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Abstract: Crowd management and fire safety studies indicate that the correct prediction of the threat caused by fire is crucial 

behavior which could lead to survival. Incorporating intelligence into exit choice models for accomplishing evacuation 

simulations involving such behavior is essential. Escaping from moving source of panic such as fire is of tremendous frightening 

event while evacuation situation. Predicting the dynamic of fire spreading and the exit clogging are intelligent aspects which 

help the individuals follow the correct behaviors for their evacuation. This article proposes an intelligent approach to 

accomplishing typical evacuations. The agents are provided with the ability to find optimal routes that enable them overcome 

spreading fire. Fire and safe floor fields are proposed to provide the agents with the capability of determining intermediate 

points to compose optimal routes toward the effective chosen exit. The instinct human behavior of being far from the fire to 

protect himself from sudden unexpected attack is introduced as essential factor risen in emergency situation. Simulations are 

conducted in order to examine the simulated evacuees’ behavior regarding overtaking the fire and to test the efficiency of making 

smart and effective decisions during emergency evacuation scenarios. 
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1. Introduction 

Under the threat of a spreading fire, many factors 

influence the success of safe evacuations as well as the 

total evacuation time such as irrational exit choice 

decisions [5]. Researchers have proved that if the 

evacuees have not made optimal decisions, such 

behavior most likely results in disorder and further 

blockage of the alternative exits [2]. In doing so, it 

enhances the chance of disasters and crowd stampedes 

[14, 19]. Conducting real experiments for achieving this 

requirement is unrealistic and is an unnecessary danger 

[26]. This has motivated model developers to develop a 

large number of simulation models which are separated 

into two categories. The first one, macroscopic models, 

is more concerned with the macroscopic behaviors of 

the whole crowd (see e.g., [12]). The second category 

comprises of the microscopic models, which are mainly 

concerned with the detailed interactions among the 

pedestrians and their physical environment. Among the 

variety of microscopic models are the Social Force 

Model (SFM) [10] and the Cellular Automata Models 

[1, 3]. Several approaches for calibrating the influential 

components constituting the simulation crowd models 

have been proposed [13, 19, 30]. 

The model developers have been encouraged to 

incorporate intelligence factors into the evacuation 

simulation models or propose independent exit choice 

models to be combined with the existing evacuation 

models [7, 17, 21]. Several approaches have been  

 
adopted for developing exit choice models. Utility 

maximization in terms of distance and exit congestion is 

a common strategy underlying the individual rational 

decision while escaping from a threatening source (see 

[22] and references therein). Comprehensive exit choice 

models were also introduced by involving 

environmental components such as obstacles and 

threatening sources and its sequences. Floor field 

approaches, mostly implemented in the cellular 

automata models, provide intelligence to the simulated 

evacuees (denoted here by agents) to consider such 

components and to select the best exits. The static floor 

field in which exits are selected with respect to distance 

disutility constitutes the basis of the floor field 

approaches [3, 16]. Huang and Guo [11] modified a 

static floor field to incorporate the effect of internal 

obstacles on the evacuation process. Zheng et al. [28] 

introduced the fire floor field to consider the influence 

of fire spreading rate on the evacuation efficiency. Cao 

et al. [4] introduced the visibility floor field and 

temperature floor field to simulate and study pedestrian 

evacuation under fire emergency. Zheng et al. [29] 

introduced the smoke floor field and studied the 

pedestrians’ movement behavior when the fire and 

smoke spread dynamically.  

The literature of exit choice models has focused on 

leaving the fire zone as realistic as possible. However, 

overtaking dynamic obstacles are not incorporated. In 

real scenarios, one physical exit structure is a common 
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structure, and therefore overtaking dynamic obstacles 

that hinder the evacuee’s egress is indispensable. 

Besides, experiments indicate that the evacuees are 

significantly more likely to exit through the familiar 

door than through a second available exit [15], 

especially when the situation is under poor visibility or 

because of the dominance of herding behavior [20]. 

These cases show the necessity of involving overtaking 

obstacles hindering motion.  

