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Abstract: The most frequently used machine learning feature ranking approaches failed to present optimal feature subset for 

accurate prediction of defective software modules in out-of-sample data. Machine learning Feature Selection (FS) algorithms 

such as Chi-Square (CS), Information Gain (IG), Gain Ratio (GR), RelieF (RF) and Symmetric Uncertainty (SU) perform 

relatively poor at prediction, even after balancing class distribution in the training data. In this study, we propose a novel FS 

method based on the Maximum Likelihood Logistic Regression (MLLR). We apply this method on six software defect datasets 

in their sampled and unsampled forms to select useful features for classification in the context of Software Defect Prediction 

(SDP). The Support Vector Machine (SVM) and Random Forest (RaF) classifiers are applied on the FS subsets that are based 

on sampled and unsampled datasets. The performance of the models captured using Area Ander Receiver Operating 

Characteristics Curve (AUC) metrics are compared for all FS methods considered. The Analysis Of Variance (ANOVA) F-test 

results validate the superiority of the proposed method over all the FS techniques, both in sampled and unsampled data. The 

results confirm that the MLLR can be useful in selecting optimal feature subset for more accurate prediction of defective 

modules in software development process.  
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1. Introduction 

Software development is inevitably subject to defects. 

Predicting these defects is the holy grail of most 

software development entities. The cost of finding and 

rectifying software defects is estimated at billions of 

pounds per year. Thus, many research efforts are 

focused on finding efficient approaches that can 

reliably predict defective modules. Software Defect 

Prediction (SDP) applies historical defect data often 

obtained from software depositories to forecast 

defective modules in software development process for 

more assured quality service delivery. When defect 

prediction is considered as a binary classification 

problem in machine learning domain, prediction model 

developed with software metrics (i.e., features) 

identifies new software modules as possible defect or 

not [10, 22]. However, datasets obtained from the 

depositories come with high dimensional feature space, 

many of which are irrelevant and redundant. Irrelevant 

features consist of those that offer no useful 

information for the classification task, and redundant 

features present the same information as the currently 

selected features. Model built on training data with 

irrelevant and redundant features increases the model 

run time, deteriorate predictive performance, and 

increases the model complexity. Therefore, Feature 

Selection (FS) has become an indispensable part of 

data mining. FS is the process of identifying relevant 

features and eliminating irrelevant, redundant, or noisy 

data. In the perspective of classification for SDP, Yu et 

al. [28] asserted that FS aids in reducing computation 

requirement, minimizing the effect of the curse of 

dimensionality and improving the model performance. 

In the perspective of supervised inductive learning 

in which SDP models are often situated, FS presents a 

set of candidates features by applying one of the three 

techniques:  

1. The specified number of features subset that 

enhances an evaluation measure. 

2. The minimum number of the subset that satisfies 

certain criteria on evaluation measures.  

3. The subset with the best assurance among size and 

evaluation measure. 

 In view of the aforementioned approaches, Kumar and 

Minz [17] noted that appropriate use of FS algorithms 

improves inductive learning, either in term of 

generalization dimensions, learning speed, or reducing 

model complexity. 

FS becomes critical when the number of samples is 

much less than the number of features. In this case, the 

learning becomes mainly difficult, as the search space 

will be sparsely populated. As a result, the search 
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criteria will fail to accurately discriminate between 

noise and relevant data [26]. Kumar and Minz [17] 

considered the approaches to FS under to broad 

categories which include individual evaluation and 

subset evaluation. Guyon and Elisseeff [9] referred to 

feature ranking as individual evaluation approach. In 

ranking features, the individual weight is given 

according to its level of relevance. In subset 

evaluation, candidate feature subsets are developed 

using search criteria. Regardless of the evaluation 

technique, the FS procedure generally consists of four 

major steps including subset generation, subset 

evaluation, stopping criteria and validation of the 

result. 

In the subset generation, a heuristic search is 

conducted in which a candidate subset is specified in 

each state for evaluation in the search space. A subset 

generated must be assessed by certain evaluation 

criteria. Hence, many criteria for feature subset 

evaluation have been proposed in the literature to 

determine the suitability of the candidate subset. 

According to Liu and Yu [20], the FS evaluation 

criteria can be classified by their reliance on mining 

algorithms as dependent and independent criteria. 

Independent criteria exploit the essential characteristics 

of the training data without involving any mining 

algorithms to evaluate the goodness of a feature set or 

feature. And dependent criteria include predetermined 

mining algorithms for FS in which features are selected 

based on the performance of the mining algorithm used 

to the subset of features selected. Finally, a stop 

criterion is ascertained to end the selection process. 

