
The International Arab Journal of Information Technology, Vol. 17, No. 6, November 2020                                                    833 

Unified Inter-Letter Steganographic Algorithm, A 

Text-based Data Hiding Method 

Ahmad Esmaeilkhah1, Changiz Ghobadi1, Javad Nourinia1, and Maryam Majidzadeh2 

1Electrical Engineering Department, Urmia University, Iran 
2Department of Electrical and Computer Engineering, Technical and Vocational University, Iran 

Abstract: This paper funds a novel text-based steganographic algorithm with enhanced functionality with respect to the 

previously proposed methods, by careful selection of one of standard space characters, the introduced Inter-Letter 

Steganographic Method, or Visual and Reverse Extraction attacks, two additional modes of operation have been added to the 

original InLetSteg algorithm and have been merged into a single one, called as Unified Inter-Letter Steganographic Method, 

or UILS. The Unified Inter-Letter Steganographic Method (UILS) embeds the data using variable step-size into the host text 

and the developed mathematical model can calculate the approximate length of the host text required to embed certain data, 

statistically. In addition, the general mathematical model of UILS makes it customizable to adapt the real-world applications. 

The statistical parameters that are used through this work are calculated for English host text, but are easily calculable for 

other languages with similar alphabets and structure of notations. Finally, the programmatically deployed UILS outputs are 

experimentally examined using 60 attendant and the results are discussed. 

Keywords: Steganography, UILS, InLetSteg, Reverse extraction attack, Unicode space character, Inter-letter spacing. 

Received June 6, 2018; accepted July 21, 2019 

https://doi.org/10.34028/iajit/17/6/1 
 

 

1. Introduction 

The history has a rich record of using steganography as 

the art of inserting some information in a host medium 

in a way that the carrier seems unchanged. The word 

“Steganography” consists of two Greek words: 

“steganos” which means “protected” and “graph” 

which means “writing” [18]. Katzenbeisser [8] 

introduced the first use of steganographic methods to 

transfer secret information, which dates back to 440 

B.C. Most of the ancient steganographic techniques 

have been applied to text as secret messages but many 

other carriers such as human shaved head [6], waxed 

tablets [20], women earrings, texts [17], and images [7, 

19, 21] have been used. The aforementioned techniques 

are mostly applicable in espionage, copyright 

marketing using watermarking techniques, as well as 

control of privacy in medical trends [5]. 

Noting that the Text, as carrier medium, exists 

everywhere around in both conventional and digital 

form, it exhibits a good potential to carry the 

information. As Kessler mentioned, the text-based 

steganography is divided into two categories: 

Semagrams and Open Codes [9]. The Semagrams use 

some symbols to hide information while the open codes 

hide the secret message by changing the white spaces in 

building segments of a carrier text. These spaces 

include inter-word, inter-sentence, inter-paragraph and 

end-of-line spaces. Semagram was first deployed by 

Por and Delina [15], but the first published 

implemented open code steganographic algorithm dates 

back to 1996 which have been done by Bender et al. [2] 

and his colleagues [8]. Some works suggests 

manipulating a text as an image and applying image 

processing beside steganographic techniques. The 

main advantage of these techniques is their robustness 

against printing and scanning. Some recent works 

focus on increasing the amount of covered data [16]. 

Topkara et al. [23] suggested some other techniques 

for hiding data in a text medium, based on natural 

language processing [4, 23]. Complexity of encoding 

and decoding algorithms is the main disadvantage of 

this method.  

This paper aims at proposing a novel 

steganographic method which uses some basic 

concepts of some previously proposed methods, i.e., 

the UniSpaCh, while enhancing their efficiency 

considerably by defining a new capacity on carrier 

text. This method is named as Unified Inter-Letter 

Steganographic Method (UILS). The main merits of 

UILS include Robustness against “Select All”, 

“Reverse Extraction” and “DASH” attacks 

Calculability of approximate required length of text to 

embed a specific data statistically, Strong 

mathematical backbone to change the embedding 

procedure for special application and Customizable 

data embedding procedure using well-established 

mathematical backbone, which is a vital trait in 

especial and real-world applications. 

The remainder of this paper is as follows: To shed 

light on the basic idea behind the UILS method, four 

major similar and Open Code steganographic 

methods, namely UniSpaCh [16], SNOW [10], 



834                                                    The International Arab Journal of Information Technology, Vol. 17, No. 6, November 2020 

wbStego4open [1, 11] and WhiteSteg [14] are reviewed 

and their advantages and drawbacks are discussed. In 

the sequel, the foundations of Inter-Letter 

steganographic algorithm are presented in section 3. 