Overtaking behavior is an essential human factor 

which has been incorporated in normal situations and 

accordingly produced further realistic crowd 

simulations. Overtaking immobile obstacles has been 

treated by researchers for studying the effect of collision 

avoidance behavior on the evacuation dynamics [11]. 

Shuaib [25] introduced the collision avoidance field to 

enable the agents overtake moving obstacles in non-

emergency situations. The agents are provided with the 

capability of selecting intermediate destinations that 

enable them reaching their preferred destinations based 

on information given by the collision avoidance field. 

The agents select the optimal cells to achieve less 

potential of collision and minimize the distance to the 

original destination. The proposed model in [25] is 

integrated in the exit choice model proposed in [22] and 

simulations are performed to examine the impact of the 

extended model on introducing further realistic and 

efficient evacuation. 

In this article, to enhance the overtaking capability in 

emergency situations, we improve the overtaking model 

proposed in [25] by proposing fire and Safe Floor Fields 

(SFFs) in order to involve emergency situations with 

moving threatening sources such as fire. As for the 

structure of the paper, the next section presents a brief 

background of the model chosen to be a base for our 

contribution. We highlight the need for improving the 

original model to cover further aspects of evacuation. In 

the third section, we extend the original model to 

introduce effective overtaking of dynamic threatening 

obstacles. Finally, the relevant simulations to 

demonstrate the results of our work are performed. 

2. Crowd Dynamics and Exit Choice Models  

Compared to the macroscopic crowd dynamics models, 

microscopic models are more superior due to their 

capability to include detailed interactions between 

simulated individuals and hence the capability to 

produce collision avoidance and behaviors beyond, 

which are the main factors in this article. Among these 

models, we choose the SFM because of its superiority 

in producing the above characteristics, as mentioned in 

the following subsection. On the other hand, the rule-

based exit choice model in [22] allows individuals to 

predict the spreading fire dynamics and includes its 

effect on the assessment of individuals. This ability is 

necessary to overcome moving threat obstacles. 

Therefore, the combination of the two models is adopted 

to form the base for our proposed model. 

2.1. Social Force Model and Decision-Making 

Capability 

The SFM is a spatial-continuous microscopic crowd 

dynamics model that is characterized with parameters 

capable to be formulated to accommodate enormous 

aspects of crowd dynamics: to introduce self-

organization phenomena [9, 18], to reproduce real-life 

data [23] and to control various walking behaviors such 

as penetrating jammed crowd [24] and walking 

competition [6, 23]. The latter is an essential factor for 

understanding faster and slower phenomenon [8, 27]. 

The simulated individuals in the SFM are self-driven 

particles. The motion of an individual is mainly caused 

by social and physical forces exerted by surrounding 

individuals and objects in the physical environment; the 

sum of these forces is implemented in a semi-Newtonian 

equation resulting in the acceleration of the individual’s 

motion: 

 
       i pref social physical

i i ij ij i

j j

dv t
m f t f t f t t

dt
      

Where 
 idv t

dt
 is the acceleration of individual i at time 

t; )(ti  is the fluctuation term; and the other forces are 

briefly described as follows: 

 The preferred force )(tf
pref

i


which is modeled to 

express the motivation inside individual i to adapt his 

actual velocity )(tvi


to reach his preferred velocity 

0

iv  at which he prefers to walk: 

        0 0_pref curri
i i i i

m
f t v t e t v t


 

 
Where 0_ ( )curr

ie t  is the preferred direction of 

individual i at time t, 0

iv is his preferred speed, and mi 

and  represent the mass of the individual i and the 

relaxation time, respectively. 

 The social forces  social

ijf t  which are of two types: 

the repulsion force which represents the model of the 

repulsive motivation inside agent i to avoid 

individual j and the attraction force which represents 

the model of the attractive motivation inside 

individual i toward individual j [10]. 

 The physical forces  physical

ijf t denote the pushing 

and friction forces that arise between two individual 

in the event of contact that occurs between them. 

It is worth noting that Equation (1) produces operational 

navigation process characterized by instantaneous 

decisions; SFM has no role in identifying destinations 

(such as exits). Exit choice behavior is a matter of 

decision-making aspects that belong to strategic or 

(1) 

(2) 
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tactical level behavior represented as preferred speed 

and direction towards the preferred exit, which are 

referred to here by the preferred velocity 0

iv . 