The process of FS ends at validation system. Though 

the validation system is not intrinsic in the FS process, 

FS technique ought to be validated by conducting 

experiments and comparing results with established 

methods using either artificial or real-world datasets, or 

both. 

The relation between the inductive learning 

approach and FS algorithm deduces a model. In this 

regard, there are three general approaches in the 

literature to deal with the FS task. First, the filter 

methods select the features by ranking them by their 

usefulness in predicting the target concept. To estimate 

their ranks, statistical test and correlation results (i.e., 

Chi-square, ANOVA, Pearsons correlation) are 

employed. The second approach is wrapper method, 

which generates different subsets of features and 

searches for the optimal feature subset adjusted to the 

particular learning algorithm [16]. The best subset is 

selected by testing the algorithm. Different criteria 

such as forward and backward selection are used to 

select the features for the subsets. Finally, the 

embedded approach is a hybrid between the ranker and 

the wrapper methods. For a more comprehensive 

review of the FS methods, interested readers can refer 

to [4]. The proposed FS based on Maximum 

Likelihood Logistic Regression (MLLR) method in 

this paper in the context of SDP can be categorized 

under embedded methods. 

Logistic regression was first formulated by 

statistician Cox in 1958 as an approach to statistical 

data analysis and used extensively in several fields, 

including machine learning [18]. When used for 

prediction, logistic regression fits data to the logistic 

curve to develop a model for predicting future data. It 

requires the fitted model to well-match the data. The 

maximum likelihood estimation is applied to find the 

parameters that maximize the probability of observing 

the data [8]. To achieve these parameters, the 

likelihood function is developed to express the 

probability of the observed data as a function of the 

unknown parameters. The values that maximize this 

function are then chosen as the maximum likelihood 

estimators. This measure gives an approximation of the 

conditional probability that the outcome variable takes 

the value of 1 (faulty module), for a given feature. In 

order to select features, a statistical test is conducted to 

identify features with non-zero estimators 

(coefficients) at a given confidence interval. These 

features are selected as the optimal subset to be used to 

develop the model. 

Despite the numerous FS techniques and the 

benefits, a number of data issues can pose challenges 

and make the selection tasks harder. Prominent among 

these challenges are data imbalance and noisy. For a 

binary class data, class imbalance occurs when the 

number of samples in one class (i.e., Non-Defect-Prone 

(NDP)) is far more than those of the other class (i.e., 

DP). The effect of data skews may vary according to 

the imbalance ration. High class imbalance, often 

observed in software defect datasets, makes 

identification of the minority class by any statistical 

learning method very difficult and challenging. The 

reason is that a high-class imbalance presents a bias in 

favour of the majority class. Therefore, it becomes 

quite hard for the majority of statistical learning 

methods to effectively distinguish between the 

minority and majority classes, yielding a task akin to 

searching for the proverbial needle in a haystack. The 

biased learning introduced by the data skew may lead 

to the selection of wrong features/ feature subset that 

are incapable of predicting the minority class samples. 

In SDP, where the occurrence of false-positive (i.e., 

wrongly predicting defective module as NDP) is rather 

expensive than false negative (i.e., wrongly predicting 

NDP module as DP), a learner’s prediction that 

inclined to the majority class could produce 

unfavourable results [15]. 

Due to the above, we propose a hybrid FS method 

where data balance treatment is carried out prior to FS, 

and the capability of different FS methods including 

Chi-Square (CS), Information Gain (IG), Gain Ratio 

(GR), RelieF (RF), Symmetric Uncertainty (SU) and 

MLLR is assessed. In the next parts, we elaborate on 

the MLLR technique and briefly introduce the feature 
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ranking methods that are employed for the comparison. 

The superiority of the proposed method is noted and 

some insight in the perspective of SDP is shared. 

The remainder of this paper is organized as follows: 

Section 2 presents the methods and techniques used in 

this paper. Section 3 presents the experimental design. 

Section 4 reports our results and discussion. Finally, 

the conclusion and future work are given in section 6. 

2. Methodology 

2.1. Feature Selection 

FS as a method for reducing the attribute space of a 

variable set, is an essential component of both 

supervised and unsupervised classification and 

regression problems [1, 2, 11, 12, 13, 24, 25, 26, 29]. It 

is significant for three main reasons as outlined in 

section 1. In this research, we propose the MLLR FS 

techniques in which the optimal feature subset is 

through the Wald test to verify the coefficients 

estimated (at 95% confidence interval), based on which 

important features are selected. The technique of 

feature ranking is to score each attribute based on a 

particular measure, to distinguish and choose the best 

subset of features. This research uses five widely used 

filter-based feature ranking methods: CS, IG, GR, RF 

and SU. In the next parts, we elaborate the MLLR 

technique and briefly introduce the feature ranking 

methods that are employed for the comparison. 

