single<br>58.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 85.04<br>AdaBo<br>58.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 86.33<br><b>post el</b><br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 80.11<br>Bagging<br>80.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 79.34<br>SVI<br>Bagging<br>71.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 79.12<br>M<br>Single<br>70.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80.91<br>AdaBoost<br>65.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DATASET /<br>METHOD<br>arrhythmia<br>audiology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 88.37<br>eBagging<br>60.97<br>78.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 85.66<br>Bagging<br>58.41<br>59.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 83.76<br>kNN<br>Single<br>58.85<br>56.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 85.04<br>AdaBo<br>58.8<br>59.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 86.33<br>post el<br>5<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80.11<br>Bagging<br>80.55<br>90.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 79.34<br>SVI<br>Bagging<br>71.9<br>76.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 79.12<br>M<br>5ingle<br>70.35<br>81.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 80.91<br>AdaBoost<br>65.93<br>82.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DATASET /<br>METHOD<br>arrhythmia<br>audiology<br>breast-cancer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 88.37<br>eBagging<br>60.97<br>78.76<br>77.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 85.66<br>Bagging<br>58.41<br>59.73<br>74.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 83.76<br>kNN<br>Single<br>58.85<br>56.19<br>73.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 85.04<br>AdaBo<br>58.8<br>59.7<br>73.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 86.33<br>post el<br>5<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80.11<br>8agging<br>80.55<br>90.71<br>71.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 79.34<br><b>SVI</b><br><b>Bagging</b><br>71.9<br>76.99<br>72.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 79.12<br>M<br>70.35<br>81.86<br>69.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80.91<br>AdaBoost<br>65.93<br>82.74<br>69.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DATASET /<br>METHOD<br>arrhythmia<br>audiology<br>breast-cancer<br>car                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 88.37<br>eBagging<br>60.97<br>78.76<br>77.52<br>93.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 85.66<br>Bagging<br>58.41<br>59.73<br>74.48<br>92.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 83.76<br>kNN<br>58.85<br>56.19<br>73.43<br>93.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 85.04<br>AdaB<br>58.8<br>59.7<br>73.4<br>93.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 86.33<br><b>post</b> el<br>5<br>3<br>3<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80.11<br>8agging<br>80.55<br>90.71<br>71.82<br>93.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 79.34<br>SVI<br>Bagging<br>71.9<br>76.99<br>72.03<br>93.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 79.12<br>M<br>70.35<br>81.86<br>69.58<br>93.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80.91<br>AdaBoost<br>65.93<br>82.74<br>69.58<br>94.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DATASET /<br>METHOD<br>arrhythmia<br>audiology<br>breast-cancer<br>car<br>dermatology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 88.37<br>eBagging<br>60.97<br>78.76<br>77.52<br>93.82<br>96.89                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 85.66<br>Bagging<br>58.41<br>59.73<br>74.48<br>92.53<br>96.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 83.76<br>kNN<br>58.85<br>56.19<br>73.43<br>93.29<br>95.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 85.04<br>AdaBo<br>58.8<br>59.7<br>73.4<br>93.2<br>94.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 86.33<br><b>post el</b><br>5<br>3<br>3<br>99<br>66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 80.11<br>8agging<br>80.55<br>90.71<br>71.82<br>93.51<br>98.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 79.34           SVI           Bagging           71.9           76.99           72.03           93.46           96.72                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 79.12<br>M<br>Single<br>70.35<br>81.86<br>69.58<br>93.52<br>95.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 80.91<br>AdaBoost<br>65.93<br>82.74<br>69.58<br>94.50<br>95.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DATASET /<br>METHOD<br>arrhythmia<br>audiology<br>breast-cancer<br>car<br>dermatology<br>diabetes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 88.37<br>eBagging<br>60.97<br>78.76<br>77.52<br>93.82<br>96.89<br>78.35                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 85.66<br>Bagging<br>58.41<br>59.73<br>74.48<br>92.53<br>96.17<br>73.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 83.76           kNN           58.85           56.19           73.43           93.29           95.63           71.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 85.04<br>AdaB<br>58.8<br>59.7<br>73.4<br>93.2<br>94.2<br>71.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 86.33<br><b>bost el</b><br>5<br>3<br>3<br>9<br>9<br>16<br>19<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 80.11           sagging           80.55           90.71           71.82           93.51           98.52           76.71                                                                                                                                                                                                                                                                                                                                                                                                                               | 79.34           SVI           Bagging           71.9           76.99           72.03           93.46           96.72           77.47                                                                                                                                                                                                                                                                                                                                                                                                                                   | 79.12           Single           70.35           81.86           69.58           93.52           95.36           77.34                                                                                                                                                                                                                                                                                                                                                                                                                                 | 80.91<br>AdaBoost<br>65.93<br>82.74<br>69.58<br>94.50<br>95.36<br>77.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DATASET /<br>METHOD<br>arrhythmia<br>audiology<br>breast-cancer<br>car<br>dermatology<br>diabetes<br>ecoli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 88.37<br>eBagging<br>60.97<br>78.76<br>77.52<br>93.82<br>96.89<br>78.35<br>85.24                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85.66<br>Bagging<br>58.41<br>59.73<br>74.48<br>92.53<br>96.17<br>73.57<br>86.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 83.76           kNN           58.85           56.19           73.43           93.29           95.63           71.09           86.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 85.04<br>AdaB<br>58.8<br>59.7<br>73.4<br>93.2<br>94.2<br>71.0<br>86.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 86.33           post         el           5         3           3         9           66         99           91         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80.11           Bagging           80.55           90.71           71.82           93.51           98.52           76.71           85.36                                                                                                                                                                                                                                                                                                                                                                                                               | 79.34           SVI           Bagging           71.9           76.99           72.03           93.46           96.72           77.47           83.63                                                                                                                                                                                                                                                                                                                                                                                                                   | 79.12           M           5ingle           70.35           81.86           69.58           93.52           95.36           77.34           83.33                                                                                                                                                                                                                                                                                                                                                                                                     | 80.91<br>AdaBoost<br>65.93<br>82.74<br>69.58<br>94.50<br>95.36<br>77.34<br>84.82                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DATASET /<br>METHOD<br>arrhythmia<br>audiology<br>breast-cancer<br>car<br>dermatology<br>diabetes<br>ecoli<br>glass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 88.37<br>eBagging<br>60.97<br>78.76<br>77.52<br>93.82<br>96.89<br>78.35<br>85.24<br>75.65                                                                                                                                                                                                                                                                                                                                                                                                                                | 85.66<br>Bagging<br>58.41<br>59.73<br>74.48<br>92.53<br>96.17<br>73.57<br>86.90<br>66.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83.76           kNN           58.85           56.19           73.43           93.29           95.63           71.09           86.31           64.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 85.04<br>AdaBo<br>58.8<br>59.7<br>73.4<br>93.2<br>94.2<br>71.0<br>86.3<br>64.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 86.33<br>post el<br>5<br>3<br>3<br>9<br>16<br>19<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80.11           Bagging           80.55           90.71           71.82           93.51           98.52           76.71           85.36           57.29                                                                                                                                                                                                                                                                                                                                                                                               | 79.34           Bagging           71.9           76.99           72.03           93.46           96.72           77.47           83.63           57.48                                                                                                                                                                                                                                                                                                                                                                                                                 | 79.12           M           70.35           81.86           69.58           93.52           95.36           77.34           83.33           56.07                                                                                                                                                                                                                                                                                                                                                                                                      | 80.91           AdaBoost           65.93           82.74           69.58           94.50           95.36           77.34           84.82           57.01                                                                                                                                                                                                                                                                                                                                                                                 |
| DATASET /<br>METHOD<br>arrhythmia<br>audiology<br>breast-cancer<br>car<br>dermatology<br>diabetes<br>ecoli<br>glass<br>haberman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 88.37<br>eBagging<br>60.97<br>78.76<br>77.52<br>93.82<br>96.89<br>78.35<br>85.24<br>75.65<br>76.21                                                                                                                                                                                                                                                                                                                                                                                                                       | 85.66<br><b>Bagging</b><br>58.41<br>59.73<br>74.48<br>92.53<br>96.17<br>73.57<br>86.90<br>66.36<br>73.20                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83.76           kNN           Single           58.85           56.19           73.43           93.29           95.63           71.09           86.31           64.02           73.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85.04<br>AdaBa<br>58.8<br>59.7<br>73.4<br>93.2<br>94.2<br>71.0<br>86.3<br>64.0<br>72.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 86.33           post         el           5         3           3         99           6         99           11         12           2         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80.11           Bagging         80.55           90.71         71.82           93.51         98.52           76.71         85.36           57.29         73.14                                                                                                                                                                                                                                                                                                                                                                                         | 79.34           SV!           Bagging           71.9           76.99           72.03           93.46           96.72           77.47           83.63           57.48           73.53                                                                                                                                                                                                                                                                                                                                                                                   | 79.12           Single           70.35           81.86           69.58           93.52           95.36           77.34           83.33           56.07           72.88                                                                                                                                                                                                                                                                                                                                                                                 | 80.91<br>AdaBoost<br>65.93<br>82.74<br>60.58<br>94.50<br>95.36<br>77.34<br>84.82<br>57.01<br>73.86                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DATASET /<br>METHOD<br>arrhythmia<br>audiology<br>breast-cancer<br>car<br>dermatology<br>diabetes<br>ecoli<br>glass<br>haberman<br>heart-c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 88.37           eBagging           60.97           78.76           77.52           93.82           96.89           78.35           85.24           75.65           76.21           82.77                                                                                                                                                                                                                                                                                                                                 | 85.66<br><b>Bagging</b><br>58.41<br>59.73<br>74.48<br>92.53<br>96.17<br>73.57<br>86.90<br>66.36<br>73.20<br>82.51                                                                                                                                                                                                                                                                                                                                                                                                                                       | 83.76           kNN           Single           58.85           56.19           73.43           93.29           95.63           71.09           86.31           64.02           73.53           83.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85.04<br>AdaBo<br>58.8<br>59.7<br>73.4<br>93.2<br>94.2<br>71.0<br>86.3<br>64.0<br>72.2<br>82.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 86.33           oost         el           5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 80.11           Bagging         80.55           90.71         71.82           93.51         99.52           76.71         85.36           57.29         73.14           83.96         1                                                                                                                                                                                                                                                                                                                                                               | 79.34           SVI           Bagging           71.9           76.99           72.03           93.46           96.72           77.47           83.63           57.48           73.53           84.49                                                                                                                                                                                                                                                                                                                                                                   | 79.12           Single           70.35           81.86           69.58           93.52           95.36           77.34           83.33           56.07           72.88           84.16                                                                                                                                                                                                                                                                                                                                                                 | 80.91           AdaBoost           65.93           82.74           69.58           94.50           95.36           77.34           84.82           57.01           73.86           84.82                                                                                                                                                                                                                                                                                                                                                 |
| DATASET /<br>METHOD<br>arrhythmia<br>audiology<br>breast-cancer<br>car<br>dermatology<br>diabetes<br>ecoli<br>glass<br>haberman<br>heart-c<br>heart-h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 88.37           eBagging           60.97           78.76           77.52           93.82           96.89           78.35           85.24           75.65           76.21           82.77           85.20                                                                                                                                                                                                                                                                                                                 | 85.66<br><b>Bagging</b><br>58.41<br>59.73<br>74.48<br>92.53<br>96.17<br>73.57<br>86.90<br>66.36<br>73.20<br>82.51<br>83.33                                                                                                                                                                                                                                                                                                                                                                                                                              | 83.76           KNN           58.85           56.19           73.43           93.29           95.63           71.09           86.31           64.02           73.53           83.50           82.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 85.04<br>AdaBu<br>58.8<br>59.7<br>73.4<br>93.2<br>71.0<br>86.3<br>64.0<br>72.2<br>82.1<br>79.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 86.33           oost         el           5         3           3         9           66         9           11         12           12         2           13         9           9         9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80.11           Bagging         80.55           90.71         71.82           93.51         98.52           76.71         85.36           57.29         73.14           83.96         83.98                                                                                                                                                                                                                                                                                                                                                           | 79.34           SVI           Bagging           71.9           76.99           72.03           93.46           96.72           77.47           83.63           57.48           73.53           84.49           83.67                                                                                                                                                                                                                                                                                                                                                   | 79.12           M           Single           70.35           81.86           69.58           93.52           95.36           77.34           83.33           56.07           72.88           84.16           82.65                                                                                                                                                                                                                                                                                                                                     | 80.91           AdaBoost           65.93           82.74           69.58           94.50           95.36           77.34           84.82           57.01           73.86           84.82           82.31                                                                                                                                                                                                                                                                                                                                 |
| DATASET /<br>METHOD<br>arrhythmia<br>audiology<br>breast-cancer<br>car<br>dermatology<br>diabetes<br>ecoli<br>glass<br>haberman<br>heart-c<br>heart-h<br>heart-statlog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 88.37           eBagging           60.97           78.76           77.52           93.82           96.89           78.35           85.24           75.65           76.21           82.77           85.20           82.00                                                                                                                                                                                                                                                                                                 | 85.66<br><b>Bagging</b><br>58.41<br>59.73<br>74.48<br>92.53<br>96.17<br>73.57<br>86.90<br>66.36<br>73.20<br>82.51<br>83.33<br>78.15                                                                                                                                                                                                                                                                                                                                                                                                                     | 83.76           kNN           58.85           56.19           73.43           93.29           95.63           71.09           86.31           64.02           73.53           83.50           82.31           81.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 85.04<br>AdaBy<br>58.8<br>59.7<br>73.4<br>93.2<br>71.0<br>86.3<br>64.0<br>72.2<br>82.1<br>79.5<br>75.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 86.33           post         el           5         3           3         9           66         99           11         12           22         2           8         9           96         66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80.11           Bagging           80.55           90.71           71.82           93.51           98.52           76.71           85.36           57.29           73.14           83.96           83.98           84.37                                                                                                                                                                                                                                                                                                                               | 79.34           SVI           Bagging           71.9           76.99           72.03           93.46           96.72           77.47           83.63           57.48           73.53           84.49           83.67           82.96                                                                                                                                                                                                                                                                                                                                   | 79.12           M           70.35           81.86           69.58           93.52           95.36           77.34           83.33           56.07           72.88           84.16           82.65           84.07                                                                                                                                                                                                                                                                                                                                      | 80.91           AdaBoost           65.93           82.74           69.58           94.50           95.36           77.34           84.82           57.01           73.86           84.82           82.31           84.07                                                                                                                                                                                                                                                                                                                 |
| DATASET /<br>METHOD<br>arrhythmia<br>audiology<br>breast-cancer<br>car<br>dermatology<br>diabetes<br>ecoli<br>glass<br>haberman<br>heart-c<br>heart-h<br>heart-statlog<br>hepatitis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 88.37           eBagging           60.97           78.76           77.52           93.82           96.89           78.35           85.24           75.65           76.21           82.77           85.20           82.00           83.03                                                                                                                                                                                                                                                                                 | 85.66<br><b>Bagging</b><br>58.41<br>59.73<br>74.48<br>92.53<br>96.17<br>73.57<br>86.90<br>66.36<br>73.20<br>82.51<br>83.33<br>78.15<br>83.23                                                                                                                                                                                                                                                                                                                                                                                                            | 83.76           kNN           Single           58.85           56.19           73.43           93.29           95.63           71.09           86.31           64.02           73.53           83.50           82.31           81.11           84.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85.04<br>AdaBa<br>58.8<br>59.7<br>73.4<br>93.2<br>94.2<br>71.0<br>86.3<br>64.0<br>72.2<br>82.1<br>79.5<br>75.5<br>84.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 86.33           oost         el           5         3           3         -           99         -           66         -           99         -           66         -           99         -           66         -           99         -           66         -           22         -           23         -                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80.11           Bagging         80.55           80.71         71.82           93.51         98.52           76.71         85.36           57.29         73.14           83.96         83.98           84.37         86.00                                                                                                                                                                                                                                                                                                                             | 79.34           SVI           Bagging         71.9           76.99         72.03           93.46         96.72           77.47         83.63           57.48         73.53           84.49         83.67           82.96         85.81                                                                                                                                                                                                                                                                                                                                 | 79.12           Single           70.35           81.86           69.58           93.52           95.36           77.34           83.33           56.07           72.88           84.16           82.65           84.07           85.16                                                                                                                                                                                                                                                                                                                 | 80.91           AdaBoost           65.93           82.74           69.58           94.50           95.36           77.34           84.82           \$57.01           73.86           84.82           82.31           84.07           81.29                                                                                                                                                                                                                                                                                               |
| DATASET /<br>METHOD<br>arrhythmia<br>audiology<br>breast-cancer<br>car<br>dermatology<br>diabetes<br>ecoli<br>glass<br>haberman<br>heart-c<br>heart-h<br>heart-th<br>heart-stallog<br>hepatitis<br>hypothyroid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 88.37           eBagging           60.97           78.76           77.52           93.82           96.89           78.35           85.24           75.65           76.21           82.77           85.20           83.03           92.90                                                                                                                                                                                                                                                                                 | 85.66           Bagging           58.41           59.73           74.48           92.53           96.17           73.57           86.90           66.36           73.20           82.51           83.33           78.15           83.23           93.05                                                                                                                                                                                                                                                                                                 | 83.76           kNN           Single           58.85           56.19           73.43           93.29           95.63           71.09           86.31           64.02           73.53           83.50           82.31           81.11           84.52           93.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85.04<br>AdaBu<br>588.8<br>59.7<br>73.4<br>93.2<br>94.2<br>71.0<br>86.3<br>64.0<br>72.2<br>82.1<br>79.5<br>75.5<br>5<br>75.5<br>84.5<br>90.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 86.33           oost         el           5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 80.11           Bagging         80.55           90.71         71.82           93.51         99.52           76.71         85.36           57.29         73.14           83.96         83.98           84.37         86.00           93.60         93.60                                                                                                                                                                                                                                                                                               | 79.34           SVI           Bagging           71.9           76.99           72.03           93.46           96.72           77.47           83.63           57.48           73.53           84.49           83.67           82.96           85.81           93.64                                                                                                                                                                                                                                                                                                   | 79.12           Single           70.35           81.86           69.58           93.52           95.36           77.34           83.33           56.07           72.88           84.16           82.65           84.07           85.16           93.58                                                                                                                                                                                                                                                                                                 | 80.91           AdaBoost           65.93           82.74           69.58           94.50           95.36           77.34           84.82           57.01           73.86           84.82           82.31           84.07           81.29           94.99                                                                                                                                                                                                                                                                                 |