2.2. Rule-Based Exit Choice Model  

The underlying assumption of exit choice behavior is 

that the evacuees are expected to search for typical 

emergency exit among alternative exits for safe 

evacuation. This assumption has been considered along 

with providing agents with long-ranged awareness of 

exits located within their sights, ability of investigating 

the factors influencing the assessment process of 

choosing the appropriate exit, and decision making 

capability to direct the motion toward the chosen exit. 

In [22], the agent accounts for the evacuation time as a 

disutility in order to decide the exit with minimum 

disutility. The time disutility k

mT of an exit k for agent 

m is introduced as the maximum disutility of two 

factors: k

mTroute which denotes the time needed to reach 

the exit k along route k, and k

mTcrowd which denotes 

the time of evacuating a crowd predicted to clogging 

exit k before arriving the exit. The value of the resulting 

disutility is affected by the dynamics of the fire; namely, 

the spreading fire could threaten some exits and 

consequently affect the choice of exits. Accordingly, the 

model of time disutility k

mT is as follows: 

 ( ) max ( ), ( ) .k k k k

m exit m exit m exit mT t Troute t Tcrowd t Risk  

0

( )
( ) ,

( )

k
k m exit
m exit

m exit

dis t
Troute t

v t
  

( ) ( ). ( )k k k

m exit m exit ave exitTcrowd t N t T t , 

Where the factor k

mRisk is to consider the repulsive 

effect caused by the nearness of fire on the route k, k

mdis

is the distance between agent m and exit k, k

aveT is the 

average rate of passing exit k, and k

mN is the number of 

clogging agents predicted by agent m. The best exit is 

the one with minimum disutility: 

_ ( ) {min( ( ))}k

exit i exit
k

best k t index T t  

The agent decides to replace his current preferred 

direction 0_curr

me in (1) with the direction toward the best 

exit when the new direction provides the agent with 

worthwhile utility denoted by the threshold utility, 

Th_exit as follows: 

_ _
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2.3. Problematic Issue 

However, the rule-based model [22] suffers from a 

shortcoming; that is when only one exit is available and 

is obstructed by a fire, the agent avoids the exit because 

of possible contact with fire rather than trying to 

overtake the fire as it is the only option. This behavior 

was exemplified in a simulation with a multi-exit layout 

(as shown in Figure 1-a), where the fire was initialized 

in the lower-right section and prepared to spread upward 

according to simple probabilistic behavior (for the 

simplicity of simulations) in purpose to hinder the 

motion of the agents (see Figure 1).  
 

 
Figure 1. Escaping from the spread of fire based on the exit choice 
model proposed in [22]. 

The agents surrounded by the square were initially 

exiting the lower-right exit to escape the spread of fire. 

After the prediction of future contact (i.e., the agents’ 

direct routes toward the exit would intersect the fire), 

the exit is eliminated from agent’s subjective choice set 

of exits. Rationally, however, the threatened individuals 

would not give up their selected exits if safely 

overtaking the fire was possible, particularly when the 

other exits are recognized as having much higher 

disutility (such as high clogging at the other exits in 

Figure 1) or are characterized with uncertainty.  

Thus, a refinement for the rule-based exit choice 

model proposed in [22] that can enable the agents to 

rationally interact with dynamic obstacles and make 

optimal decisions by overtaking said obstacles is 

required. We endow the agents in [22] with the 

capability of overtaking moving obstacles proposed in 

[25] when the egress through the chosen exit is possible, 

and its utility is the highest. It is reasonable for this 

purpose to make use of the floor field to find new routes 

in order to accomplish the desired overtaking behavior. 

 

 

 

 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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3. The Extended Model 
 

3.1. The Founded Routes Set and Decision for 

The Optimal Route 

In simple environment such as a large room, it is 

assumed that each agent has a global view and is 

familiar with the layouts behind the obstacles. Every 

agent m has his choice set of visible exits, and 

correspondingly a choice set of alternative routes (direct 

routes) connecting the agent directly to the exits. To 

overtake obstacles hindering the motion toward exit k, 

we endow the agent with the ability of detecting 

intermediate points. Each of these points connects the 

agent to the hindered exit via piece-wise segments (sub-

routes). Reasonably, two intermediate points located on 

the opposite sides of each obstacle are enough for this 

purpose (see Figure 2). 