Section 4 discusses how two CSS- and VSS- variant of 

In LetSteg algorithms are merged into UILS method. 

Governing formulations are also surveyed too. The 

implementation method for UILS and the real visual 

attack experiments procedure are presented in sections 

5 and 6. Finally, section 7 concluded the work. 

2. Precedent Works 

To construct the required logical basis, some important 

and similar methods to the presented methodology in 

this work are presented herein. These methods could be 

considered as logical ancestor of UILS with their 

inherent advantages and limitations. 

“Steganographic Nature of Whitespace” uses the 

end-of-line spacing to add some information to the 

carrier text. The payload is added to the carrier by 

inserting some white space characters to the end-of-line 

spacing. Each end of line spacing has the capacity of 

transferring up to 3 bits of payload and the remaining 

data (if remained) will be added to the end-of-

paragraph spacing [10]. This method is originally 

derived from Bender’s Open Code method but offers 

more capacity to transfer payloads [3, 15]. The original 

“wbStego4” was first introduced in 1999. This method 

is one of the developed versions of “wbStego4”, which 

uses inter-sentence and inter-word spacing beside the 

end-of-line and inter-paragraph spacing to add the 

payload to the carrier text [1, 15]. The wbStego4open 

checks the carrier text to ensure that it has sufficient 

length to cover the payload [11]. This method shows 

more capacity for transferring payload in compare with 

SNOW. The efficiency is reported as 1 bit per 8 byte of 

carrier text in [15]. 

 WhiteSteg is an open code method, which uses 

inter-word and inter-sentence spacing to add the 

payload to the carrier. The carrier text will be copied if 

its length is not enough to cover the message. After 

implementing this method, Por et al. [14] found that it 

can carry more information in compare with SNOW or 

the Steganographic Nature of Whitespace, 

wbStego4open and Spacemimic (not covered in this 

paper) for equal size of carrier file [13]. 

Unicode Space Character method, or as abbreviated 

as UniSpaCh, was first introduced by Por and Delina 

[15]. This method stands in use of invisible Unicode 

space characters in inter-word, inter-sentence, inter-

paragraph, and end-of-line spacing. The added symbols 

to the carrier text in SNOW, wbStego4open, 

WhiteSteg, as well as Spacemimic methods are 

invisible and the resulted text file is highly robust 

against visual attack, but the payload can be detected 

easily using popular and commercial word processor 

software such as Microsoft Word® and applying 

DASH Attack, as described in [16]. To realize the 

suggested algorithm, 8 out of 18 space characters are 

chosen from Unicode general punctuation chart [24] 

and two types of data encoding for inter-

sentence/inter-word and inter-paragraph/end-of-line 

spacing are set. The selected Unicode space characters 

are invisible under DASH arrack. For inter-word and 

inter-sentence spacing, a set of one or two Unicode 

space character - that simulates a normal space - can 

carry 2 bit of payload data. So n successive words can 

carry up to 2(n-1) bits of payload data. For end-of-line 

and inter-paragraph spacing, four single Unicode 

spaces choose to carry 2 bit of data. 

3. Inter-Letter Steganographic Algorithm 

Foundations 

To reduce the possible emergence of suspicion by 

filling the inter-paragraph and end-of-line spacing, the 

“inter-letter” spacing was defined as a virtual space 

between two successive letters in a word. These 

spacing are not real spaces in fact and use of suitable 

Unicode space characters creates them. The Inter-

Letter steganographic, or simply the InLetSteg 

algorithm, uses inter-letter spacing to embed the 

payload data. If “Select All” function is applied to the 

host text, i.e., by applying Ctrl+A in Microsoft Word, 

any embedded data in inter-paragraph and end-of-line 

spacing could be detected. Therefore, use of these 

spacing is possible, but are excluded in this work due 

to their inherent security limitations.  