| DATASET /<br>METHOD<br>arrhythmia<br>audiology<br>breast-cancer<br>car<br>dermatology<br>diabetes<br>ecoli<br>glass<br>haberman<br>heart-c<br>heart-h<br>heart-statlog<br>hepatitis<br>hypothyroid<br>ionosphere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 88.37           eBagging           60.97           78.76           77.52           93.82           96.89           78.35           85.24           75.65           76.21           82.00           83.03           92.90           89.77                                                                                                                                                                                                                                                                                 | 85.66<br><b>Bagging</b><br>58.41<br>59.73<br>74.48<br>92.53<br>96.17<br>73.57<br>86.90<br>66.36<br>73.20<br>82.51<br>83.33<br>78.15<br>83.23<br>93.05<br>84.90                                                                                                                                                                                                                                                                                                                                                                                          | 83.76           KNN           58.85           56.19           73.43           93.29           95.63           71.09           86.31           64.02           73.53           83.50           82.31           81.11           84.52           93.08           85.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 85.04<br>AdaBo<br>58.8<br>59.7<br>73.4<br>93.2<br>94.2<br>71.0<br>86.3<br>64.0<br>72.2<br>82.1<br>79.5<br>75.5<br>84.5<br>90.5<br>84.5<br>90.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 86.33           el           5           3         9           6         9           11         2           2         8           9         6           2         2           2         2           4         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80.11           Bagging         80.55           90.71         71.82           93.51         98.52           76.71         85.36           57.29         73.14           83.96         83.98           84.37         86.00           93.60         89.40                                                                                                                                                                                                                                                                                               | 79.34           SVI           Bagging           71.9           76.99           72.03           93.46           96.72           77.47           83.63           57.48           73.53           84.49           83.67           82.96           85.81           93.64           89.46                                                                                                                                                                                                                                                                                   | 79.12           Single           70.35           81.86           69.58           93.52           95.36           77.34           83.33           56.07           72.88           84.16           82.65           84.07           85.16           93.58           88.60                                                                                                                                                                                                                                                                                 | 80.91           AdaBoost           65.93           82.74           69.58           94.50           95.36           77.34           84.82           57.01           73.86           84.82           82.31           84.07           81.29           94.99           88.60                                                                                                                                                                                                                                                                 |
| DATASET /<br>METHOD<br>arrhythmia<br>audiology<br>breast-cancer<br>car<br>dermatology<br>diabetes<br>ecoli<br>glass<br>haberman<br>heart-c<br>heart-h<br>heart-statlog<br>hepatitis<br>hypothyroid<br>ionosphere<br>iris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 88.37           eBagging           60.97           78.76           77.52           93.82           96.89           78.35           85.24           75.65           76.21           82.77           85.20           83.03           92.90           89.77           96.40                                                                                                                                                                                                                                                 | 85.66           Bagging           58.41           59.73           74.48           92.53           96.17           73.57           86.90           66.36           73.20           82.51           83.33           78.15           83.23           93.05           84.90           96.67                                                                                                                                                                                                                                                                 | 83.76           KNN           Single           58.85           56.19           73.43           93.29           95.63           71.09           86.31           64.02           73.53           83.50           82.31           81.11           84.52           93.08           85.47           96.67                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85.04<br>AdaBy<br>58.8<br>59.7<br>73.4<br>93.2<br>71.0<br>86.3<br>64.0<br>72.2<br>82.1<br>79.5<br>75.5<br>84.5<br>90.5<br>86.0<br>96.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 86.33           post         el           5         3           3         9           66         99           11         12           12         2           13         9           66         10           99         10           14         10           00         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 80.11           Bagging           80.55           90.71           71.82           93.51           98.52           76.71           85.36           57.29           73.14           83.96           83.98           84.37           86.00           93.60           89.40           95.87                                                                                                                                                                                                                                                               | 79.34           SVI           Bagging           71.9           76.99           72.03           93.46           96.72           77.47           83.63           57.48           73.53           84.49           83.67           82.96           85.81           93.64           89.46           95.33                                                                                                                                                                                                                                                                   | 79.12           M           70.35           81.86           69.58           93.52           95.36           77.34           83.33           56.07           72.88           84.16           82.65           84.07           85.16           93.58           98.60           96.00                                                                                                                                                                                                                                                                      | 80.91           AdaBoost           65.93           82.74           69.58           94.50           95.36           77.34           84.82           57.01           73.86           84.82           82.31           84.07           81.29           94.99           98.60           98.00                                                                                                                                                                                                                                                 |
| DATASET /<br>METHOD<br>arrhythmia<br>audiology<br>breast-cancer<br>car<br>dermatology<br>diabetes<br>ecoli<br>glass<br>haberman<br>heart-c<br>heart-h<br>heart-statlog<br>hepatitis<br>hypothyroid<br>ionosphere<br>iris<br>kr-vs-kp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 88.37           eBagging           60.97           78.76           77.52           93.82           96.89           78.35           85.24           75.65           76.21           82.77           85.20           82.00           83.03           92.90           89.77           96.40           96.44                                                                                                                                                                                                                 | 85.66<br><b>Bagging</b><br>58.41<br>59.73<br>74.48<br>92.53<br>96.17<br>73.57<br>86.90<br>66.36<br>73.20<br>82.51<br>83.33<br>78.15<br>83.23<br>93.05<br>84.90<br>96.67<br>95.18                                                                                                                                                                                                                                                                                                                                                                        | 83.76           kNN           Single           58.85           56.19           73.43           93.29           95.63           71.09           86.31           64.02           73.53           83.50           83.50           83.51           83.50           83.50           83.50           83.50           83.50           93.08           85.47           96.67           94.96                                                                                                                                                                                                                                                                                                                                                 | 85.04<br>AdaBa<br>58.8<br>59.7<br>73.4<br>93.2<br>94.2<br>71.0<br>86.3<br>64.0<br>72.2<br>82.1<br>79.5<br>84.5<br>90.5<br>84.5<br>90.5<br>86.0<br>96.0<br>97.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 86.33           oost         el           5         -           3         -           9         -           6         -           99         -           6         -           2         -           8         -           9         -           6         -           2         -           4         -           00         -                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80.11           Bagging         80.55           80.55         90.71           71.82         93.51           98.52         76.71           85.36         57.29           73.14         83.96           83.98         84.37           86.00         93.60           89.40         95.87           96.31                                                                                                                                                                                                                                                 | 79.34           SVI           Bagging         71.9           76.99         72.03           93.46         96.72           97.47         83.63           57.48         73.53           84.49         83.67           82.96         85.81           93.64         89.64           95.33         95.87                                                                                                                                                                                                                                                                     | 79.12           Single           70.35           81.86           69.58           93.52           95.36           77.34           83.33           56.07           72.88           84.16           82.65           84.07           85.16           93.58           88.60           96.00           95.56                                                                                                                                                                                                                                                 | 80.91           AdaBoost           65.93           82.74           69.58           94.50           95.36           77.34           84.82           \$57.01           73.86           84.82           82.31           84.07           81.29           94.99           88.60           98.00           97.18                                                                                                                                                                                                                               |
| DATASET /<br>METHOD<br>arrhythmia<br>audiology<br>breast-cancer<br>car<br>dermatology<br>diabetes<br>ecoli<br>glass<br>haberman<br>heart-c<br>heart-h<br>heart-statlog<br>hepatitis<br>hypothyroid<br>ionosphere<br>iris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 88.37           eBagging           60.97           78.76           77.52           93.82           96.89           78.35           85.24           75.65           76.21           82.77           85.20           83.03           92.90           89.77           96.40                                                                                                                                                                                                                                                 | 85.66           Bagging           58.41           59.73           74.48           92.53           96.17           73.57           86.90           66.36           73.20           82.51           83.33           78.15           83.23           93.05           84.90           96.67           95.18           94.44                                                                                                                                                                                                                                 | 83.76           KNN           Single           58.85           56.19           73.43           93.29           95.63           71.09           86.31           64.02           73.53           83.50           82.31           81.11           84.52           93.08           85.47           96.67           94.96           94.25                                                                                                                                                                                                                                                                                                                                                                                                 | 85.04<br>AdaBu<br>588.8<br>59.7<br>73.4<br>93.2<br>94.2<br>71.0<br>86.3<br>64.0<br>72.2<br>82.1<br>79.5<br>75.5<br>5<br>75.5<br>84.5<br>90.5<br>86.0<br>96.0<br>97.0<br>94.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 86.33           oost         el           5         -           3         -           9         -           6         -           99         -           2         -           8         -           9         -           6         -           2         -           8         -           9         -           6         -           2         -           8         -           9         -           6         -           2         -           4         -           4         -           9         -           5         -                                                                                                                                                                                                                                      | 80.11           Bagging           80.55           90.71           71.82           93.51           98.52           76.71           85.36           57.29           73.14           83.96           83.98           84.37           86.00           93.60           89.40           95.87                                                                                                                                                                                                                                                               | 79.34           SVI           Bagging           71.9           76.99           72.03           93.46           96.72           77.47           83.63           57.48           73.53           84.49           83.67           82.96           85.81           93.64           89.46           95.33                                                                                                                                                                                                                                                                   | 79.12           Single           70.35           81.86           69.58           93.52           95.36           77.34           83.33           56.07           72.88           84.16           82.65           84.07           85.16           93.58           88.60           96.00           95.56           82.35                                                                                                                                                                                                                                 | 80.91           AdaBoost           65.93           82.74           69.58           94.50           95.36           77.34           84.82           57.01           73.86           84.82           82.31           84.07           81.29           94.99           98.60           98.00                                                                                                                                                                                                                                                 |
| DATASET /<br>METHOD<br>arrhythmia<br>audiology<br>breast-cancer<br>car<br>dermatology<br>diabetes<br>ecoli<br>glass<br>haberman<br>heart-c<br>heart-h<br>heart-statlog<br>hepatitis<br>hypothyroid<br>ionosphere<br>iris<br>kr-vs-kp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 88.37           eBagging           60.97           78.76           77.52           93.82           96.89           78.35           85.24           75.65           76.21           82.77           85.20           82.00           83.03           92.90           89.77           96.40           96.44                                                                                                                                                                                                                 | 85.66<br><b>Bagging</b><br>58.41<br>59.73<br>74.48<br>92.53<br>96.17<br>73.57<br>86.90<br>66.36<br>73.20<br>82.51<br>83.33<br>78.15<br>83.23<br>93.05<br>84.90<br>96.67<br>95.18                                                                                                                                                                                                                                                                                                                                                                        | 83.76           kNN           Single           58.85           56.19           73.43           93.29           95.63           71.09           86.31           64.02           73.53           83.50           83.50           83.51           83.50           83.50           83.50           83.50           83.50           93.08           85.47           96.67           94.96                                                                                                                                                                                                                                                                                                                                                 | 85.04<br>AdaBa<br>58.8<br>59.7<br>73.4<br>93.2<br>94.2<br>71.0<br>86.3<br>64.0<br>72.2<br>82.1<br>79.5<br>84.5<br>90.5<br>84.5<br>90.5<br>86.0<br>96.0<br>97.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 86.33           oost         el           5         -           3         -           9         -           6         -           99         -           2         -           8         -           9         -           6         -           2         -           8         -           9         -           6         -           2         -           8         -           9         -           6         -           2         -           4         -           4         -           9         -           5         -                                                                                                                                                                                                                                      | 80.11           Bagging         80.55           80.55         90.71           71.82         93.51           98.52         76.71           85.36         57.29           73.14         83.96           83.98         84.37           86.00         93.60           89.40         95.87           96.31                                                                                                                                                                                                                                                 | 79.34           SVI           Bagging         71.9           76.99         72.03           93.46         96.72           97.47         83.63           57.48         73.53           84.49         83.67           82.96         85.81           93.64         89.64           95.33         95.87                                                                                                                                                                                                                                                                     | 79.12           Single           70.35           81.86           69.58           93.52           95.36           77.34           83.33           56.07           72.88           84.16           82.65           84.07           85.16           93.58           88.60           96.00           95.56                                                                                                                                                                                                                                                 | 80.91           AdaBoost           65.93           82.74           69.58           94.50           95.36           77.34           84.82           57.01           73.86           84.82           82.31           84.07           81.29           94.99           88.60           98.00           97.18           82.34           62.03                                                                                                                                                                                                 |
| DATASET /<br>METHOD<br>arrhythmia<br>audiology<br>breast-cancer<br>car<br>dermatology<br>diabetes<br>ecoli<br>glass<br>haberman<br>heart-c<br>heart-h<br>heart-c<br>heart-h<br>heart-statlog<br>hepatitis<br>hypothyroid<br>ionosphere<br>iris<br>kr-vs-kp<br>letter<br>liver-disorders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 88.37           eBagging           60.97           78.76           77.52           93.82           96.89           78.35           85.24           75.65           76.21           82.00           83.03           92.90           89.77           96.40           96.44           96.89                                                                                                                                                                                                                                 | 85.66           Bagging           58.41           59.73           74.48           92.53           96.17           73.57           86.90           66.36           73.20           82.51           83.33           78.15           83.23           93.05           84.90           96.67           95.18           94.44                                                                                                                                                                                                                                 | 83.76           KNN           Single           58.85           56.19           73.43           93.29           95.63           71.09           86.31           64.02           73.53           83.50           82.31           81.11           84.52           93.08           85.47           96.67           94.96           94.25                                                                                                                                                                                                                                                                                                                                                                                                 | 85.04<br>AdaBu<br>588.8<br>59.7<br>73.4<br>93.2<br>94.2<br>71.0<br>86.3<br>64.0<br>72.2<br>82.1<br>79.5<br>75.5<br>5<br>75.5<br>84.5<br>90.5<br>86.0<br>96.0<br>97.0<br>94.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 86.33           el           5           3         9           6         9           11         2           2         2           8         9           6         2           2         4           4         99           5         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80.11           Bagging         80.55           90.71         71.82           93.51         98.52           76.71         85.36           57.29         73.14           83.96         83.98           84.37         86.00           93.60         89.40           95.87         96.31           82.47         82.47                                                                                                                                                                                                                                   | 79.34           SVI           Bagging           71.9           76.99           73.46           96.72           77.47           83.63           57.48           73.53           84.49           83.67           82.96           85.81           93.64           89.46           95.87           82.65                                                                                                                                                                                                                                                                   | 79.12           Single           70.35           81.86           69.58           93.52           95.36           77.34           83.33           56.07           72.88           84.16           82.65           84.07           85.16           93.58           88.60           96.00           95.56           82.35                                                                                                                                                                                                                                 | 80.91           AdaBoost           65.93           82.74           69.58           94.50           95.36           77.34           84.82           57.01           73.86           84.82           82.31           84.07           81.29           94.99           88.60           98.00           97.18           82.34                                                                                                                                                                                                                 |
| DATASET /<br>METHOD<br>arrhythmia<br>audiology<br>breast-cancer<br>car<br>dermatology<br>diabetes<br>ecoli<br>glass<br>haberman<br>heart-c<br>heart-h<br>heart-h<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>ionosphere<br>iris<br>kr-vs-kp<br>letter<br>liver-disorders<br>lymph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 88.37           eBagging           60.97           78.76           77.52           93.82           96.89           78.35           85.24           75.65           76.21           82.00           83.03           92.90           89.77           96.40           96.49           73.13                                                                                                                                                                                                                                 | 85.66           Bagging           58.41           59.73           74.48           92.53           96.17           73.57           86.90           66.36           73.20           82.51           83.33           78.15           83.23           93.05           84.90           96.67           95.18           94.44           62.90                                                                                                                                                                                                                 | 83.76           KNN           58.85           56.19           73.43           93.29           95.63           71.09           86.31           64.02           73.53           83.50           82.31           81.11           84.52           93.08           85.47           96.67           94.96           94.25           61.74                                                                                                                                                                                                                                                                                                                                                                                                  | 85.04<br>AdaBo<br>58.8<br>59.7<br>73.4<br>93.2<br>94.2<br>71.0<br>86.3<br>64.0<br>77.2<br>82.1<br>79.5<br>75.5<br>75.5<br>84.5<br>90.5<br>86.0<br>96.0<br>97.0<br>94.2<br>61.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 86.33           post         el           5         3           3         9           66         9           11         12           12         2           2         8           99         66           22         14           44         100           99         5           44         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80.11           Bagging         80.55           90.71         71.82           93.51         98.52           76.71         85.36           57.29         73.14           83.96         83.96           83.98         84.37           86.00         93.60           99.60         89.40           95.87         96.31           82.47         58.14           90.27                                                                                                                                                                                     | 79.34           SVI           Bagging           71.9           76.99           72.03           93.46           96.72           77.47           83.63           57.48           73.53           84.49           83.67           82.96           85.81           93.64           95.33           95.87           82.65           60.00                                                                                                                                                                                                                                   | 79.12           M           Single           70.35           81.86           69.58           93.52           95.36           77.34           83.33           56.07           72.88           84.16           82.65           84.07           85.16           93.58           88.60           96.00           95.56           82.35           58.26                                                                                                                                                                                                     | 80.91           AdaBoost           65.93           82.74           69.58           94.50           95.36           77.34           84.82           57.01           73.86           84.82           82.31           84.07           81.29           94.99           88.60           98.00           97.18           82.34           62.03                                                                                                                                                                                                 |