Accordingly, we associate each hindered direct 

route with left and right routes, each of them would be 

composed of sub-routes: ,0k

mroute  which connects the 

agent m to the intermediate point, and ,1k

mroute  which 

connects the intermediate point to the corresponding 

exit k. Through this work, the agent composes a 

temporary route set involving left and right founded 

routes to be associated with the hindered exit k as an 

alternative of the direct route. The dynamic temporary 

set are activated when the direct route becomes 

impeded. 

 

Figure 2. The agent’s ability of detecting left and right intermediate 

points and composing left and right routes. 

The agent m would subjugate the temporary set to the 

disutility test to determine the route with minimum 

disutility as follows: 

 

 ,
_ ( ) { min ( )}k D

route m route
D lef right

k BestRoute t index Troute t


  

Where the disutility of each route ( )k D

m routeTroute t  is 

calculated as follows: 

 

,0 ,1( ) ( ) ( )k D k D k D

m route m route m routeTroute t Troute t Troute t     

 
.

,

0

( )
( ) , 0,1

( )

k D l

m routek D l

m route

m route

route t
Troute t l

v t



    

In analogy with Equations (7) and (8), at each time step 

routet the agent makes a decision to replace his current 

route to exit k with the new route (of index 

𝑘_𝐵𝑒𝑠𝑡𝑅𝑜𝑢𝑡𝑒). Finally, at each time step 
exitt , the 

route of index 𝑘_𝐵𝑒𝑠𝑡𝑅𝑜𝑢𝑡𝑒 would be the 

representative route for exit k when performing exit-

disutility test subject to Equations (3), (4), (5), (6), (7), 

and (8).  

3.2. Assigning Intermediate Points 

For detecting intermediate points, it is assumed first that 

the agent is aware of being far from the fire to protect 

himself from sudden unexpected attack from fire, 

temperature or gas. Therefore, each agent has a 

precaution time Tprec. We introduce the fire floor field 

which is defined as a grid composed of cells of size 

0.1m×0.1m. The value of each cell represents the 

expected time that the fire could reach each cell (i, j). 

Correspondingly, we introduce the SFF.  

The SFF for an agent is used to specify cells in the 

grid to be considered as attractive (safe) intermediate 

points to which the agent steers his preferred direction. 

The agent calculates the expected times 
( , ) ( )cell i j

m routeT t and ( , ) ( )cell i j

fire routeT t that he and the fire 

could reach each cell (i, j), respectively. The SFF is 

proposed as a dynamic field because of the dynamic 

spread of fire. Therefore, the agents keep updating the 

detection process of intermediate points in conjunction 

with the detection process. The formula that assigns safe 

values for the corresponding cells is as follows: 

 

( , )

( , ) ( , )

( )

( ) ( )

cell i j

m route

cell i j cell i j

fire route m route

Tsafe t

T t T t




 

3.3. Decision for Optimal Intermediate 

Destination 

Based on utility maximization, the agent determines an 

optimal cell that could be an intermediate destination, 

with the consideration of minimizing the distance to the 

chosen exit (distance utility) based on the following 

rules:  

 The intermediate destination has safe value greater 

than the precaution time, 
prec

mT . The cells satisfying 

this rule are grouped in A: 

 ( , )cell i j prec

m mA = cell(i, j) | Tsafe >T
 

(9) 

(10) 

(11) 

(12) 

(13) 
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 The line (i, j)

mB connecting the agent m with a chosen 

cell (i, j) from A, does not intersect cells of value less 

than the value of prec

mT , The cells satisfying rule 1 and 

2 are grouped in C: 

  | (i, j) (i, j) prec

m m mC = cell(i, j) A B cell(i, j)\Tsafe T = φ   

 The angle between the agent’s direction toward the 

preferred destination and toward the intermediate 

destination is the minimum. The cells satisfying rule 

1, 2, and 3 are grouped in D: 

  | m cell(i, j)

m pref_destination
(i, j)