2.1.1. The Logistic Regression 

In binary logistic regression, a dependent variable is 

given by Yi (i = 1....n) ∼ Bernoulli (Y/pi) so that it 

takes on a value of 1 with probability pi and 0 with 

probability 1-pi over n trials. The vector of input 

software metrics (features) is given by xi and pi varies 

over this explanatory space such that 
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This is the more general binomial case of n Bernoulli 

trials of Yi over the vector xi. 

1. The maximum likelihood estimators  

The parameters for the logistic regression model 

discussed above are estimated by maximum 

likelihood, where the likelihood function is given by 
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The principle of maximum likelihood requires that we 

use the value that maximizes the expression in 

Equations (6) as our estimate of β. To find the value of 

β that maximizes the likelihood function we 

differentiate the likelihood function with respect to β 

and equate the expressions to zero. These equations are 

as follows: 
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The above equations are referred to as the likelihood 

equations. In linear regression, the likelihood 

equations, obtained by differentiating the sum of 

squared deviations function with respect to β are linear 

in the unknown parameters, and therefore are easily 

solved. For logistic regression, Equations (7) and (8) 

are nonlinear in β, and thus need distinct approaches 

for their solution. These approaches are iterative in 

nature and have been programmed into available 

computer software. McCullagh and Nelder [21] 

discussed the iterative approaches applied in most 

software programs. Specifically, they showed that the 

solutions to Equations 7 and 8 may be found using a 

generalized weighted least squares method. In this 

paper, we apply the generalized linear model in R 

statistical program to access the logistic regression 

model results. 

When the class distribution in the data is 

approximately balanced, maximum likelihood 

estimates are reliable and asymptotically efficient. 

However, this is not the case when an extreme 

imbalance exists between classes in the data, as in 

crash data with a small number of fatal injury samples. 

The use of data with imbalanced class distribution 

results in low estimates of Pr(Yi = 1/xi)=pi due to the 

structure of the variance matrix shown below: 
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The product of the probability of DP and NDP denoted 

by p(1−pi) which is a component of this matrix is 

affected by class imbalances in the software defect 

data. Therefore, it can be difficult to accurately predict 

given an instance, whether the software has DP or not. 

This is because the predicted probabilities of true DP 

returned by the model will be closer to 0 than to 0.5. 

As a result, we apply the Synthetic Minority 

Oversampling Technique (SMOTE) algorithm [5] to 

create new samples for the minority class. 

The purpose is to augment the size of minority class 

samples and increase the sensitivity of methods that 

require statistical significance. This approach has been 

applied in many studies in the literature. 

2. FS based on MLLR  

One approach to test the significance of a feature in 

any model relates to the question of its relevance in 

predicting the outcome variable. This question is 

answered by conducting one among several 

statistical tests to verify the reliability of the 

coefficients estimated. One of the test which is 

considered in this study is the Wald test. Thus, we 

refer to FS based on the Wald test on estimated 

feature coefficients (at 95% confidence interval) as 

the MLLR FS method. The Wald test value is 

obtained by comparing the maximum likelihood 

estimate of the coefficient β1 with the estimate of its 

standard error and expressed as 

 1

1.
W
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Under the null hypothesis that β1=0, follows a 

standard normal distribution. Failure to reject the null 

hypothesis suggest that the feature is not significant in 

determining the outcome. These features are 

accordingly left out and the feature for which their 

estimated coefficients are found to be significantly 

greater than zero are chosen as optimal subset and 

allowed to take part in the model development. 

2.2. Feature Ranking Methods 

The CS analysis is used to examine whether the two 

variables are independent. The idea of entropy from 

information theory is applied to measures IG, GR, and 

SU. IG measures the decrease in the weighted medium 

impurity of the separations, compared with that of the 

full set of data. RF is an instance-based feature ranking 

method. Its advantages are that it is not dependent on 

heuristics, runs in low-order polynomial time, and is 

noise-tolerant and robust to feature cooperation. SU 

emerges from the modification of IG to take care of the 

bias to features that have a lot of values. 