| DATASET /<br>METHOD<br>arrhythmia<br>audiology<br>breast-cancer<br>car<br>dermatology<br>diabetes<br>ecoli<br>glass<br>haberman<br>heart-c<br>heart-h<br>heart-c<br>heart-h<br>heart-statlog<br>hepatitis<br>hypothyroid<br>ionosphere<br>iris<br>kr-vs-kp<br>letter<br>liver-disorders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 88.37           eBagging           60.97           78.76           77.52           93.82           96.89           78.35           85.24           75.65           76.21           82.00           83.03           92.90           89.77           96.40           96.44           96.89           73.13           86.15                                                                                                                                                                                                 | 85.66           Bagging           58.41           59.73           74.48           92.53           96.17           73.57           86.90           66.36           73.20           82.51           83.23           93.05           84.90           96.67           95.18           94.44           62.90           84.46                                                                                                                                                                                                                                 | 83.76           KNN           Single           58.85           56.19           73.43           93.29           95.63           71.09           86.31           64.02           73.53           83.50           82.31           81.11           84.52           93.08           85.47           96.67           94.96           94.25           61.74           83.78                                                                                                                                                                                                                                                                                                                                                                 | 85.04<br>AdaBu<br>58.8<br>59.7<br>73.4<br>93.2<br>94.2<br>71.0<br>86.3<br>64.0<br>72.2<br>82.1<br>79.5<br>75.5<br>84.5<br>90.5<br>86.0<br>96.0<br>97.0<br>94.2<br>61.7<br>85.1<br>85.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 86.33           oost         el           5         -           3         -           9         -           6         -           99         -           6         -           99         -           6         -           2         -           8         -           9         -           6         -           2         -           4         -           9         -           5         -           4         -           9         -                                                                                                                                                                                                                                                                                                                             | 80.11           Bagging         80.55           90.71         71.82           93.51         98.52           76.71         85.36           57.29         73.14           83.96         83.98           84.37         86.00           93.60         89.40           95.87         96.31           82.47         58.14                                                                                                                                                                                                                                   | 79.34           SVI           Bagging           71.9           76.99           72.03           93.46           96.72           77.47           83.63           57.48           73.53           84.49           83.67           82.96           85.81           93.64           95.33           95.87           82.65           60.00           85.14                                                                                                                                                                                                                   | 79.12           M           Single           70.35           81.86           69.58           93.52           95.36           77.34           83.33           56.07           72.88           84.16           82.65           84.07           85.16           93.58           88.60           96.00           95.56           82.35           58.26           86.49                                                                                                                                                                                     | 80.91           AdaBoost           65.93           82.74           69.58           94.50           95.36           77.34           84.82           57.01           73.86           84.82           82.31           84.07           81.29           94.99           88.60           98.00           97.18           82.34           62.03           83.78                                                                                                                                                                                 |
| DATASET /<br>METHOD<br>arrhythmia<br>audiology<br>breast-cancer<br>car<br>dermatology<br>diabetes<br>ecoli<br>glass<br>haberman<br>heart-c<br>heart-h<br>heart-c<br>heart-h<br>heart-statlog<br>hepatitis<br>hypothyroid<br>ionosphere<br>iris<br>kr-vs-kp<br>letter<br>liver-disorders<br>lymph<br>nursery<br>page-blocks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 88.37           eBagging           60.97           78.76           77.52           93.82           96.89           78.35           85.24           75.65           76.21           82.00           83.03           92.90           89.77           96.40           96.44           96.89           73.13           86.15           97.95           96.73                                                                                                                                                                 | 85.66           Bagging           58.41           59.73           74.48           92.53           96.17           73.57           86.90           66.36           73.20           82.51           83.33           78.15           83.23           93.05           84.90           96.67           95.18           94.44           62.90           84.46           97.52           95.34                                                                                                                                                                 | 83.76           Single           58.85           56.19           73.43           93.29           95.63           71.09           86.31           64.02           73.53           83.50           82.31           81.11           84.52           93.08           85.47           96.67           94.96           94.25           61.74           83.78           98.36           98.36           95.05                                                                                                                                                                                                                                                                                                                               | 85.04           AdaBo           58.8           59.7           73.4           93.2           94.2           71.0           86.3           64.0           72.2           82.1           79.5           84.5           90.5           86.0           97.0           94.2           61.7           85.1           98.4           94.9           94.9                                                                                                                                                                                                                                                                                                             | 86.33           oost         el           5         -           3         -           99         -           66         -           99         -           66         -           22         -           8         -           99         -           66         -           22         -           8         -           99         -           66         -           2         -           8         -           99         -           55         -           4         -           99         -           88         -                                                                                                                                                                                                                                               | 80.11           Bagging         80.55           80.55         90.71           71.82         93.51           98.52         76.71           85.36         57.29           73.14         83.96           83.98         84.37           86.00         93.60           99.40         95.87           96.31         82.47           58.14         90.27           93.08         93.06                                                                                                                                                                       | 79.34           SVI           Bagging           71.9           76.99           72.03           93.46           96.72           77.47           83.63           57.48           73.53           84.49           83.67           82.96           85.81           93.64           89.46           95.87           82.65           60.00           85.14           93.60                                                                                                                                                                                                   | 79.12           Single           70.35           81.86           69.58           93.52           95.36           77.34           83.33           56.07           72.88           84.16           82.65           84.07           85.16           93.58           88.60           96.00           95.56           82.35           58.26           86.49           93.09           92.93                                                                                                                                                                 | 80.91           AdaBoost           65.93           82.74           69.58           94.50           95.36           77.34           84.82           57.01           73.86           84.82           82.31           84.07           81.29           94.99           88.60           98.00           97.18           82.34           62.03           83.78           93.07           92.93                                                                                                                                                 |
| DATASET /<br>METHOD<br>arrhythmia<br>audiology<br>breast-cancer<br>car<br>dermatology<br>diabetes<br>ecoli<br>glass<br>haberman<br>heart-c<br>heart-h<br>heart-statlog<br>hepatitis<br>hypothyroid<br>ionosphere<br>iris<br>kr-vs-kp<br>letter<br>liver-disorders<br>lymph<br>nursery<br>page-blocks<br>segment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 88.37           eBagging           60.97           78.76           77.52           93.82           96.89           78.35           85.24           75.65           76.21           82.00           83.03           92.90           89.77           96.40           96.49           73.13           86.15           97.95           96.73           97.45                                                                                                                                                                 | 85.66           Bagging           58.41           59.73           74.48           92.53           96.17           73.57           86.90           66.36           73.27           88.41           59.73           74.48           92.53           96.17           73.57           86.90           66.36           73.20           82.51           83.33           78.15           83.23           93.05           84.90           96.67           95.18           94.44           62.90           84.46           97.52           95.34           94.37 | 83.76           kNN           Single           58.85           56.19           73.43           93.29           95.63           71.09           86.31           64.02           73.53           83.50           82.31           81.11           84.52           93.08           85.47           96.67           94.96           94.25           61.74           83.76           95.05           94.46                                                                                                                                                                                                                                                                                                                                 | 85.04           AdaBi           58.8           59.7           73.4           93.2           94.2           71.0           86.3           64.0           77.5           75.5           90.5           84.5           90.0           96.0           96.0           97.0           97.1           84.5           90.5           84.5           90.5           84.5           90.5           84.5           90.5           84.5           90.5           84.5           90.5           84.5           90.5           84.5           90.5           84.5           90.5           84.5           97.0           98.4           94.4           94.4           94.4 | 86.33           oost         el           5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 80.11           Bagging         80.55           90.71         71.82           93.51         98.52           76.71         85.36           57.29         73.14           83.96         83.96           83.96         83.98           84.37         86.00           93.60         89.40           95.87         96.31           82.47         58.14           90.27         93.08           93.06         92.66                                                                                                                                         | 79.34           SVI           Bagging           71.9           76.99           72.03           93.46           96.72           77.47           83.63           57.48           73.53           84.49           83.67           82.96           85.81           93.64           95.87           82.65           60.00           85.14           93.60           93.60                                                                                                                                                                                                   | 79.12           M           Single           70.35           81.86           69.58           93.52           95.36           77.34           83.33           56.07           72.88           84.16           82.65           84.07           85.16           93.58           88.60           96.00           95.56           82.35           58.26           86.49           93.09           92.93           93.07                                                                                                                                     | 80.91           AdaBoost           65.93           82.74           69.58           94.50           95.36           77.34           84.82           57.01           73.86           84.82           82.31           84.07           81.29           94.99           88.60           98.00           97.18           82.34           62.03           83.78           93.07           92.93           93.29                                                                                                                                 |
| DATASET /<br>METHOD<br>arrhythmia<br>audiology<br>breast-cancer<br>car<br>dermatology<br>diabetes<br>ecoli<br>glass<br>haberman<br>heart-a<br>heart-h<br>heart-h<br>heart-h<br>heart-h<br>heart-h<br>heart-h<br>heart-h<br>heart-h<br>heart-k<br>heart-h<br>heart-k<br>heart-h<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>heart-k<br>hear | 88.37           eBagging           60.97           78.76           77.52           93.82           96.89           78.35           85.24           75.65           76.21           82.77           85.20           83.03           92.90           89.77           96.40           96.41           96.89           73.13           86.15           97.95           96.73           97.45           96.65                                                                                                                 | 85.66<br><b>Bagging</b><br>58.41<br>59.73<br>74.48<br>92.53<br>96.17<br>73.57<br>86.90<br>66.36<br>73.20<br>82.51<br>83.33<br>78.15<br>83.23<br>93.05<br>84.90<br>96.67<br>95.18<br>94.44<br>62.90<br>84.46<br>97.52<br>95.34<br>94.37<br>95.94                                                                                                                                                                                                                                                                                                         | 83.76           KNN           Single           58.85           56.19           73.43           93.29           95.63           71.09           86.31           64.02           73.53           83.50           82.31           81.11           84.52           93.08           85.47           96.67           94.96           94.25           61.74           83.78           98.36           95.05           94.46           96.00                                                                                                                                                                                                                                                                                                 | 85.04           AdaBo           58.8           59.7           73.4           93.2           94.2           71.0           86.3           64.0           72.2           82.1           79.5           75.5           84.5           90.5           86.0           96.0           97.0           94.2           61.7           85.1           98.4           94.4           95.6                                                                                                                                                                                                                                                                               | 86.33           oost         el           5         -           3         -           9         -           6         -           9         -           6         -           2         -           8         -           9         -           6         -           2         -           4         -           9         -           6         -           9         -           6         -           9         -           6         -           9         -           6         -           9         -           5         -           4         -           9         -           5         -           4         -           9         -           8         -           6         -           8         -                                                       | 80.11           Bagging         80.55           80.55         90.71           71.82         93.51           98.52         76.71           85.36         57.29           73.14         83.96           83.98         84.37           86.00         93.60           89.40         95.87           96.31         82.47           58.14         90.27           93.08         93.06           92.66         94.09                                                                                                                                         | 79.34           SVI           Bagging         71.9           76.99         72.03           93.46         96.72           77.47         83.63           57.48         73.53           84.49         83.67           82.96         85.81           93.64         95.33           95.87         82.65           60.00         85.14           93.07         93.60           92.86         93.93                                                                                                                                                                           | 79.12           Single           70.35           81.86           69.58           93.52           95.36           77.34           83.33           56.07           72.88           84.16           82.65           84.07           85.16           93.58           86.00           96.00           95.56           82.35           58.26           86.49           93.09           92.93           93.07           93.88                                                                                                                                 | 80.91           AdaBoost           65.93           82.74           69.58           94.50           95.36           77.34           84.82           57.01           73.86           84.82           82.31           84.07           81.29           94.99           88.60           98.00           97.18           82.34           62.03           83.78           93.07           92.93           93.29           94.41                                                                                                                 |
| DATASET /<br>METHOD<br>arrhythmia<br>audiology<br>breast-cancer<br>car<br>dermatology<br>diabetes<br>ecoli<br>glass<br>haberman<br>heart-c<br>heart-c<br>heart-h<br>heart-statlog<br>hepatitis<br>hypothyroid<br>ionosphere<br>iris<br>kr-vs-kp<br>letter<br>liver-disorders<br>lymph<br>nursery<br>page-blocks<br>segment<br>sick<br>sonar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 88.37           eBagging           60.97           78.76           77.52           93.82           96.89           78.35           85.24           75.65           76.21           82.77           85.20           82.00           83.03           92.90           89.77           96.40           96.44           96.89           73.13           86.15           97.95           96.73           97.45           96.65           88.89                                                                                 | 85.66<br><b>Bagging</b><br>58.41<br>59.73<br>74.48<br>92.53<br>96.17<br>73.57<br>86.90<br>66.36<br>73.20<br>82.51<br>83.33<br>78.15<br>83.23<br>93.05<br>84.90<br>96.67<br>95.18<br>94.44<br>62.90<br>84.46<br>97.52<br>95.34<br>94.37<br>95.94<br>75.48                                                                                                                                                                                                                                                                                                | 83.76           kNN           Single           58.85           56.19           73.43           93.29           95.63           71.09           86.31           64.02           73.53           83.50           82.31           81.11           84.52           93.08           85.47           96.67           94.96           94.25           61.74           83.78           98.36           95.05           94.46           96.00           79.33                                                                                                                                                                                                                                                                                 | 85.04           AdaBa           58.8           59.7           73.4           93.2           94.2           771.0           86.3           64.0           72.2           82.1           75.5           84.5           90.5           86.0           96.0           97.0           94.2           61.7           85.1           98.4           94.9           94.4           95.6           83.1                                                                                                                                                                                                                                                               | 86.33           oost         el           5         -           3         -           9         -           6         -           99         -           66         -           99         -           66         -           22         -           8         -           99         -           66         -           22         -           8         -           99         -           66         -           99         -           55         -           4         -           99         -           55         -           4         -           99         -           66         -           88         -           7         -                                                                                                                              | 80.11           Bagging         80.55           80.55         90.71           71.82         93.51           98.52         76.71           85.36         57.29           77.3.14         83.96           83.98         84.37           86.00         93.60           89.40         95.87           96.51         82.47           58.14         90.27           93.06         92.66           92.66         94.09           82.40         94.09                                                                                                         | 79.34           SVI           Bagging         71.9           76.99         72.03           93.46         96.72           97.47         83.63           57.48         73.53           84.49         83.67           85.81         93.64           89.46         95.33           95.87         82.65           60.00         85.14           93.07         93.60           92.86         93.93           78.37         78.37                                                                                                                                             | 79.12           Single           70.35           81.86           69.58           93.52           95.36           77.34           83.33           56.07           72.88           84.16           82.65           84.07           85.16           93.58           88.60           96.00           95.56           82.35           58.26           86.49           93.07           93.88           75.96                                                                                                                                                 | 80.91           AdaBoost           65.93           82.74           69.58           94.50           95.36           77.34           84.82           \$7.01           73.86           84.82           82.31           84.07           81.29           94.99           88.60           98.00           97.18           82.34           62.03           83.78           93.07           92.93           93.29           94.41           75.96                                                                                                |
| DATASET /<br>METHOD<br>arrhythmia<br>audiology<br>breast-cancer<br>car<br>dermatology<br>diabetes<br>ecoli<br>glass<br>haberman<br>heart-c<br>heart-n<br>heart-c<br>heart-h<br>heart-stalog<br>hepatitis<br>hypothyroid<br>ionosphere<br>iris<br>kr-vs-kp<br>letter<br>liver-disorders<br>lymph<br>nursery<br>page-blocks<br>segment<br>sick<br>sonar<br>soybean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 88.37           eBagging           60.97           78.76           77.52           93.82           96.89           78.35           85.24           75.65           76.21           82.77           85.20           82.00           83.03           92.90           96.40           96.44           96.89           73.13           86.15           97.95           96.73           97.45           96.65           88.89           92.59                                                                                 | 85.66           Bagging           58.41           59.73           74.48           92.53           96.17           73.57           86.90           66.36           73.20           82.51           83.33           78.15           83.23           93.05           84.90           96.67           95.18           94.44           62.90           84.46           97.52           95.34           94.37           95.94           75.48           88.73                                                                                                 | 83.76           KNN           Single           58.85           56.19           73.43           93.29           95.63           71.09           86.31           64.02           73.53           83.50           82.31           81.11           84.52           93.08           85.47           96.67           94.96           94.25           61.74           83.78           98.36           95.05           94.46           96.07           94.46           96.30           97.05           88.58                                                                                                                                                                                                                                 | 85.04           AdaBo           58.8           59.7           73.4           93.2           94.2           71.0           86.3           64.0           72.2           82.1           79.5           84.5           90.5           86.0           97.0           94.2           61.7           85.1           98.4           94.9           94.4           95.6           83.1           88.8                                                                                                                                                                                                                                                                | 86.33           oost         el           5         -           3         -           99         -           66         -           99         -           66         -           22         -           8         -           99         -           66         -           22         -           8         -           99         -           66         -           99         -           55         -           4         -           99         -           55         -           4         -           99         -           8         -           66         -           77         -                                                                                                                                                                          | 80.11           sagging         80.55           90.71         71.82           93.51         98.52           76.71         85.36           57.29         73.14           83.96         83.98           84.37         86.00           996.31         96.31           82.47         58.14           90.27         93.08           93.06         92.66           94.09         98.240           95.87         95.61                                                                                                                                       | 79.34           SVI           Bagging           71.9           76.99           72.03           93.46           96.72           77.47           83.63           57.48           73.53           84.49           83.67           82.96           93.64           85.81           93.64           85.81           95.87           82.65           60.00           85.14           93.60           92.86           93.93           78.37           92.39                                                                                                                   | 79.12           Single           70.35           81.86           69.58           93.52           95.36           77.34           83.33           56.07           72.88           84.16           82.65           84.07           85.16           93.58           88.60           96.00           95.56           82.35           58.26           86.49           93.09           92.93           93.07           93.88           75.96           93.70                                                                                                 | 80.91           AdaBoost           65.93           82.74           69.58           94.50           95.36           77.34           84.82           57.01           73.86           84.82           82.31           84.07           81.29           94.99           88.60           98.00           97.18           82.34           62.03           83.78           93.07           92.93           93.29           94.41           75.96           92.68                                                                                 |
| DATASET /<br>METHOD<br>arrhythmia<br>audiology<br>breast-cancer<br>car<br>dermatology<br>diabetes<br>ecoli<br>glass<br>haberman<br>heart-c<br>heart-h<br>heart-stalog<br>hepatitis<br>hypothyroid<br>ionosphere<br>iris<br>kr-vs-kp<br>letter<br>liver-disorders<br>Jymph<br>nursery<br>page-blocks<br>segment<br>sick<br>sonar<br>soybean<br>spambase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 88.37           eBagging           60.97           78.76           77.52           93.82           96.89           78.35           85.24           75.65           76.21           82.00           83.03           92.90           89.77           96.40           96.42           96.89           73.13           86.15           97.95           96.73           97.45           96.65           88.89           92.59           92.82                                                                                 | 85.66           Bagging           58.41           59.73           74.48           92.53           96.17           73.57           86.90           66.36           73.27           83.33           78.15           83.23           93.05           84.90           96.67           95.18           94.44           62.90           84.46           97.52           95.34           94.37           95.94           75.48           88.73           90.07                                                                                                 | 83.76           KNN           Single           58.85           56.19           73.43           93.29           95.63           71.09           86.31           64.02           73.53           83.50           82.31           81.11           84.52           93.08           85.47           96.67           94.96           94.25           61.74           83.70           98.36           95.05           94.46           96.60           94.46           95.05           88.85           88.85                                                                                                                                                                                                                                 | 85.04           AdaBi           58.8           59.7           73.4           93.2           94.2           71.0           86.3           64.0           72.2           82.1           79.5           75.5           90.5           84.5           90.5           84.6           94.2           61.7           85.1           98.4           94.9           94.4           95.6           83.1           88.8           85.9                                                                                                                                                                                                                                  | 86.33           ed           sost         el           5         -           3         -           9         -           6         -           99         -           66         -           22         -           24         -           25         -           44         -           99         -           55         -           44         -           99         -           66         -           7         -           7         -           77         -           78         -                                                                                                                                                                                                                                                                               | 80.11           Bagging         80.55           90.71         71.82           93.51         98.52           76.71         85.36           57.29         73.14           83.96         83.96           84.37         86.00           93.60         89.40           95.87         96.31           82.47         58.14           90.27         93.08           93.06         92.66           94.09         82.40           95.40         95.40                                                                                                           | 79.34           Bagging           71.9           76.99           72.03           93.46           96.72           77.47           83.63           57.48           73.53           84.49           83.67           82.96           85.81           93.64           95.33           95.87           82.65           60.00           85.14           93.60           92.86           93.93           78.37           92.39           91.02                                                                                                                                 | 79.12           M           Single           70.35           81.86           69.58           93.52           95.36           77.34           83.33           56.07           72.88           84.16           82.65           84.07           95.56           93.58           88.60           96.00           95.56           82.35           58.26           86.49           93.07           93.88           75.96           93.70           90.42                                                                                                     | 80.91           AdaBoost           65.93           82.74           69.58           94.50           95.36           77.34           84.82           57.01           73.86           84.82           82.31           84.07           81.29           94.99           88.60           98.00           97.18           82.34           62.03           83.78           93.07           92.93           94.41           75.96           92.68           90.76                                                                                 |