In applying InLetSteg algorithm, at first, two 

carrier characters are added to the beginning of host 

text, respectively. In addition, the end of embedded 

data is signed by three carrier characters. As the data 

stream consists of known numbers of 0 and 1, any 

transition between these two values is presented by a 

single carrier character. Each of these transitions is 

called as a Phase Reversal Point (PRP). Therefore, the 

number of inserted carrier characters is equal to 

number of PRPs. By examining the various 

punctuation characters, the “Hair Space” is chosen as 

carrier character. To this aim, some fonts were 

examined and the resulted texts were compared with 

original one. Without knowing the existence of 

payload in carrier text, detecting the “Hair Space” 

character are almost impossible. To illustrate the issue 

graphically, Figure 1 presents the embedding of 40 

bits in a short sentence. The carrier character, “Hair 

space”, is shown by vertical grey lines. 

 

Figure 1. A sample text with embedded data, the PRPs are shown 

using thin gray vertical lines. 

4. CSS-, VSS- and Unified-InLetSteg 

If the cover text consists of m characters, ideally it can 

carry up to m-1 bits of payload. InLetSteg algorithm 



Unified Inter-Letter Steganographic Algorithm, A Text-based Data Hiding Method                                                                 835 

searches the beginning of carrier text to insert double 

“Hair Space” characters. Then the step size, or Sinsertion, 

is calculated by a defined step size function. The 

Sinsertion is defined as the number of characters of the 

carrier text that carry a bit of embedded data. Finally, 

the algorithm ends by signing the end of data by a set of 

three “Hair space” characters. To set the value of step 

size, there are two different approaches named as 

Constant Step Size (CSS)-InLetSteg, and Variable Step 

Size (VSS)-InLetSteg. The UILS, as will be defined 

later, will merge these two methods together.  

The simplest approach to set the value of Sinsertion is 

to make it constant. The constant value of step size is 

defined as follows: 

   cccinserstion sksskS ),(;),(   

The volume of transferred payload by an m character 

word will be reduced to sc-1(m-1) bits. Here the 

punctuation characters will probably appear in every sc 

characters if there is PRP. As the “Hair space” 

character appears rarely in ordinary texts, repeated use 

of this simple method results in raising suspicion by 

applying statistical analysis. In addition, steganos-

analysis systems can easily guess the used method and 

extract the embedded data reversely. This method of 

hacking is called as RE Attack or Reverse Extraction 

Attack. As the data insertion rate decreases, the resulted 

text will be more robust against RE Attack, but is 

definitely vulnerable against it. To reduce the efficacy 

of RE Attack, the value of Sinsertion could be varied in 

respect with an additional reference, such as a set of 

numbers as key or any valid and repeatable or 

regenerate-able set of values. The Sinsertion is defined as: 

   





MaxcMax

cMaxcMaxinserstion

sssk

ssksskS

,),,(;

),(),,(




 

 

Where k(φ, sMax) represents the reference set of 

numbers and φ is the position of inserted bit. The sc, 

and sMax is the upper limit of k function. The brackets 

show the floor function to ensure the output value to be 

integer. The maximum and minimum value of Sinsertion 

will be sMax+sc and sc respectively. The k function can 

be chosen arbitrarily but it must be positive and definite 

for any value of φ and it is essentially important for 

k(φ) to be, as much as possible, reversely incalculable. 

In addition, it is required to check if there is 

minimum number of zeroes in its first derivative for the 

selected sMax. This feature ensures that there is 

minimum number of successive characters with similar 

value of Sinsertion. Obviously, the Sinsertion depends on 

statistical distribution of characters in host text and is 

variable.  

 

 

 

5. Deployment of UILS 

The logic of both of methods described in sections 4.1 

and 4.2 are identical. Therefore, the CSS- and VSS-

InLetSteg methods could be merged into a unified 

form that eases the software development. The unified 

version of InLetSteg, the UILS, covers all the 

properties of consisting versions. To this end, Sinsertion 

is proposed as: 
 

    cMaxVSSVSScMaxinserstion sskccsskS  ),(,),,(       

 1,0;,),,(  VssMaxcMax csssk   
 

The CVSS activate or deactivate the variability of 

Sinsertion. When the CVSS=0, the sc determines the step 

size of data-insertion algorithm as a constant value. 