 

2.3. Synthetic Minority Oversampling 

Technique (SMOTE) 

A number of data sampling techniques have been 

studied in the literature, including both majority under 

sampling and minority oversampling techniques. This 

study applied the SMOTE, which works on creating 

new synthetic examples in minority classes. The 

synthetic examples generated operate in feature space 

rather than data space. The SMOTE samples are linear 

combinations of two similar samples from the minority 

class (X and X0) and are defined as S =S+u *(X0 − X) 

with 0 ≤ u ≤ 1. X0 is randomly chosen among the K 

minority class nearest neighbours of X. The newly built 

examples decrease rarity in minority and make it fuller 

and more general. This study adopts (35:65) and 

(50:50) minority: majority ratio as Imbalance threshold 

as proposed in [21]. 

2.4. Classifiers 

The two learners that are chosen for building the 

software quality prediction models are Support Vector 

Machine (SVM) and Random Forest (RaF). We apply 

the Waikato Environment for Knowledge Analysis 

(WEKA) tool to achieve these classifiers. The SVM is 

a linear discriminant classifier which assumes that the 

best discriminant maximizes the distance between the 

two classes. This is measured in the distance from the 

discriminant to the samples of both classes. Two 

changes are made to the default parameters of the 

SVM learner in WEKA: the complexity constant c is 

set to 5.0 and the buildLogisticModels parameter is set 

to true. By default, a linear kernel is used. 

Random forests are an ensemble learning approach 

for classification, regression and other tasks that 

function by creating a multitude of decision trees at 

training time and coming out with the modal 

(classification) or mean prediction (regression) of the 

individual trees. 

In this study, the RaF learner is adopted to construct 

software defect models. The choice of RaF is based on 

its best accuracy and capacity to efficiently run on 

large database relevant to current algorithms. For the 

implantation of RaF, default parameter settings are 

adopted as detailed in WEKA. 

2.5. Performance Index 

The Area Under the Receiver Operating Characteristics 

Curve (AUC) is the common proper metric applied to 

accurately assess the performance when imbalanced 

data is presented with unequal error cost [8]. The 

Receiver Operating Characteristic (ROC) curve plots 

true positive rate on the y-axis versus the false positive 

rate on the x-axis. The curve indicates the trade-off 

between detection rate and false alarm rate. The AUC, 

which is calibrated over the range of 0 to 1, provides a 

single numerical metric for evaluating model 

(10) 
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performances. Higher values refer to better model 

performance and vice versa. 

3. Case Study 

3.1. Data Description 

The data for this study is obtained from the publicly 

available software project data repository. The 

characteristics of data are presented in Table 1 where 

PC1 and Tomcat are publicly accessible from 

repository of software projects database [23], and the 

ML, PDE, LC and JDT are from [7]. 

We consider the following treatment to the datasets 

before the experiments: 

1. Remove all nonnumeric measures. 

2. Transform the post-release faults measure (which 

counts the number of faults in the post-release 

versions) into the binary class label.  

In particular, those containing one or more faults are 

labelled as DP, whereas those with zero faults are 

labelled as NDP.  

Table 1. Characteristics of datasets. 

Datasets #Modules #Attribute DP NDP Defect Ratio 

PC1 705 38 61 644 10.55 

Tomcat 858 22 77 781 10.14 

ML 1862 62 245 1617 6.6 

PDE 1497 62 209 1288 6.16 

LC 691 62 64 627 9.79 

JDT 997 62 206 791 3.84 

3.2. Experimental Design 

In this work, we evaluate the capability of some 

Machine Learning (ML)-based FS approaches and the 

logistic regression method to select useful variables at 

different levels of imbalance, for building the optimal 

SDP model. The stages implemented in our study is 

categorized for Case A (FS based on original dataset) 

and Case B (FS based on balanced dataset) following 4 

scenarios as shown in Figure 1. The scenarios are: 

 Scenario 1 (S1): FS technique selected from the 

original dataset. 

 Scenario 2 (S2): FS technique selected from the 

sampled dataset. 

 Scenario 3 (S3): MLLR significant features chosen 

from the original dataset. 

 Scenario 4 (S4): MLLR significant feature selected 

from the sampled dataset. 

 

Figure 1. Framework of feature selection and data sampling 

scenarios. 

4. Result and Discussion 

This section presents the experimental findings based 

on SVM and RaF classification models following two 

Cases: 

a) Learning that apply FS considering imbalanced 

software defect dataset.  

b) Learning based on FS after dataset balancing. The 

research considers six software defect datasets from 

the depository for the analysis.  

The datasets in Case B have class distributions of 

50:50 and 65:35, representing the majority NDP and 

minority DP instances, respectively.  