| DATASET /<br>METHOD<br>arrhythmia<br>audiology<br>breast-cancer<br>car<br>dermatology<br>diabetes<br>ecoli<br>glass<br>haberman<br>heart-c<br>heart-h<br>heart-h<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-t                                                                                  | 88.37           eBagging           60.97           78.76           77.52           93.82           96.89           78.35           85.24           75.65           76.21           82.77           85.20           83.03           92.90           89.77           96.40           96.44           96.89           73.13           86.15           97.95           96.73           97.45           96.65           88.89           92.59           92.82           69.93                                                 | 85.66<br><b>Bagging</b><br>58.41<br>59.73<br>74.48<br>92.53<br>96.17<br>73.57<br>86.90<br>66.36<br>73.20<br>82.51<br>83.33<br>78.15<br>83.23<br>93.05<br>84.90<br>96.67<br>95.18<br>94.44<br>62.90<br>84.46<br>97.52<br>95.34<br>94.37<br>95.94<br>75.48<br>88.73<br>90.07<br>53.64                                                                                                                                                                                                                                                                     | 83.76           kNN           Single           58.85           56.19           73.43           93.29           95.63           71.09           86.31           64.02           73.53           83.50           82.31           81.11           84.52           93.08           85.47           96.67           94.96           94.25           61.74           83.78           98.36           95.05           94.46           96.00           79.33           88.58           51.66                                                                                                                                                                                                                                                 | 85.04           AdaBa           58.8           59.7           73.4           93.2           94.2           71.0           86.3           64.0           72.2           82.1           79.5           75.5           84.5           90.5           76.0           96.0           97.0           94.2           61.7           85.1           98.4           94.5           94.4           95.6           83.1           88.8           85.9           51.6                                                                                                                                                                                                    | 86.33           oost         el           5         -           3         -           9         -           6         -           9         -           6         -           22         -           8         -           9         -           6         -           99         -           6         -           99         -           6         -           99         -           6         -           99         -           6         -           99         -           6         -           8         -           77         -           88         -           66         -                                                                                                                                                                                  | 80.11           Bagging         80.55           80.55         90.71           71.82         93.51           98.52         76.71           85.36         57.29           73.14         83.96           83.98         84.37           86.00         93.60           89.40         95.87           96.31         82.47           58.14         90.27           93.08         93.06           92.66         94.09           82.40         95.40           90.60         52.05                                                                             | 79.34           SVI           Bagging         71.9           76.99         72.03           93.46         96.72           77.47         83.63           57.48         73.53           84.49         83.67           82.96         85.81           93.64         89.46           95.33         95.87           82.65         60.00           85.14         93.07           93.60         92.86           93.93         78.37           92.86         93.93           78.37         92.39           91.02         54.97                                                   | 79.12           Single           70.35           81.86           69.58           93.52           95.36           77.34           83.33           56.07           72.88           84.16           82.65           84.07           85.16           93.58           86.00           96.00           95.56           82.35           58.26           86.49           93.09           92.93           93.07           93.88           75.96           93.70           90.42           52.98                                                                 | 80.91           AdaBoost           65.93           82.74           69.58           94.50           95.36           77.34           84.82           \$57.01           73.86           84.82           82.31           84.07           81.29           94.99           98.60           97.18           82.34           62.03           83.78           93.07           92.93           93.29           94.41           75.96           92.68           90.76           52.98                                                               |
| DATASET /<br>METHOD<br>arrhythmia<br>audiology<br>breast-cancer<br>car<br>dermatology<br>diabetes<br>ecoli<br>glass<br>haberman<br>heart-c<br>heart-c<br>heart-h<br>heart-c<br>heart-c<br>heart-t<br>heart-c<br>heart-t<br>heart-stallog<br>hepatitis<br>hypothyroid<br>ionosphere<br>iris<br>kr-vs-kp<br>letter<br>liver-disorders<br>lymph<br>nursery<br>page-blocks<br>segment<br>sick<br>sonar<br>soybean<br>spambase<br>tae<br>tic-tac-toe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 88.37           eBagging           60.97           78.76           77.52           93.82           96.89           78.35           85.24           75.65           76.21           82.77           85.20           82.00           83.03           92.90           89.77           96.40           96.41           96.89           73.13           86.15           97.95           96.65           88.89           92.59           92.82           69.93           98.16                                                 | 85.66           Bagging<br>58.41           59.73           74.48           92.53           96.17           73.57           86.90           66.36           73.20           82.51           83.33           78.15           83.23           93.05           84.90           96.67           95.18           94.44           62.90           84.46           97.52           95.34           94.37           95.94           75.48           88.73           90.07           53.64           98.33                                                        | 83.76           kNN           Single           58.85           56.19           73.43           93.29           95.63           71.09           86.31           64.02           73.53           83.50           82.31           81.11           84.52           93.08           85.47           96.67           94.96           94.25           61.74           83.78           98.36           95.05           94.46           96.00           79.33           88.58           88.85           95.1.66           98.85                                                                                                                                                                                                               | 85.04           AdaBa           58.8           59.7           73.4           93.2           94.2           71.0           86.3           64.0           72.2           82.1           75.5           84.5           90.5           86.0           97.0           94.2           61.7           85.1           98.4           95.6           83.1           88.8           95.9           51.6           98.6                                                                                                                                                                                                                                                 | 86.33           oost         el           5         -           3         -           9         -           6         -           99         -           6         -           99         -           6         -           2         -           8         -           9         -           6         -           9         -           6         -           9         -           6         -           9         -           6         -           8         -           7         -           8         -           6         -           44         -           9         -           6         -           7         -           8         -           6         -           44         -                                                                         | 80.11           Bagging         80.55           80.55         90.71           71.82         93.51           98.52         76.71           85.36         57.29           77.314         83.96           83.98         84.37           86.00         93.60           89.40         95.87           995.87         995.87           99.587         99.27           93.06         92.66           92.40         92.40           92.40         95.40           95.40         95.40           95.40         95.43                                           | 79.34           SVI           Bagging         71.9           76.99         72.03           93.46         96.72           97.47         83.63           57.48         83.63           57.48         83.67           82.96         85.81           93.64         89.46           95.87         82.65           60.00         85.14           93.07         93.60           92.86         93.93           78.37         92.39           91.02         54.97           98.33         98.33                                                                                 | 79.12           Single           70.35           81.86           69.58           93.52           95.36           77.34           83.33           56.07           72.88           84.16           82.65           84.07           85.16           93.58           88.60           96.00           95.56           82.35           58.26           86.49           93.09           92.93           93.07           93.88           75.96           93.70           90.42           52.98           98.33                                                 | 80.91           AdaBoost           65.93           82.74           69.58           94.50           95.36           77.34           84.82           57.01           73.86           84.82           82.31           84.07           81.29           94.99           88.60           98.00           97.18           82.34           62.03           83.78           93.07           92.93           93.29           94.41           75.96           92.68           90.76           52.98           98.12                                 |
| DATASET /<br>METHOD<br>arrhythmia<br>audiology<br>breast-cancer<br>car<br>dermatology<br>diabetes<br>ecoli<br>glass<br>haberman<br>heart-c<br>heart-n<br>heart-c<br>heart-h<br>heart-c<br>heart-h<br>heart-c<br>heart-h<br>heart-stalog<br>hepatitis<br>hypothyroid<br>ionosphere<br>iris<br>kr-vs-kp<br>letter<br>liver-disorders<br>lymph<br>nursery<br>page-blocks<br>segment<br>sick<br>sonar<br>sopbean<br>spambase<br>tae<br>tic-tac-toe<br>vehicle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 88.37           eBagging           60.97           78.76           77.52           93.82           96.89           78.35           85.24           75.65           76.21           82.77           85.20           82.00           83.03           92.90           89.77           96.40           96.41           96.89           73.13           86.15           97.95           96.73           97.45           96.65           88.89           92.59           92.82           69.93           98.16           76.94 | 85.66           Bagging<br>58.41           59.73           74.48           92.53           96.17           73.57           86.90           66.36           73.20           82.51           83.33           78.15           83.23           93.05           84.90           96.67           95.18           94.44           62.90           84.46           97.52           95.34           94.37           95.94           75.48           88.73           90.07           53.64           98.33           70.09                                        | 83.76           KNN           Single           58.85           56.19           73.43           93.29           95.63           71.09           86.31           64.02           73.53           83.50           82.31           81.11           84.52           93.08           85.47           96.67           94.96           94.25           61.74           83.78           98.36           95.05           94.46           96.50           94.46           96.51           97.33           88.58           88.58           98.56           98.58                                                                                                                                                                                 | 85.04           AdaBo           58.8           59.7           73.4           93.2           94.2           71.0           86.3           64.0           72.2           82.1           79.5           84.5           90.5           86.0           97.0           94.2           61.7           85.1           98.4           94.2           61.7           85.1           98.4           94.2           61.7           85.1           98.4           94.2           61.7           85.1           98.4           94.2           61.7           88.8           95.6           83.1           88.8           85.9           51.6           98.6           70.2 | 86.33           oost         el           5         -           3         -           99         -           66         -           99         -           66         -           99         -           66         -           22         -           8         -           99         -           66         -           22         -           8         -           99         -           66         -           99         -           55         -           44         -           99         -           88         -           77         -           78         -           66         -           44         -           10         -                                                                                                                         | 80.11           Bagging         80.55           90.71         71.82           93.51         98.52           76.71         85.36           57.29         73.14           83.96         83.98           84.37         86.00           996.31         96.31           82.47         58.14           90.27         93.06           93.06         93.06           92.66         94.09           92.66         94.09           92.60         52.05           98.33         74.81                                                                            | 79.34           Bagging           71.9           76.99           72.03           93.46           96.72           77.47           83.63           57.48           83.63           57.48           83.67           82.96           85.81           93.64           89.46           95.87           82.65           60.00           85.14           93.60           92.86           93.93           93.97           93.60           92.39           91.02           54.97           98.33           75.30                                                                 | 79.12           Single           70.35           81.86           69.58           93.52           95.36           77.34           83.33           56.07           72.88           84.16           82.65           84.07           85.16           93.58           88.60           96.00           95.56           82.35           58.26           86.49           93.09           92.93           93.07           93.88           75.96           93.70           90.42           52.98           98.33           74.59                                 | 80.91           AdaBoost           65.93           82.74           69.58           94.50           95.36           77.34           84.82           57.01           73.86           84.82           82.31           84.07           81.29           94.99           88.60           98.00           97.18           82.34           62.03           83.78           93.07           92.93           93.29           94.41           75.96           92.68           90.76           52.98           98.12           74.35                 |
| DATASET /<br>METHOD<br>arrhythmia<br>audiology<br>breast-cancer<br>car<br>dermatology<br>diabetes<br>ecoli<br>glass<br>haberman<br>heart-c<br>heart-h<br>heart-statlog<br>hepatitis<br>hypothyroid<br>ionosphere<br>iris<br>kr-vs-kp<br>letter<br>liver-disorders<br>lymph<br>nursery<br>page-blocks<br>segment<br>sick<br>sonar<br>soybean<br>spambase<br>tae<br>tic-tac-toe<br>vehicle<br>wine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 88.37           eBagging           60.97           78.76           77.52           93.82           96.89           78.35           85.24           75.65           76.21           82.00           83.03           92.90           89.77           96.40           96.43           96.89           73.13           86.15           97.95           96.73           97.45           96.65           88.89           92.59           92.59           92.82           69.93           98.16           76.94           97.58 | 85.66           Bagging           58.41           59.73           74.48           92.53           96.17           73.57           86.90           66.36           73.20           82.51           83.33           78.15           83.23           93.05           84.90           96.67           95.18           94.44           62.90           84.46           97.52           95.34           94.37           95.94           75.48           88.73           90.07           53.64           98.33           70.09           96.07                 | 83.76           KNN           Single           58.85           56.19           73.43           93.29           95.63           71.09           86.31           64.02           73.53           83.50           82.31           81.11           84.52           93.08           85.47           96.67           94.96           94.25           61.74           83.78           98.36           95.05           94.46           96.60           94.46           95.05           94.46           95.05           94.46           95.05           94.46           95.05           94.46           95.05           94.46           96.60           98.85           88.85           51.66           98.85           70.21           94.94 | 85.04           AdaBo           58.8           59.7           73.4           93.2           94.2           71.0           86.3           64.0           72.2           82.1           79.5           75.5           90.5           84.5           90.0           96.0           97.0           94.2           61.7           85.1           98.4           94.9           94.4           95.6           83.1           88.8           85.9           51.6           98.4           98.5           91.6           94.3                                                                                                                                        | 86.33           oost         el           5         -           3         -           9         -           6         -           99         -           6         -           99         -           2         -           8         -           99         -           6         -           2         -           2         -           2         -           2         -           4         -           99         -           5         -           4         -           99         -           5         -           4         -           99         -           5         -           4         -           99         -           6         -           7         -           77         -           8         -           66         -           11         - | 80.11           Bagging           80.55           90.71           71.82           93.51           98.52           76.71           85.36           57.29           73.14           83.96           83.98           84.37           86.00           93.60           89.40           95.87           96.31           82.47           58.14           90.27           93.06           92.66           94.09           82.40           95.40           95.40           95.41           95.42           95.43           98.33           74.81               | 79.34           Bagging           71.9           76.99           72.03           93.46           96.72           77.47           83.63           57.48           73.53           84.49           83.67           82.85           93.64           95.87           93.64           93.64           93.64           95.87           95.87           95.87           95.87           95.87           95.87           95.87           92.86           93.93           91.02           54.97           98.33           75.30           98.31                                 | 79.12           M           Single           70.35           81.86           69.58           93.52           95.36           77.34           83.33           56.07           72.88           84.16           82.65           84.07           85.16           93.58           88.60           96.00           95.56           82.35           58.26           86.49           93.07           93.88           75.96           93.70           90.42           52.98           98.31                                                                     | 80.91           AdaBoost           65.93           82.74           69.58           94.50           95.36           77.34           84.82           57.01           73.86           84.82           82.31           84.07           81.29           94.99           88.60           98.00           97.18           82.34           62.03           83.78           93.07           92.93           94.41           75.96           92.68           90.76           52.98           98.12           74.35           98.31                 |
| DATASET /<br>METHOD<br>arrhythmia<br>audiology<br>breast-cancer<br>car<br>dermatology<br>diabetes<br>ecoli<br>glass<br>haberman<br>heart-c<br>heart-h<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>heart-th<br>letter<br>liver-disorders<br>lymph<br>nursery<br>page-blocks<br>segment<br>sick<br>sonar<br>soybean<br>spambase<br>tae<br>tic-tac-toe<br>vehicle<br>wine<br>waveform-5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 88.37           eBagging           60.97           78.76           77.52           93.82           96.89           78.35           85.24           75.65           76.21           82.77           85.20           82.00           83.03           92.90           89.77           96.40           96.44           96.89           73.13           86.15           97.95           96.65           88.89           92.59           92.82           69.93           98.16           76.94           97.58           83.41 | 85.66           Bagging           58.41           59.73           74.48           92.53           96.17           73.57           86.90           66.36           73.20           82.51           83.33           93.05           84.90           96.67           95.18           94.44           62.90           84.46           97.52           95.34           94.37           95.94           75.48           88.73           90.07           53.64           98.33           70.09           96.07           81.94                                 | 83.76           KNN           Single           58.85           56.19           73.43           93.29           95.63           71.09           86.31           64.02           73.53           83.50           82.31           81.11           84.52           93.08           85.47           96.67           94.96           94.25           61.74           83.78           98.36           95.05           94.46           96.00           79.33           88.58           51.66           98.85           70.21           94.94           81.34                                                                                                                                                                                 | 85.04           AdaBa           58.8           59.7           73.4           93.2           94.2           71.0           86.3           64.0           72.2           82.1           79.5           84.5           90.5           86.0           96.0           97.0           94.2           61.7           85.1           98.4           94.5           94.4           95.6           83.1           88.8           85.9           51.1           98.6           97.0           94.3           81.3                                                                                                                                                       | 86.33           oost         el           5         -           3         -           9         -           6         -           99         -           22         -           23         -           24         -           25         -           44         -           99         -           66         -           99         -           66         -           99         -           66         -           99         -           66         -           77         -           88         -           66         -           77         -           88         -           66         -           44         -           99         -           88         -           66         -           44         -           88         -           44         -      | 80.11           Bagging         80.55           80.55         90.71           71.82         93.51           99.51         98.52           76.71         83.36           57.29         73.14           83.96         83.98           84.37         86.00           93.60         89.40           95.87         96.31           82.47         58.14           90.27         93.08           93.06         92.66           94.09         82.40           95.40         90.60           52.05         98.33           74.81         98.43           86.85 | 79.34           SVI           Bagging         71.9           76.99         72.03           93.46         96.72           97.47         83.63           57.48         83.67           82.96         85.81           93.64         95.33           95.87         82.65           60.00         85.14           93.07         93.60           92.86         93.93           78.37         92.39           91.02         54.97           98.33         75.30           98.31         86.26                                                                                 | 79.12           Single           70.35           81.86           69.58           93.52           95.36           77.34           83.33           56.07           72.88           84.16           82.65           84.07           85.16           93.58           86.00           96.00           95.56           82.35           58.26           86.49           93.09           92.93           93.07           93.88           75.96           93.70           90.42           52.98           98.33           74.59           98.31           86.70 | 80.91           AdaBoost           65.93           82.74           69.58           94.50           95.36           77.34           84.82           57.01           73.86           84.82           82.31           84.07           81.29           94.99           98.60           97.18           82.34           62.03           83.78           93.07           92.93           93.29           94.41           75.96           92.68           90.76           52.98           98.12           74.35           98.31           86.68 |
| DATASET /<br>METHOD<br>arrhythmia<br>audiology<br>breast-cancer<br>car<br>dermatology<br>diabetes<br>ecoli<br>glass<br>haberman<br>heart-c<br>heart-h<br>heart-statlog<br>hepatitis<br>hypothyroid<br>ionosphere<br>iris<br>kr-vs-kp<br>letter<br>liver-disorders<br>lymph<br>nursery<br>page-blocks<br>segment<br>sick<br>sonar<br>soybean<br>spambase<br>tae<br>tic-tac-toe<br>vehicle<br>wine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 88.37           eBagging           60.97           78.76           77.52           93.82           96.89           78.35           85.24           75.65           76.21           82.00           83.03           92.90           89.77           96.40           96.43           96.89           73.13           86.15           97.95           96.73           97.45           96.65           88.89           92.59           92.59           92.82           69.93           98.16           76.94           97.58 | 85.66           Bagging           58.41           59.73           74.48           92.53           96.17           73.57           86.90           66.36           73.20           82.51           83.33           78.15           83.23           93.05           84.90           96.67           95.18           94.44           62.90           84.46           97.52           95.34           94.37           95.94           75.48           88.73           90.07           53.64           98.33           70.09           96.07                 | 83.76           KNN           Single           58.85           56.19           73.43           93.29           95.63           71.09           86.31           64.02           73.53           83.50           82.31           81.11           84.52           93.08           85.47           96.67           94.96           94.25           61.74           83.78           98.36           95.05           94.46           96.60           94.46           95.05           94.46           95.05           94.46           95.05           94.46           95.05           94.46           95.05           94.46           96.60           98.85           88.85           51.66           98.85           70.21           94.94 | 85.04           AdaBi           58.8           59.7           73.4           93.2           94.2           71.0           86.3           64.0           72.2           82.1           79.5           75.5           90.5           84.5           90.0           96.0           97.0           94.2           61.7           85.1           98.4           94.9           94.4           95.6           83.1           88.8           85.9           51.6           98.6           70.2           94.3                                                                                                                                                       | 86.33           oost         el           5         -           3         -           9         -           6         -           99         -           6         -           99         -           6         -           2         -           8         -           6         -           9         -           6         -           9         -           5         -           4         -           9         -           6         -           7         -           8         -           77         -           8         -           66         -           44         -           77         -           8         -           44         -           77         -                                                                                           | 80.11           Bagging           80.55           90.71           71.82           93.51           98.52           76.71           85.36           57.29           73.14           83.96           83.98           84.37           86.00           93.60           89.40           95.87           96.31           82.47           58.14           90.27           93.06           92.66           94.09           82.40           95.40           95.40           95.41           95.42           95.43           98.33           74.81               | 79.34           Bagging           71.9           76.99           72.03           93.46           96.72           77.47           83.63           57.48           73.53           84.49           83.67           82.85           93.64           95.87           93.64           93.64           93.64           95.87           95.87           95.87           95.87           95.87           95.87           95.87           92.86           93.93           78.37           92.39           91.02           54.97           98.33           75.30           98.31 | 79.12           M           Single           70.35           81.86           69.58           93.52           95.36           77.34           83.33           56.07           72.88           84.16           82.65           84.07           85.16           93.58           88.60           96.00           95.56           82.35           58.26           86.49           93.07           93.88           75.96           93.70           90.42           52.98           98.31                                                                     | 80.91           AdaBoost           65.93           82.74           69.58           94.50           95.36           77.34           84.82           57.01           73.86           84.82           82.31           84.07           81.29           94.99           88.60           98.00           97.18           82.34           62.03           83.78           93.07           92.93           94.41           75.96           92.68           90.76           52.98           98.12           74.35           98.31                 |