Also while the variable step-size feature is activated 

(CVSS=1), the value of sc set a lower limit, equal to or 

greater than one, to the minimum step size of inserted 

data, which result in: 

  cMaxVSScMaxinserstionc sscsskSs  ,),,(0   
 

As can be seen, the range of changes of Sinsertion is 

dependent of sc and sMax but the distribution of its 

output value is dependent of k function and its 

properties. The generality of study does not depend on 

type of k function, but is highly dependent on its 

correct returned values. As long as Sinsertion generates 

different values for successive characters, the 

associated k function is a suitable one. The suitable k 

functions can be categorized as: 

 Functions which are in form of k(φ, sMax)=u(φ); 

0<u(φ)≤sMax 

 Functions which are in form of k(φ, 

sMax)=u(φ).sMax+1; 0<u(φ)≤1 

 Functions which return the remainder of division as 

k(φ, sMax)=(u(φ) Mod sMax)+1 

As the alphabetic and numeral characters are placed 

sequentially in Unicode table, some of the k functions, 

which meet criteria of Equation (4), generate a single 

value for whole or a part of these characters. So 

Equation (4) is a necessary but not a sufficient 

condition. To investigate the issue in its worst case, if 

φ ranges from 0 to 2n-1, and sMax=2n-1 and sc=CVSS=1 

the following expression must be met: 
 

 
1

),(

,),,(






Max

VSScMaxinserstion

sk

csskS




 

This ensures that the suggested k function returns 

different values for different successive characters of 

Unicode table. Obviously various mathematical 

expressions can be suggested for k(φ, sMax) without 

any loss of generality, the k(φ, sMax) considered to be 

defined as: 

 (1) 

 (2) 

 (3) 

 (4) 

 (5) 

 (6) 



836                                                    The International Arab Journal of Information Technology, Vol. 17, No. 6, November 2020 

    1)(, )(

0 







 Max

ASCp

Max sModASCCsk   

    











bmUpperLimit

ASC

CC

C CCCASCp

UpperLimitm

b
,,;log


    

The ASC(φ) returns the decimal value of φth character 

from Unicode table, Mod returns the reminder of 

division. As shown in Figure 2, the p, as a decaying 

function, generates smaller returned values for bigger 

values of ASC(φ). If C0, CUpperLimit, Cb and Cm set 

appropriately, the k function can cover all of the 

Unicode characters.  

 

Figure 2. The p(ASC(φ)) for various UNICODE characters. Its 

decaying behavior ensures calculable value of k for computational 

systems with limited resources. 

Using (3), (7) and (8) yields in  
 

 

 
cMax

ASCp

VSS

VSScMaxinserstion

ssModASCCc

csskS





















1)(

,),,(

)(

0





 

Experimental work showed the criteria expressions in 

Equations (4) and (6) will be meet, as much as possible, 

if C0=0.6, CUpperLimit=216-1, Cb=23.49 and Cm=116. The 

number of zeroes for first derivative is %0.05 of 

covered range. This means that less than 35 successive 

characters out of 216-1 characters of Unicode table have 

similar Sinsertion. In addition, the calculation requires 37 

bits of memory to handle the probable largest value 

occurring during the calculation. This is essentially 

important while one tries to implement the algorithm 

using very limited amount of resources.  

To examine the applicability of the proposed method 

and to gather the statistical data to analyse the results, 

UILS algorithm is deployed using C# in Microsoft 

Visual Studio 2012®. The developed software embeds 

data in host text using native punctuation characters 

beside some other characters, which are provided for 

presentation, and debugging only. As the scientific 

investigation of UILS requires specific number of bits 

of data for embedding, the software accepts that in 

numerical format and generates the requested amount 

of data randomly. As well, it is possible for the user to 

upload a file as source of binary data too.  

6. Visual Attack Experiment 

To investigate the robustness of UILS against visual 

attack, two experiments are carried out. During the 

experiments, the attendants were become aware of 

embedded data in a guided manner. They were 

questioned about any unusual phenomena or evidence 

of covered data in host text, and were informed 

gradually about the position of embedded bits to check 

if they can observe anything unusual or not. These 

experiments were Visual Attack against printed host 

text and Attack Using capabilities of Microsoft Word. 

The experiment covers 60 men and women, which 

were familiar with English. Almost non-of them could 

detect any unusual phenomena, even while using 

Microsoft Word for DASH and SA attacks. 