4.1. Case A 

The original datasets are imbalanced with different 

class distributions and sizes. We deploy all the FS 

techniques considered, including the MLLR, to select 

features based on the imbalanced data. The optimal 

subsets found by the individual selection methods are 

applied as training data for the classification and 

prediction of software defects. The performance of the 

models built (SVM and RaF) is captured under AUC, 

and results are presented in Table 2 and shown in 

Figure 2. Each sample is denoted with the case letter, 

followed by the name of the classifier. For example, 

the RaF classification model for a sample from Case-A 

is referred to as Case-A RaF. 

In terms of AUC, it is observed that the MLLR 

approach records the highest measure according to RaF 

classification results. AUC is comparable to a rank 

sum test and quantifies the separability of the classes in 

a dataset for the classification task. The observation 

here suggests that the use of MLLR FS technique can 

guarantee the best feature subset where predictions can 

be enhanced for all classes in the classification task. In 

this regard, the performance of CS, IG, and SU FS 

techniques are also remarkable even though lower than 

that of MLLR. In general, the worst performing FS 

techniques in this category are the RF and GR. 

Referring to Table 2, the performance of the RaF 

classifier for the saturated model (Normal) is worthy of 

note. The AUC obtained is marginally (0.02) higher 

than MLLR. Considering that the performance 

difference is insignificant relative to the benefits of 

reduced space and model complexity brought to bear 

when the classifier developed is based on FS subset, 

the choice of MLLR for FS is the optimal way to 

proceed when developing RaF classifier for SDP. 

For SVM, a similar performance trend is found in 

RaF, except that the corresponding AUC measures for 

the models in Case-A-SVM are relatively lower than 

that of the models under Case-A-RaF. This observation 

only demonstrates the superior classification power of 

RaF to the SVM. Though not a primary objective, this 

observation is vital for the reason that when developing 

a model for SDP, the choice of the classification 
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algorithm is fundamental for improved model 

performance. 

 

        
           a) Case-A_RaF.                                               b) Case-A_SVM. 

Figure 2. Average AUC over all datasets for the FS methods for 

Case A. 

4.2. Case B 

In this case, the five feature ranking methods, 

including MLLR, are applied after balancing data, and 

models are built based on the FS subset from the 

sampled data. For the data balance, we consider 

different ratios such as 65:35 and 50:50 representing 

the majority and the minority class samples, 

respectively. The classification performance (in terms 

of AUC) of the SVM and RaF classifiers are 

summarized in Table 2 and demonstrated in Figure 3. 

It is observed that the AUC measures of the classifiers 

(SVM and RaF) performance on FS based on the 

balanced data (50:50) are greater than FS based on 

sampled data (65:35). Among the FS methods, we find 

that MLLR performs the best according to the 

assessment results of both classifiers. The above 

findings suggest that FS performance is linked to the 

data imbalance ratio: as the class representation gets at 

par, the better the performance. 

        

      a) Case-B(50:50)_RaF.                          b) Case-B(50:50)_SVM. 

       
        c) Case-B(65-35)_SVM.                          d) Case-B(65:35)_RaF. 

Figure 3. Average AUC over all datasets for the FS methods for 

Case B. 

More importantly, the results show that the MLLR 

FS approach could guarantee improved classification 

performance of the SDP model. The superiority of RaF 

over SVM is also observed as the AUCs obtained by 

all the FS techniques in the RaF classification exceed 

their corresponding AUCs in SVM. 

By the numerical value horizontal contrast in Table 

2, we can see that the AUCs obtained by FS with 

oversampled data by SMOTE are higher than the 

values realized when the imbalanced data is applied. 

The suitability of SMOTE data balance has been 

reported in several studies in the literature [2, 3, 6, 14]. 

The contribution of our finding, in this regard, is the 

performance obtained by MLLR, which confirms its 

compatibility with oversampling and the suitable 

application for FS in the SDP domain. To quantify the 

statistical value of the performance difference by the 

various FS methods, the ANOVA F-test [27] is 

conducted. The analysis results are presented in the 

next section. 

Table 2. The classification performance over all datasets for the two classifiers. 

SVM 
 Case-A Case-B(65:35) Case-B(50:50) 

Dataset Normal CS GR IG RF SU MLLR NormaL CS GR IG RF SU MLLR Normal CS GR IG RF SU MLLR 

JDT 0.830 0.829 0.819 0.828 0.827 0.827 0.848 0.870 0.837 0.832 0.838 0.869 0.840 0.879 0.894 0.864 0.850 0.864 0.885 0.851 0.893 

LC 0.763 0.829 0.734 0.827 0.633 0.784 0.740 0.854 0.855 0.843 0.855 0.851 0.855 0.874 0.882 0.861 0.864 0.861 0.870 0.861 0.876 