Table 4. Comparison table of the applied classifiers in terms of classification accuracies (%).

Table 4 displays the comparisons of the applied methods (eBagging, single learner, standard Bagging, random forest and AdaBoost) with respect to classification accuracy by separately using C4.5, NB, kNN and SVM as a base learner. Random Forest is only under C4.5 column because it is inducer dependent and the decision tree is employed as a base learner. The results show that eBagging has generally the best average classification accuracies 88.37%, 80.11%, 87.06%, and 85.48%, respectively. The highest classification accuracy for each dataset is shown by bold background. According to the results, eBagging clearly ahead of other methods by outperforming its counterparts in 21, 14, 25 and 13 out of 33 when one of the C4.5, NB, kNN or SVM methods was used as a base learner, respectively. As seen in the results, the performance of standard bagging algorithm, which managed to be the best learner in 1, 5, 2, and 10 out of 33 for the same base learners, is significantly enhanced when the ensemble subspace is constructed with the proposed eBagging algorithm. On the other hand, eBagging also achieved classifying instances more accurately than the most powerful ensemble learning methods, AdaBoost, which is the winner in 9, 11, 2, and 9 out of 33 datasets for the corresponding base learners. Furthermore, Random Forest performs the best among other methods in only one dataset under C4.5 base classifier.