D = cell(i, j) C min θ 


 

 Finally, the optimal cell is determined as follow: 

 (i, j)

m
(i, j) D

optimal_cell = index min Tsafe
   

The agent makes a decision to replace his preferred 

destination with the optimal cell as an intermediate 

destination:  

pref optimal_cell

m me (t) = e (t)   

4. Simulation 

In this section, simulations are conducted in order to 

examine the evacuees’ behavior regarding overtaking 

the fire and to test the efficiency of making smart and 

effective decisions during emergency evacuation 

scenarios. There are three steps in our simulation. The 

first time step is of size .01t s   used for the process 

of solving the system of differential equations of the 

SFM chosen based on enough accuracy for the model’s 

reproduction. The second time step routet is used in the 

process of detecting intermediate points and making 

decision to select the optimal route. Last, the time step 

of size exitt is the assumed simple reaction, 

approximated to be equal to 2s in [22]. Both exitt and

routest  conform multiples of t . Because of the lack of 

relevant data, we use equal values for both exitt and

routet . 

4.1. Overtaking Behavior 

The first simulations in this section is to investigate an 

agents’ behavior produced by the extended model 

against the fire. The situation of interest is the 

evacuation where two agents intend to leave a hall, as 

quickly as possible corresponding to their preferred 

velocities. The dimensions of the hall are 20 meters 

wide and 40 meters long. Margins along the walls are 

considered to provide agents space for reaching blocked 

exits by fire. Two exits are located on the low part of the 

right wall and right part of the upper wall. The location 

of the agents was initialized in the lower-left region of 

the hall, as shown in Figure 3. The fire is initialized in 

the lower-right part and prepared to spread according to 

simple probabilistic behavior (Figures 3, 4, and 5). The 

SSF is calculated according to Equation (12). The 

common values of the parameters used in the simulation 

were estimated as in Table 1.  

Table 1. The description and values of the parameters used in the 
simulations. 

The pedestrians’ parameters 

 
The pedestrians' mass: uniformly 

distributed within the range [77 - 83] kg 

 
The pedestrians' radius: uniformly 

distributed within the range[0.25 - 0.30] m 

The parameters of the social force model 

0 2.68mv 
 

The initial preferred speed in an emergency 

situation 

 The pedestrian reaction time 

]/*05.0,0[ 0  v  

The fluctuation source of the pedestrian’s 

acceleration is randomly assigned to each 

individual 

The parameters of the proposed model 

 
The precaution time to keep away from fire 

_ 1mTh exit s
 

The threshold utility 

 

Figure 3. The initialization of two agents and their selection to the 

nearest exit (the lower exit).  

 

Figure 4. The agent far away from the lower exit made a decision at 

the tactical level directing his movement towards the upper exit.  

(14) 

(15) 

(16) 

(17) 
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Figure 5. the first agent was able to overtake the fire and evacuate 

safely from his first chosen exit. 

The results of the simulation reflect the agents’ 

rational behavior when selecting their exits. In Figure 3, 

the agents selected the nearest exit (the lower exit). 

However, in Figure 4, the agent who was initialized near 

the lower wall was sticking to his choice because the 

overtaking process did not increase the disutility of the 

chosen exit greater than the other exit, whereas the 

second agent was exposed to critical location where the 

utility of exits became mostly equal. This situation led 

the agent to made a decision at the tactical level 

directing his movement towards the upper exit as shown 

in Figure 4. Finally, the first agent reached the margin 

which enabled him to evacuate safely as shown in 

Figure 5. 

4.2. Intelligent System for Efficient Evacuation  

The second simulations demonstrates the influence of 

incorporating intelligence capability into systems on 

obtaining typical evacuation. The setup of the 

simulations is similar to the above subsection, but the 

dimensions of the hall are 20 meters wide and 20 meters 

long. One hundred agents intend to leave the room as 

quickly as possible corresponding to their preferred 

velocity. We considered three different scenarios 

regarding the initialization of the agents’ locations:  

In the first scenario, the locations of the agents were 

initialized randomly in the entire hall as shown in Figure 

6.  