ML 0.768 0.658 0.599 0.685 0.740 0.622 0.772 0.818 0.806 0.786 0.806 0.820 0.786 0.822 0.832 0.814 0.815 0.814 0.827 0.815 0.829 

PDE 0.729 0.723 0.727 0.707 0.681 0.713 0.761 0.795 0.782 0.786 0.783 0.786 0.783 0.799 0.803 0.788 0.787 0.788 0.791 0.783 0.807 

Pc1 0.825 0.761 0.818 0.824 0.770 0.823 0.790 0.888 0.869 0.856 0.869 0.864 0.861 0.881 0.893 0.865 0.865 0.863 0.870 0.861 0.886 

Tomcat 0.762 0.737 0.639 0.719 0.693 0.806 0.759 0.855 0.842 0.838 0.842 0.834 0.841 0.852 0.860 0.849 0.833 0.846 0.848 0.844 0.864 

Average 0.780 0.756 0.723 0.765 0.724 0.763 0.778 0.847 0.832 0.824 0.832 0.837 0.828 0.851 0.861 0.840 0.836 0.839 0.849 0.836 0.859 

RaF 
 Case-A Case-B(65:35) Case-B(50:50) 

Dataset Normal CS GR IG RF SU MLLR NormaL CS GR IG RF SU MLLR Normal CS GR IG RF SU MLLR 

JDT 0.888 0.844 0.851 0.841 0.836 0.836 0.889 0.937 0.908 0.907 0.912 0.931 0.906 0.941 0.964 0.954 0.946 0.955 0.960 0.949 0.966 

LC 0.805 0.743 0.676 0.745 0.731 0.721 0.779 0.977 0.967 0.962 0.968 0.969 0.961 0.971 0.989 0.985 0.981 0.983 0.984 0.984 0.987 

ML 0.828 0.813 0.767 0.803 0.811 0.787 0.809 0.957 0.953 0.944 0.953 0.953 0.951 0.949 0.977 0.977 0.974 0.976 0.975 0.974 0.974 

PDE 0.793 0.757 0.738 0.734 0.791 0.754 0.782 0.947 0.942 0.937 0.942 0.944 0.940 0.942 0.973 0.970 0.971 0.970 0.970 0.972 0.970 

Pc1 0.890 0.887 0.882 0.878 0.864 0.897 0.851 0.986 0.980 0.981 0.981 0.978 0.982 0.984 0.990 0.987 0.988 0.988 0.987 0.987 0.989 

Tomcat 0.835 0.794 0.795 0.798 0.704 0.797 0.810 0.974 0.964 0.967 0.964 0.954 0.961 0.965 0.986 0.982 0.983 0.982 0.981 0.982 0.980 

Average 0.840 0.806 0.785 0.800 0.790 0.799 0.820 0.963 0.952 0.950 0.953 0.955 0.950 0.959 0.980 0.976 0.974 0.976 0.976 0.975 0.978 
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4.3. Statistical Evaluation of Models 

Performance  

In this section, a comparative analysis of the defect 

prediction performance results for the FS methods is 

carried out through a one-way Analysis Of Variance 

(ANOVA) F-test [27]. The test is conducted by using 

SPSS Statistics 23 package. The ANOVA test 

evaluates the significance level of the variances in 

model performances represented by the AUC values. 

We test and validate the underlying statistical 

assumptions of ANOVA before the analysis. The 

factor of most concern (Factor A) considered in this 

ANOVA test is the modelling that applies the entire 

feature set, FS subset based on MLLR, and the five 

feature ranking methods in the two cases of SVM and 

RaF. The null hypothesis claims that the population 

means of the entire group are equal, whereas the 

alternative hypothesis is that at least one pair of means 

varies. Here, a performance difference is considered 

statistically significant if the p-value is less than or 

equal to 0.05. In that case, there is enough evidence to 

reject the null hypothesis. The ANOVA results for 

SVM and RaF across the six datasets are presented in 

Table 3, respectively. The p-value in each table is less 

than the value specified. This suggests that there is 

enough evidence to reject the null hypothesis. To 

further investigate which pairs of means (performance 

of the models) are statistically significantly different, 

and which are not, we carry out a multiple pairwise 

comparisons by applying LSD criterion.  

Table 3. One-way ANOVA Results for SVM and RaF. 

SVM RaF 

 
Sum of Squares df Mean Square F Sig. 

 
Sum of Squares df Mean Square F Sig. 