In addition to the results of classification accuracy, it is important to extend experimental work on the pairwise comparisons of the performed algorithms. Table 5 indicates the (win-tie-loss) status of the paired algorithms where each cell is read by looking at the algorithm in the respective row and then in the respective column.

It is clear that eBagging is the winner among others when one of the methods from C4.5, SVM and kNN is used as a base learner in the generation of ensembles. Besides, when NB is used as the classifier of the ensembles, both eBagging and AdaBoost perform equally well for classifying instances.

Table 5. Pairwise comparisons of the applied methods by showing in each cell (wins - ties - loses) between the method in that row and the method in that column for the respective classifier (C4.5, SVM, NB or kNN).

|               | _        |                   |                    |                    |                    |
|---------------|----------|-------------------|--------------------|--------------------|--------------------|
| C4.5          | eBagging | Single            | Bagging            | AdaBoost           | Random Forest      |
| eBagging      |          | <b>31</b> - 0 - 2 | <b>27</b> - 0 - 6  | <b>22</b> - 0 - 11 | <b>27 -</b> 0 - 6  |
| Single        |          |                   | 6 - 2 - <b>25</b>  | 6 - 1 - <b>26</b>  | 11 - 1 - <b>21</b> |
| Bagging       |          |                   |                    | 11 - 2 - <b>20</b> | <b>16</b> - 5 - 12 |
| AdaBoost      |          |                   |                    |                    | <b>24</b> - 2 - 7  |
| Random Forest |          |                   |                    |                    |                    |
| SVM           | eBagging | Single            | Bagging            | AdaBoost           |                    |
| eBagging      |          | <b>24</b> - 1 - 8 | <b>17</b> - 1 - 15 | <b>21</b> - 0 - 12 |                    |
| Single        |          |                   | 10 - 2 - <b>21</b> | 10 - 9 - <b>14</b> |                    |
| Bagging       |          |                   |                    | <b>16</b> - 2 - 15 |                    |
| AdaBoost      |          |                   |                    |                    |                    |
| Random Forest |          |                   |                    |                    |                    |
| NB            | eBagging | Single            | Bagging            | AdaBoost           |                    |
| eBagging      |          | <b>24</b> - 0 - 9 | 25 - 1 - 7         | 15 - 2 - <b>16</b> |                    |
| Single        |          |                   | 11 - 5 - <b>17</b> | 10 - 8 - <b>15</b> |                    |
| Bagging       |          |                   |                    | <b>16</b> - 3 - 14 |                    |
| AdaBoost      |          |                   |                    |                    |                    |
| Random Forest |          |                   |                    |                    |                    |
| kNN           | eBagging | Single            | Bagging            | AdaBoost           |                    |
| eBagging      |          | <b>25</b> - 0 - 8 | <b>28</b> - 0 - 5  | <b>28</b> - 0 - 5  |                    |
| Single        |          |                   | 13 - 2 - <b>18</b> | 12 - <b>13</b> - 8 |                    |
| Bagging       |          |                   |                    | <b>19</b> - 1 - 13 |                    |
| AdaBoost      |          |                   |                    |                    |                    |
| Random Forest |          |                   |                    |                    |                    |

Figure 3 shows average error rates (results from all datasets are averaged) obtained from the pairwise comparisons of the applied algorithms. The calculation of the average error rate can be explained through an example (eBagging vs single classifier): For each dataset, the ratio between the mean error rate of eBagging algorithm and of single classifier when C4.5 is applied are calculated over the 10-fold cross-validation. For instance, in the case of NB algorithm, the classification errors (%) of arrhythmia dataset are 29.58 and 37.61 for eBagging and single classifier, respectively. The ratio of eBagging vs single classifier is calculated as 1 - (37.61 - 29.58) / 37.61 = 0.79. After all of the ratio values for each dataset are computed, their mean value gives the average error rate between

the compared algorithms.



Figure 3. Average error rates of the proposed algorithms in terms of pairwise comparisons.