In comparison with the original exit choice model 

proposed in [22], we found similar initial behavior from 

the agents selecting exists with the highest utility. 

However, the extended model showed more intelligence 

in Figure 7, namely the agents who encounter the 

threatening fire are sticking with their choice as long as 

overtaking the fire does not cause greater disutility than 

the other exit. Such intelligent behavior keeps the initial 

optimal decisions made by the agents for long period of 

the evacuation time. Last, as shown in Figure 8, some 

agents were exposed to locations where the utility of 

exits became mostly equal, and therefore, decisions at 

the tactical level were made by those agents directing 

their motion toward the upper exit. 

 

 

Figure 6. The initialization of 100 (distributed randomly in the entire 

hall) agents with the capability of overtaking the fire (the extended 

model). 

 

Figure 7. The agents in the extended model are sticking with their 

choice for longer period of time than the original model. 

 

Figure 8. Decisions at the tactical level were made by those agents 

directing their motion toward the upper exit. 
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Figure 9. Efficient evacuation is performed by the extended model. 

The decision process resulted in similar termination 

of the accumulated flows at the exits (see Figure 10-a). 

The original model, however, resulted in diverse 

termination of the accumulated flows at the exits as 

shown in Figure 10-b and less evacuated agents. Thus, 

the extended model performs more efficient evacuation. 

It is worth noting that the variant flows between the exits 

in both models, as illustrated in Figures 10-a and 10-b, 

refer to the higher accumulation at the upper exit than 

the right exit, so it caused the long-intermitted flow at 

the upper exit. The competition of the agents which is 

responsible for the faster-is-slower phenomenon is the 

main reason for this behavior [8, 27]. 

 
       a) The extended model.                  b) The original model. 

Figure 10. The graphs show the accumulated number of the exiting 

individuals for all agents. 

In the second scenario, we initialized the agents 

randomly in the lower region of the hall (biased toward 

the lower exit). Most agents initially selected the right 

exit because of its higher distance utility than the upper 

exit. However, compared with the first scenario (see 

Figures 7 and 8), faster decisions at the tactical level 

were made by greater number of agents directing their 

movement toward the upper exit (see Figure 11). The 

decision process resulted in further accumulation on the 

upper exit as shown in Figure 12, and therfore, some 

agents could not evacuate safely. However, compared 

with the original model in [22], the extended model still 

produce further efficiency because of the evacuation of 

some agents from the lower exit in the beginning of the 

simulation (see Figure 11). 

 

 

Figure 11. The evacuation of 100 agents distributed randomly in the 

lower region of the hall. Decisions at the tactical level were early 

made. 

 

Figure 12. The end of the evacuation resulted in accumulation at the 

upper exit. 

Last, we randomly initialized the agents in the upper 

region of the hall (biased toward the upper exit). In both 

models (original and extended), most agents initially 

selected the upper exit due to its higher distance-utility 

than the lower exit (see Figure 13). No overtaking 

behavior has been occurred because of the specification 

of this scenario. 

The results from the considered three scenarios show 

that overtaking behavior enhances further the 

effectiveness of the evacuation when agents encounter 

the threatening source hindering their motion toward 

their chosen exit (the most efficient one). 
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Figure 13. The evacuation of 100 agents distributed randomly in the 

upper region of the hall (the extended model). 

 

Figure 14. The end of the evacuation resulted in accumulation at the 

upped exit. 

5. Conclusions 

In this article, we modified an exit choice model based 

on time disutility by incorporating further intelligence 

capability. Namely, we endowed the simulated 

individuals with the ability to overtake the fire when the 

egress through the chosen exit is possible, and its utility 

is the highest. It is showed that the correct prediction of 

the threat caused by fire is crucial behavior which could 

lead to survival, and that right decision timing of giving 

up selecting a chosen exit for avoiding fire risk is a 

crucial factor. Although the delayed decision could 

threaten the safety of an individual, earlier decisions 

could result in disorder and further blockage of the 

alternative exit, and consequently, lengthen the 

evacuation time.  

The results indicate the importance of developing a 

decision-support system for crowd management to 

provide the evacuees with intelligence using different 

instruments be they computational (signals) or non-

computational instruments (informed security to work 

as leaders). 
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