Between 

Groups 
.233 20 .012 5.261 .000 Between Groups .739 20 .037 28.476 .000 

Within 

Groups 
.233 105 .002 

  
Within Groups .136 105 .001 

  

Total .466 125 
   

Total .875 125 
   

 

The significance level for the LSD test is fixed at α 

= 0.05. Tables 4 shows the multiple comparison results 

for SVM and RaF classifiers, respectively. The tables 

display the mean difference and the significance levels 

for the groups compared. Two means are significantly 

different if the p-value is below 0.05. To facilitate easy 

reference, the differences that are significant are shown 

in boldface. Table 4 presents the comparison results for 

the saturated model and the models built on FS subsets 

for SVM classification in Cases-A and B. The results 

reveal that MLLR, IG, SU and CS (arranged in order 

of decreasing utility) in Case-A, obtain comparative 

AUC values with the model built on the entire feature 

set (Normal). In the case of GR and RF, however, the 

AUC values relative to Normal are found to be 

significantly lower. For the comparison of Normal with 

oversampled data, we find that all FS methods 

significantly outperformed Normal except CS, IG, GR, 

and SU at 65:35 class distribution. A similar pattern is 

observed when MLLR is compared with the rest of the 

models in this category. Here, all the FS methods that 

apply data balance in case-B significantly 

outperformed MLLR without data balance except CS, 

GR, and SU at 65:35. For the comparison with the 

other FS methods, it is observed that MLLR performs 

better than all and significantly outperforms GR and 

RF. Also, the MLLR selection based on oversampled 

data (65:35 and 50:50) in case B significantly 

outperformed all the FS selection methods in case A 

including the original data (Normal) that apply the 

entire feature set. The results of RaF shown in Table 4 

show some variations with SVM in terms of the FS 

performance pattern. Generally, FS selection after data 

balance (65:35) obtained significantly higher AUC 

values than the use of original imbalanced data. Unlike 

SVM, the results of RaF demonstrate that all the FS 

method, together with oversampled data, regardless of 

the sample distribution, are significantly better than 

Normal. It is also found that MLLR with or without 

oversampled data outperformed all the FS methods, 

including original data. At a class distribution of 65:35, 

all the FS methods perform notably better than MLLR. 

At 50:50, however, the performance difference is 

marginal. The findings here confirm the adverse 

impact of imbalanced learning for the MLLR FS. In 

this section, we have shown that the MLLR combined 

with data balance can identify best feature subsets that 

can assure better performance of the SDP model. 
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Table 4. The Multiple compression of one-way ANOVA Results for SVM and RaF. 

SVM 

Models Mean Diff. Sig. 
 

Mean Diff. Sig. 
 

Mean Diff. Sig. 
 

Mean 

Diff. 
Sig. 