According to the Figure 3, the base line, y=1, means that the performance of the compared methods is approximately equal in classifying instances. The average error rate below 1 states the enhancement case in which the first method in the legend improves classification performance compared with the second applied algorithm. For example, when SVM is used as a base learner, eBagging obtains average error rates of 0.89, 0.90, and 0.96 compared to the algorithms, Single classifier, bagging and AdaBoost, respectively. There is a noticeable improvement in the experimental results when eBagging is selected as an ensemble strategy for SVM classifier. In the part of C4.5 algorithm, there is also the comparison of eBagging versus Random Forest differently from the comparisons of other base learners. The average error rate is decreased 13.87% when eBagging is applied instead of Random Forest. Apart from this, eBagging provides a visible improvement in the most of the comparisons for all base learners. At the same time, standard bagging algorithm is apparently enhanced by executing eBagging regardless of the choice of the base classifier.

Even though eBagging performs better than AdaBoost in terms of classification accuracy, when NB and C4.5 classifiers are taken as base classifiers of the ensembles (in half of the cases), average enhancement rate reduces below 1. In this case, average error rates are 1.15 and 1.09, respectively, if eBagging applied instead of AdaBoost as an ensemble strategy. It is because that AdaBoost results in great increases in classification accuracy of a number of datasets although eBagging manages to classify much more datasets accurately.

Figure 4 shows the classifiers' average ranks. Initially for each dataset, classifier models are rated interms of their classification accuracies. It is done by giving rank 1 to the method with the highest classification accuracy and raising the rank for each evaluated classifier until assigning rank c to the lowest one for c applied methods. The rank value is given as the mean rank in case of a tie. In the next step, average ranks per classifiers are calculated by taking the mean value of the outputs of 33 datasets. Finally, the obtained mean values of all applied models for each base classifier are again ranked from 1 to c. In Figure 4, the output is given in terms of base classifiers using the ensemble models, eBagging, bagging, random forest (in C4.5 model) and AdaBoost; and using single classifier models. According to the results, when eBagging is performed, it obtains the lowest rank value which means that it attains the best performance among the others.



Figure 4. Average ranks of the methods (eBagging, Bagging, Single Classifier, Random Forest and AdaBoost) using four different base classifiers (SVM, NB, kNN and C4.5).

Another important thing is to apply statistical tests to verify the experimental results and to support decision making process. Therefore two nonparametric tests were applied as Friedman and Quade ranking tests at the significance level of  $\alpha = 0.05$ . Accuracy results in Table 4 were used in each test for each base classifier. The null hypothesis, H<sub>0</sub>, is that the means of the experimental results of different classifiers (eBagging, single classifier, bagging, random forest and AdaBoost) are the same, meaning that all the groups behave similarly. According to the results, the null hypothesis is rejected by both of the statistical tests in other words the results are considered as statistically significant. The obtained pvalues of the tests with the base classifiers C4.5, kNN, NB and SVM are presented in Table 6 by also showing their significance level.

| Base Classifier / |          | Friedman              | Quade     |                       |  |  |  |
|-------------------|----------|-----------------------|-----------|-----------------------|--|--|--|
| Statistical Test  |          | Significance<br>Level | p-value   | Significance<br>Level |  |  |  |
| C4.5              | 0.00001  | Very Strong           | < 0.00001 | Very Strong           |  |  |  |
| KNN               | < 0.0000 | Very Strong           | < 0.00001 | Very Strong           |  |  |  |
| SVM               | 0.03841  | Strong                | 0.00140   | Very Strong           |  |  |  |
| NB                | 0.03182  | Strong                | 0.01458   | Strong                |  |  |  |

Table 6. The number of wins obtained from classification.

In addition to the experiments on the benchmark datasets, evaluations with arficial (synthetic) datasets were also performed. Experiments were categorized with four different aspects:

- a) The effect of the number of dimensions
- b) The impact of the imbalanced data generated using different class weights
- c) The variation when the class separation factor is changed
- d) The effect of the outliers on the performance of learners.

Table 7 (a, b, c, and d) displays the evaluation results (% accuracy) of each factor using 10-fold cross-validation.

|          |       | С     | 4.5          |       |       | SVM      |                 |       |       |       |       |  |  |  |
|----------|-------|-------|--------------|-------|-------|----------|-----------------|-------|-------|-------|-------|--|--|--|
| Method   |       | N     | um of Featur | res   |       | Method   | Num of Features |       |       |       |       |  |  |  |
| Method   | 50    | 100   | 150          | 200   | 250   | Method   | 50              | 100   | 150   | 200   | 250   |  |  |  |
| eBagging | 97.09 | 97.19 | 97.3         | 97.07 | 97.36 | eBagging | 95.23           | 94.84 | 95.23 | 94.39 | 93.37 |  |  |  |
| Bagging  |       |       |              |       |       |          | 95.3            | 93.9  | 92.8  | 91.7  | 91.4  |  |  |  |
| Single   | 94.4  | 93.6  | 93.8         | 94.4  | 94.5  | Single   | 95.5            | 94.2  | 93.9  | 91.4  | 92.2  |  |  |  |
| AdaBoost | 95.9  | 95.2  | 95.1         | 95.2  | 95.3  | AdaBoost | 95              | 91.3  | 90.6  | 88.5  | 86.7  |  |  |  |
| RF       | 95.1  | 93.4  | 91           | 87.7  | 88    |          |                 |       |       |       |       |  |  |  |
|          |       | N     | B            |       |       | KNN      |                 |       |       |       |       |  |  |  |
| Method   |       | N     | um of Featur | res   |       | Method   | Num of Features |       |       |       |       |  |  |  |
| Method   | 50    | 100   | 150          | 200   | 250   | Method   | 50              | 100   | 150   | 200   | 250   |  |  |  |
| eBagging | 94.14 | 94.21 | 93.97        | 93.98 | 94.11 | eBagging | 87.94           | 83.63 | 84.59 | 82.68 | 79.29 |  |  |  |
| Bagging  | 94.1  | 94.2  | 93.8         | 93.6  | 93.4  | Bagging  | 90.2            | 85    | 83.4  | 82.1  | 79.4  |  |  |  |
| Single   | 94.3  | 94    | 94           | 93.5  | 93.9  | Single   | 89.6            | 83    | 84    | 81.3  | 77.7  |  |  |  |
| AdaBoost | 92.2  | 92.4  | 89.3         | 90.6  | 90.2  | AdaBoost | 89.6            | 83    | 84    | 81.3  | 77.7  |  |  |  |

Table 7. Evaluation results of artificial datasets.

Table 8. The experimental results of the artificial dataset with different class imbalances.

|          |          | С       | 4.5     |         |         | SVM      |          |         |         |         |         |  |  |  |
|----------|----------|---------|---------|---------|---------|----------|----------|---------|---------|---------|---------|--|--|--|
| Method   | Balanced | 10%-90% | 20%-80% | 30%-70% | 40%-60% | Method   | Balanced | 10%-90% | 20%-80% | 30%-70% | 40%-60% |  |  |  |
| eBagging | 97.19    | 98.42   | 97.86   | 97.06   | 96.66   | eBagging | 94.84    | 97.31   | 96.34   | 95.56   | 95.57   |  |  |  |
| Bagging  | 95.1     | 98      | 97.5    | 96.2    | 96.1    | Bagging  | 93.9     | 96.7    | 95.3    | 94.9    | 94      |  |  |  |
| Single   | 93.6     | 97      | 96.1    | 93.4    | 94.8    | Single   | 94.2     | 96.9    | 95.2    | 94.8    | 94.3    |  |  |  |
| AdaBoost | 95.2     | 97.6    | 97.3    | 95.6    | 95.6    | AdaBoost | 91.3     | 95.1    | 93.1    | 91.8    | 91.6    |  |  |  |
| RF       | 93.4     | 96      | 95.9    | 94.5    | 94.3    |          |          |         |         |         |         |  |  |  |
|          |          | N       | IB      |         |         | KNN      |          |         |         |         |         |  |  |  |
| Method   | Balanced | 10%-90% | 20%-80% | 30%-70% | 40%-60% | Method   | Balanced | 10%-90% | 20%-80% | 30%-70% | 40%-60% |  |  |  |
| eBagging | 94.21    | 97.57   | 96.05   | 95.11   | 94.17   | eBagging | 83.63    | 90.92   | 86.59   | 86.76   | 85.5    |  |  |  |
| Bagging  | 94.2     | 96.8    | 95.7    | 94.8    | 94      | Bagging  | 85       | 90.1    | 85.2    | 86      | 86      |  |  |  |
| Single   | 94       | 97.5    | 95.7    | 95.3    | 93.9    | Single   | 83       | 90.4    | 87.5    | 86.6    | 85.3    |  |  |  |
| AdaBoost | 92.4     | 95.9    | 93.5    | 92.5    | 92.7    | AdaBoost | 83       | 89.8    | 84.1    | 86.6    | 85.3    |  |  |  |

Table 9. The experimental results of the artificial dataset with different class separation values.

|          |                                          |       | C4.5  |       |       |       |       | SVM      |       |       |       |       |       |       |       |  |
|----------|------------------------------------------|-------|-------|-------|-------|-------|-------|----------|-------|-------|-------|-------|-------|-------|-------|--|
|          | 0.5                                      | 0.75  | 1     | 1.25  | 1.5   | 1.75  | 2     |          | 0.5   | 0.75  | 1     | 1.25  | 1.5   | 1.75  | 2     |  |
| eBagging | 83.92                                    | 85.75 | 87.32 | 89.73 | 91.41 | 94.11 | 95.24 | eBagging | 68.61 | 75.84 | 81.35 | 85.48 | 89.22 | 92.56 | 94.89 |  |
| Bagging  | 74.4                                     | 79.9  | 84.3  | 88.3  | 89.1  | 93    | 94.2  | Bagging  | 67.3  | 74.8  | 80.8  | 84.4  | 89.2  | 91.9  | 94.6  |  |
| Single   | 69.7                                     | 72.5  | 76.2  | 81.3  | 86.6  | 86.3  | 91    | Single   | 67.2  | 76.1  | 80.9  | 85    | 88.3  | 92.2  | 94.9  |  |
| AdaBoost | 71.9                                     | 77.9  | 83.9  | 87.9  | 91    | 94    | 96    | AdaBoost | 68.4  | 75.1  | 80.6  | 85    | 87.8  | 92.1  | 93.2  |  |
| RF       | 70.9                                     | 72.4  | 80.8  | 83.9  | 90.6  | 91.5  | 94.5  |          |       |       |       |       |       |       |       |  |
|          |                                          |       | NB    |       |       |       |       | KNN      |       |       |       |       |       |       |       |  |
|          | 0.5                                      | 0.75  | 1     | 1.25  | 1.5   | 1.75  | 2     |          | 0.5   | 0.75  | 1     | 1.25  | 1.5   | 1.75  | 2     |  |
| eBagging | 72.45                                    | 77.74 | 82.36 | 85.98 | 88.73 | 90.76 | 92.73 | eBagging | 81.73 | 84.48 | 87.76 | 91.53 | 94.15 | 96.47 | 97.71 |  |
| Bagging  | 70.8                                     | 76.7  | 81.6  | 85.1  | 87.7  | 90.3  | 92.7  | Bagging  | 78.4  | 83    | 87.7  | 91.5  | 95.4  | 97.3  | 98.5  |  |
| Single   | 72                                       | 77.3  | 82.2  | 85.4  | 88.2  | 90.8  | 93    | Single   | 76.8  | 80.9  | 86    | 91.7  | 94.8  | 97    | 98.9  |  |
| AdaBoost | aBoost 73.1 77.6 82.1 85.3 88.6 92.6 93. |       |       |       |       |       |       |          | 76.8  | 80.9  | 86    | 90.1  | 92    | 95.8  | 97.3  |  |

Table 10. The experimental results of the artificial dataset with extreme outliers.

|          |         | C4.5         |          |      | SVM      |         |             |          |  |  |  |
|----------|---------|--------------|----------|------|----------|---------|-------------|----------|--|--|--|
| eBagging | Bagging | Single       | AdaBoost | RF   | eBagging | Bagging | Single      | AdaBoost |  |  |  |
| 93.16    | 92.1    | 89           | 91.2     | 89.6 | 90.48    | 89.7    | 89.5        | 88.4     |  |  |  |
|          |         |              |          |      |          |         |             |          |  |  |  |
|          |         | NB           |          |      |          | KN      | N           |          |  |  |  |
| eBagging | Bagging | NB<br>Single | AdaBoost |      | eBagging | Bagging | N<br>Single | AdaBoost |  |  |  |

The artificial datasets were created on the Pyhton platform. All the generated datasets have 2 class labels and they include 1000 instances. The dataset used in Table 7-a includes variable feature number for each experiment as 50, 100, 150, 200 and 250. In Table 7-b, an artificial dataset with 100 features is shown. For different evaluations, the number of instances per class changes with a ratio of 10%-90%, 20%-80%, 30%-70%, 40%-60% and balanced class condition is also examined. Furthermore, the results according to different class separation factors in Table 7-c were obtained using a dataset with 50 features and several class separation values were used as 0.5 to 2 with 0.25 increase. Lastly, the dataset which includes 50 features and 2% of which consists of extreme outliers was created for the experiments in Table 7-d.

According to the results of Table 7-a, eBagging

outperforms other applied methods in most of the cases

when C4.5, SVM and NB base classifiers were selected. When kNN is applied, Bagging performs better if the dataset has 50, 100 or 250 features.

When different class imbalances as in Table 7-b were applied, the evaluation results were found similar to the outputs of Table 7-a. Even though eBagging achieved a comparable performance with bagging when kNN is the base classifier, it is the best among others when the base classifiers, SVM, C4.5 and NB are applied. It managed to classify the same number of datasets as bagging did.

It is a known fact that larger values of class separation factor makes the classification task easier. This condition holds for the applied experiments in Table 7-c. For each base classifier, eBagging achieved the most accurate results, especially in C4.5.

Table 7-d demonstrates the experimental results of the dataset with extreme outliers. Except from the results of NB classifier, eBagging with other base classifiers managed to classify data points correctly.