N
o

r
m

a
l 

v
s 

CS .02333 .392 

C
a

se
-B

(6
5

:3
5

)_
M

L
L

R
 v

s 

.07167* .010 

M
L

L
R

 v
s 

-.00117 .966 

C
a

se
-B

(5
0

:5
0

)_
M

L
L

R
 v

s 

.07967* .004 

GR .05683* .039 .09500* .001 .02217 .416 .10300* .000 

IG .01450 .595 .12850* .000 .05567* .043 .13650* .000 

RF .05550* .044 .08617* .002 .01333 .625 .09417* .001 

SU .01700 .533 .12717* .000 .05433* .048 .13517* .000 

MLLR .00117 .966 .08867* .001 .01583 .561 .09667* .001 

Case-B(65:35)_NormaL -.06717* .015 .07283* .009 -.06833* .013 .08083* .004 

Case-B(65:35)_CS -.05233 .057 .00450 .869 -.05350 .052 .01250 .646 

Case-B(65:35)_GR -.04400 .108 .01933 .478 -.04517 .099 .02733 .317 

Case-B(65:35)_IG -.05267 .055 .02767 .311 -.05383 .050 .03567 .192 

Case-B(65:35)_RF -.05783* .036 .01900 .486 -.05900* .032 .02700 .323 

Case-B(65:35)_SU -.04817 .079 .01383 .612 -.04933 .072 .02183 .423 

Case-B(65:35)_MLLR -.07167* .010 .02350 .389 -.07283* .009 .03150 .249 

Case-B(50:50)_Normal -.08117* .004 -.00950 .727 -.08233* .003 .00800 .769 

Case-B(50:50)_CS -.06067* .028 .01100 .686 -.06183* .025 -.00150 .956 

Case-B(50:50)_GR -.05617* .041 .01550 .570 -.05733* .037 .01900 .486 

Case-B(50:50)_IG -.05983* .030 .01183 .664 -.06100* .027 .02350 .389 

Case-B(50:50)_RF -.06900* .013 .00267 .922 -.07017* .011 .01983 .467 

Case-B(50:50)_SU -.05633* .041 .01533 .574 -.05750* .037 .01067 .695 

Case-B(50:50)_MLLR -.07967* .004 -.00800 .769 -.08083* .004 .02333 .392 

RaF 

N
o

r
m

a
l 

v
s 

CS .03350 .110 

C
a

se
-B

(6
5

:3
5

)_
M

L
L

R
 v

s 

-.01983 .342 

M
L

L
R

 v
s 

.11883* .000 

C
a

se
-B

(5
0

:5
0

)_
M

L
L

R
 v

s 

.13783* .000 

GR .05500* .009 .01367 .513 .15233* .000 .17133* .000 

IG .04000 .057 .03517 .094 .17383* .000 .19283* .000 

RF .05033* .017 .02017 .334 .15883* .000 .17783* .000 

SU .04117 .050 .03050 .146 .16917* .000 .18817* .000 

MLLR .01983 .342 .02133 .307 .16000* .000 .17900* .000 

Case-B(65:35)_NormaL -.12317* .000 -.14300* .000 .13867* .000 .15767* .000 

Case-B(65:35)_CS -.11250* .000 -.13233* .000 -.00433 .835 .01467 .482 

Case-B(65:35)_GR -.10983* .000 -.12967* .000 .00633 .761 .02533 .226 

Case-B(65:35)_IG -.11350* .000 -.13333* .000 .00900 .666 .02800 .181 

Case-B(65:35)_RF -.11500* .000 -.13483* .000 .00533 .798 .02433 .245 

Case-B(65:35)_SU -.11033* .000 -.13017* .000 .00383 .854 .02283 .275 

Case-B(65:35)_MLLR -.11883* .000 -.13867* .000 .00850 .684 .02750 .189 

Case-B(50:50)_Normal -.14000* .000 -.15983* .000 -.02117 .311 .01900 .363 

Case-B(50:50)_CS -.13600* .000 -.15583* .000 -.01717 .411 -.00217 .917 

Case-B(50:50)_GR -.13400* .000 -.15383* .000 -.01517 .467 .00183 .930 

Case-B(50:50)_IG -.13583* .000 -.15567* .000 -.01700 .416 .00383 .854 

Case-B(50:50)_RF -.13633* .000 -.15617* .000 -.01750 .402 .00200 .924 

Case-B(50:50)_SU -.13483* .000 -.15467* .000 -.01600 .443 .00150 .943 

Case-B(50:50)_MLLR -.13783* .000 -.15767* .000 -.01900 .363 .00300 .886 

*. The mean difference is significant at the 0.05 level. 

5. Conclusions and Future Work 

Developing classification model based on FS subset is 

an important scientific goal. Standard machine learning 

algorithms assume balanced training data. Thus, 

imbalance learning that applies FS subset for 

classification is a critical challenge because most FS 

selection methods fail to select the optimal feature 

subset. 

In this study, we presented a statistical method in 

which FS is situated on the Wald test of significance (at 

95% confidence interval) for the MLLR coefficients 

estimated. The feature subset selected by this approach 

is referred to as MLLR. For clarity and logical 

coherence of our presentation, the research method and 

results discussion were considered under Cases A and 

B. Case A refers to the learning that applies imbalance 

data whereas Case B refers to learning from sampled 

data for the feature subset extraction. The experimental 

case study is founded on software data from online 

software historical data depository. We applied the 

proposed method to select features based on which the 

SVM and RaF classification models were developed 

in the context of SDP. The model performances were 

captured in AUC metrics. To justify the relative 

advantage of our proposal, we compared the 

performance of the MLLR method with five feature 

ranking methods. The ANOVA results remarkably 

demonstrated the superiority of the proposed MLLR 

over all the feature ranking methods when either of the 

classifiers is used in any of the two cases considered. 

The results also confirmed the findings reported in 

previous studies in terms of the advantage of FS based 

on sampled data over FS based on original data. Also, 

the performance of the defect prediction models was 

not affected significantly regardless of whether the 

training data was formed using MLLR FS subset or 

entire feature set in both sampled and unsampled data. 

The results of this study point to the fact that selecting 

the right feature subset for learning in classification 

for defect prediction is very important. In machine 

learning classification task, working with a smaller 
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dimensional feature space data for SDP modelling is 

more efficient than working with a dataset with high 

dimensional feature space. Therefore, the study 

recommends further investigations to tap the useful 

potentials of MLLR for the software development 

industry. 

For the future research, we will evaluate the 

effectiveness of the proposed method in different 

software metrics. In addition, different data sampling 

techniques and different feature selection techniques 

will be considered in the context of this study. 
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