As a consequence of the experimental work, eBagging is proved to be a novel and improved version of the standard bagging algorithm and it has succeeded to compete with powerful ensemble learning methods, random forest and AdaBoost, as well. The idea is easy to implement, simple and provides major benefits compared the other applied algorithms.

#### 4.3. The Effects of the Classification Noise

Robustness with respect to noise is a desirable property, because some noise in the data is often present. In this experimental study, we explored the effect of classification noise on the performance of eBagging technique. We added random class noise to the 33 datasets described in Table 3 for exploring the effect of classification noise. To include classification noise at the rate of p percent, p% of the data instances were chosen randomly without replacement and class labels of them were changed to be incorrect (alternated to class label chosen uniformly from the other labels).

Figure 5 shows the average classification performances of eBagging and Bagging techniques at the six noise levels (0%, 2%, 4%, 6%, 8% and 10%). From this analysis, we can conclude that eBagging is still better than Bagging in the presence of noise in the data. The evaluation results also proved that in the case of Naive Bayes algorithm, eBagging is slightly superior to Bagging. However, in the case of decision tree, kNN and SVM, eBagging is much better than Bagging and bagging methods is shown. With 10% noise, eBagged C4.5 has a certain advantage over bagged C4.5 (28 wins, 5 losses).



Figure 5. Influence of added noise on the average accuracies of eBagging and Bagging methods when noise is added at the rate of (0% - 10%).

Table 8. The number of wins obtained from classification accuracy of eBagging and bagging methods in terms of added classification noise.

| Noise |          | C4.5    |     |          | NB      |     |          | kNN     |     | SVM      |         |     |  |
|-------|----------|---------|-----|----------|---------|-----|----------|---------|-----|----------|---------|-----|--|
| Ratio | eBagging | Bagging | Tie |  |
| 0%    | 27       | 6       | 0   | 25       | 7       | 1   | 28       | 5       | 0   | 17       | 15      | 1   |  |
| 2%    | 26       | 7       | 0   | 22       | 11      | 0   | 24       | 8       | 1   | 21       | 10      | 2   |  |
| 4%    | 27       | 6       | 0   | 18       | 15      | 0   | 23       | 10      | 0   | 22       | 10      | 1   |  |
| 6%    | 26       | 7       | 0   | 23       | 10      | 0   | 20       | 13      | 0   | 26       | 7       | 0   |  |
| 8%    | 25       | 8       | 0   | 21       | 12      | 0   | 22       | 11      | 0   | 23       | 10      | 0   |  |
| 10%   | 28       | 5       | 0   | 19       | 14      | 0   | 19       | 14      | 0   | 24       | 9       | 0   |  |

Classification noise destroys the effectiveness of eBagged kNN and bagged decision tree methods at most compared to the other applied algorithms. There are more dramatic decreases in the classification accuracies of the mentioned methods when the noise ratio is increased. However, when noise increases, eBagging still has certain advantages to noise. From this analysis, we can conclude that the best method in the presence of classification noise is eBagged SVM. In contrast, eBagged kNN is not a good choice in such applications. Because, kNN changes markedly with noise, while SVM procedures generally show small changes.

A plausible explanation for the better response of eBagging to noise is that misclassified examples due to noise will present in the training set. Hence, the training examples with misclassified examples will tend to make each classifier more accurate. EBagging overcomes classification noise problem since it emphasizes on hard points.

However, in the experiments, we only considered ensembles of size 10. Larger ensembles might be able to overcome the effects of fairly high levels of noise.

## **5.** Conclusions

The principal purpose of this study is to present a novel ensemble learning technique, eBagging, by modifying and optimizing standard bagging algorithm. The key difference is the creation of the ensemble subsets by giving higher chance for selection to the most informative and challenging instances which are misclassified by the prior learner. This essential step canalizes the algorithm to deal with hard-to-classify instances in depth so that training errors can be minimized.

In the experimental studies, which were verified by statistical tests, four commonly used classifiers, which are SVM, NB, kNN and C4.5, are used as base classifiers of the applied ensemble learning methods. eBagging was compared with single learners, standard bagging, random forest and AdaBoost algorithms. According to the experimental results, eBagging outperforms its counterparts by classifying the data points more accurately while reducing the training error. Furthermore, average error rate significantly decreases when eBagging is performed compared to single classifiers and standard bagging algorithm, while it leads close results with AdaBoost in half of the cases. As a consequence, the proposed eBagging method shows promising applicability in classifying data samples. The experiments also show that over 33 datasets, eBagging gives better results than Bagging as long as there is little or no noise in the data.

In addition to benchmark datasets, four different evaluations were also done on synthetic datasets according to the effect of the number of dimensions, the performance on the imbalanced data, the influence of the size of class separation values and the impact of the outliers. As a result, eBagging dealt with these exteme cases better than other applied methods.

In the future, the following studies is going to be performed:

• Generation of the ensemble subsets in eBootstrap step by randomly selecting the instances from the

whole dataset instead of the classified instances after placing all the misclassified instances identified by a prior classifier to the ensemble subsets,

• Determination of the optimal ensemble size for eBagging.

## References

- [1] Bauer E. and Kohavi R., "An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants," *Machine learning*, vol. 36, no. 1, pp. 105-139, 1999.
- [2] Bifet A., Holmes G., and Pfahringer B., "Leveraging Bagging for Evolving Data Streams," *in Proceedings of European Conference on Machine Learning and Knowledge Discovery in Databases*, Berlin, pp. 135-150, 2010.
- [3] Błaszczyński J. and Stefanowski J., "Actively Balanced Bagging for Imbalanced Data," *in Proceedings of International Symposium on Methodologies for Intelligent Systems*, Cham, pp. 271-281, 2017.
- [4] Błaszczyński J., Stefanowski J. and Idkowiak Ł., "Extending Bagging for Imbalanced Data," in Proceedings of the 8<sup>th</sup> International Conference on Computer Recognition Systems, Heidelberg, pp. 269-278, 2013.
- [5] Breiman L., "Bagging predictors," *Machine Learning*, vol. 24, no. 2, pp. 123-140, 1996.
- [6] Bryll R., Gutierrez-Osuna R. and Quek F., "Attribute Bagging: Improving Accuracy of Classifier Ensembles by Using Random Feature Subsets," *Pattern recognition*, vol. 36, no. 6, pp. 1291-1302, 2003.
- [7] Bühlmann P. L. and Yu B., "Explaining Bagging," Technical Report, 2000.
- [8] Bühlmann P. L., "Bagging, Subagging and Bragging for Improving Some Prediction Algorithms," Research report, 2003.
- [9] Chung D. and Kim H., "Accurate Ensemble Pruning with PL-Bagging," *Computational Statistics and Data Analysis*, vol. 83, pp. 1-13, 2015.
- [10] Croux C., Joossens K., and Lemmens A., "Trimmed bagging," *Computational Statistics and Data Analysis*, vol. 52, no. 1, pp. 362-368, 2007.
- [11] Datta S., Pihur V. and Datta S., "An Adaptive Optimal Ensemble Classifier Via Bagging and Rank Aggregation with Applications to High Dimensional Data," *BMC bioinformatics*, vol. 11, no. 1, pp. 1-11, 2015.
- [12] Derbeko P., El-Yaniv R., and Meir R., "Variance Optimized Bagging," *in Proceedings of European Conference on Machine Learning*,

Berlin, pp. 60-72, 2002.

- [13] Dettling M., "Bagboosting for Tumor Classification with Gene Expression Data," *Bioinformatics*, vol. 20, no. 18, pp. 3583-359, 2004.
- [14] Dexun J., Peijun M., Xiaohong S. and Tiantian W., "Distance Metric Based Divergent Change Bad Smell Detection and Refactoring Scheme Analysis," *International Journal of Innovative Computing, Information and Control*, vol. 10, no. 1, pp. 1519-1531, 2014.
- [15] Estruch V., Ferri C., Hernández-Orallo J., and Ramírez-Quintana M., "Bagging Decision Multi-Trees, Multiple Classifier Systems," in Proceedings of International Workshop on Multiple Classifier Systems, Berlin, pp. 41-51, 2004.
- [16] Hieu P. and Olafsson S., "Bagged Ensembles with Tunable Parameters," *Computational Intelligence*, vol. 35, no. 1, pp. 184-203, 2019.
- [17] Hothorn T. and Lausen B., "Double-Bagging: Combining Classifiers by Bootstrap Aggregation," *Pattern Recognition*, vol. 36, no. 6, pp. 1303-1309, 2003.
- [18] Jiang Y., Ling J., Li G., Dai H., and Zhou Z., "Dependency Bagging," in Proceedings of International Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing, Berlin, pp. 491-500, 2005.
- [19] Jorge A. and Azevedo P., "An Experiment with Association Rules and Classification: Post-Bagging and Conviction," in Proceedings of International Conference on Discovery Science, Berlin, pp. 137-149, 2005.
- [20] Jurek A. et al., "A Survey of Commonly Used Ensemble-Based Classification Techniques," *The Knowledge Engineering Review*, vol. 29, no. 5, pp. 551-581, 2014.
- [21] Kilimci Z. and Omurca S., "Enhancement of The Heuristic Optimization Based Extended Space Forests with Classifier Ensembles," *The International Arab Journal of Information Technology*, vol. 17, no. 2, pp. 188-195, 2020.
- [22] Lichman M., "UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]," *Irvine, CA: University of California, School of Information and Computer Science*, Last Visited 2013.
- [23] Louzada F., Anacleto-Junior O., Candolo C., and Mazucheli J., "Poly-Bagging Predictors for Classification Modelling for Credit Scoring," *Expert Systems with Applications*, vol. 38, no. 10, pp. 12717-12720, 2011.
- [24] Mohamed H., Negm A., Zahran M., and Saavedra O., "Assessment of Ensemble Classifiers Using the Bagging Technique for Improved Land Cover Classification of multispectral Satellite Images," *The International Arab Journal of Information Technology*, vol. 15, no. 2, pp. 270-277, 2018.

- [25] Quinlan J., "Bagging, Boosting, and C4.5," in Proceedings of the 13<sup>th</sup> National Conference on Artificial Intelligence, Portland, pp. 725-730, 1996.
- [26] Shmulevich I. and Dougherty D., Genomic Signal Processing, Princeton University Press, 2007.
- [27] Skurichina M. and Duin R., "Bagging for Linear Classifiers," *Pattern Recognition*, vol. 31, no. 7, pp. 909-930, 1998.
- [28] Terabe M., Washio T., and Motoda H., "The Effect of Subsampling Rate on S3bagging Performance," *in Proceedings of 4<sup>th</sup> International Conference Advances in Intelligent Data Analysis*, Portugal, 2001.
- [29] Wang G., Ma J. and Yang S., "IGF-Bagging: Information Gain Based Feature Selection for Bagging," The International Journal of Innovative Computing, Information and Control, vol. 7, no. 11, pp. 6247-6259, 2011.
- [30] Wang G., Sun J., Ma J., Xu K. and Gu J., "Sentiment Classification: The Contribution of Ensemble Learning," *Decision Support Systems*, vol. 57, pp. 77-93, 2014.
- [31] Wang Y. and Lin C., "Learning by Bagging And Adaboost Based on Support Vector Machine," in Proceedings of 5<sup>th</sup> IEEE International Industrial Informatics Conference, Vienna, pp. 663-668, 2007.
- [32] Witten L., Frank E., Hall M., and Pal C., Practical Machine Learning Tools and Techniques, Morgan Kaufmann, 2016.
- [33] Xiaoyuan S., Taghi M., and Xingquan Z., "Vob Predictors: Voting on Bagging Classifications," in Proceedings of 19<sup>th</sup> International Conference on Pattern Recognition, Tampa, pp. 1-4, 2008.
- [34] Xie Z., Xu Y., Hu Q., and Zhu P., "Margin Distribution Based Bagging Pruning," *Neurocomputing*, vol. 85, pp. 11-19, 2012.
- [35] Zaidi N ., Metric Learning and Scale Estimation in High Dimensional Machine Learning Problems with An Application to Generic Object Recognition, Thesis, Monash University, 2011.
- [36] Zaman F. and Hirose H., "A Robust Bagging Method Using Median As A Combination Rule," *in Proceedings of Computer and Information Technology Workshops*, Sydney, pp. 55-60, 2008.
- [37] Zeng X., Chao S., and Wong D., "Optimization of Bagging Classifiers Based on SBCB Algorithm," *in Proceedings of International Conference on Machine Learning and Cybernetics*, Qingdao, pp. 262-267, 2010.
- [38] Zhou Z. and Yu Y., "Adapt Bagging to Nearest Neighbor Classifiers," *Journal of Computer Science and Technology*, vol. 20, no.1, pp. 48-54, 2005.



**Goksu Tuysuzoglu** received her BS in Information Systems Engineering in 2013 at Dogus University, Turkey. In the same year, she also received her double major in Industrial Engineering. Then, she received her MS in the department of computer

engineering from Istanbul Technical University, Turkey in 2016. At the same time, she worked as a research and teaching assistant in there between the years 2014 and 2016. She is currently a PhD student in the department of computer engineering at Dokuz Eylul University, Turkey. She has also been working as a research and teaching assistant in the same department since 2016. She has BS graduation awards with ranking 1st in the Department and ranking 3rd in the Faculty and University. Her research interests include data mining and machine learning.



**Derya Birant** received her B.S., M.S. and Ph.D. degrees in Computer Engineering from Dokuz Eylul University, Turkey in 2000, 2002 and 2006 respectively. Since 2017 she has been an Associate Professor at the Computer Engineering Department of

Dokuz Eylul University. She is the vice-chair of the Computer Engineering Department. She was a Visiting Lecturer at the South East European University in 2006 and Ege University between 2010 and 2012. She is the author of 5 book chapters and more than 70 publications (i.e. journal articles, conference papers). Dr. Birant has also served as an organizing committee member in several conferences. She has been involved in more than 20 long-term interdisciplinary R&D projects. Dr. Birant has several Most Downloaded Article certifications and has graduation awards, ranking 2nd in the Faculty and the Department. She was also the recipient of the Outstanding Achievement Award in 2010.