7. Results and Discussions 

To investigate the efficacy and performance of UILS 

method and to extract essential information for 

estimation of required length of host text, an important 

parameter is introduced. The “Character per Bit”, 

namely CpB, indicates how many character of host 

text is employed to transfer a single bit of data. To 

calculate the CpB, some considerations should be 

noted. As the UILS covers the capabilities of CSS- 

and VSS-InLetSteg simultaneously, 1KB of randomly 

generated data is applied to these algorithms. To 

ensure the generality of study, the number of PRPs are 

checked to be in vicinity of half of inserted data. The 

absolute mean value of inserted data has deviation of 

%0.02441 from nominal mean value, showing the 

random process which generates the bits is fair 

enough. The sc and sMax considered being equal to 2n 

as 0≤n≤11, n ϵ N. Figure 3 illustrates CpB for UILS in 

constant step size and variable step size modes.  

As can be seen, the variable step size capability of 

UILS increases the efficiency %30 to %50 with 

respect to the efficiency of CSS-InLetSteg. The slight 

fluctuation of CpB of UILS in Variable Step Size 

mode is mainly due to the dependency of Sinsertion on 

statistical distribution of characters in host text.  

 

Figure 3. CpB of the UILS in VSS and CSS modes. 

The sMax=211 is far beyond the real and applicable 

requirements and far beyond the capabilities of 

nominal host texts. Embedding the proposed 1KB of 

data using sMax=211 will employ 107 characters, more 

than 6000 ordinary book-size pages. Applying CSS 

with sc=211 will employ 1.6×107 characters. So the 

curve of CpB for UILS in VSS mode could be 

considered as linear. To embed b bit of data using 

UILS in VSS mode with arbitrary sMax, the host text 

 (7) 

 (8) 

 (9) 



Unified Inter-Letter Steganographic Algorithm, A Text-based Data Hiding Method                                                                 837 

must contain φMax=0.7bsMax characters. The host text 

must contain φMax=bsc characters if UILS in CSS mode 

with arbitrary sc was used. 

To calculate the capacity of UILS method, some 

statistical calculations are required. To calculate the 

capacity of a text to embed payload statistically, many 

types of texts are examined and a value for average 

number of letters per word is calculated. Table 1 reports 

these values for different types of texts. Data is 

extracted using AnyCount® 7.0 software and all source 

files are converted to Microsoft Word 2010® format. 

Average number of letters per word, including spaces, 

ranges from 5.53 to 6.78 letters per word. Suggested 

value is 6.15 letters per word for English texts and 4.5 

letters per word when averaging process preformed 

over a database, such as reference words of dictionaries 

[12]. 6.15 letter per word is suitable value for future 

consideration and is called as “Average Capacity of 

Word” or CA. The CA consists of 5.15 letters per word 

and a space. 

Table 1. The average capacity of words for different type of texts.  

Type 

Characters 

Without 

Spaces 

Character 

With Spaces 
Words 

Average 

(Without 

Space) 

Average 

(With 

Spaces) 

Novel [22] 2632683 3132839 566402 4.64 5.53 

Scientific [8] 424313 498063 80324 5.28 6.20 

Political [13] 47774 55089 8120 5.88 6.78 

Business [19] 6297 7540 1253 5.03 6,01 

By applying UILS to a host text, which consists of m 

words in a paragraph and each word contains CA letters, 

the embedded payload can be calculated as 








 


),(

)1(

cMaxave

A
UILS

sss

mC
D

 (Bits) 

 

Figure 4. The capacity of UILS method in VSS and CSS modes to 

embed data in a text that consist of 200,000 words. 

The save is the statistical average value of step size 

for specific sMax and sc. The actual value of Save can be 

calculated statistically using appropriate values of sMax 

and sc to embed large amount of data, in host text which 

is long enough. Figure 4 illustrates the capacity of a 

long text to embed data. 

8. Conclusions 

A novel steganographic method was introduced to 

embed binary data into text. Noting that CSS and VSS 

InLetSteg methods are two suitable algorithms, the 

proposed method merged them into UILS algorithm 

with enhanced functionality with respect to the 

previous ones. The statistical investigation of the 

proposed algorithm revealed that UILS in VSS mode 

is %30 to %50 more efficient than when is in CSS 

mode with comparable step-size. In addition, the 

theoretical capacity of UILS method was justified. 

Excluding the End-of-Line and Inter-paragraph 

spacing to carry the embedded data, capability to 

activate VSS- and CSS- modes and finally the 

inability of standard word processors to mark the 

selected carrier characters have made the UILS highly 

robust against SA attack, RE attack, and DASH attack. 

In addition, the experimental investigation of the 

UILS method, using 60 attendants, revealed its 

robustness against Visual attack and approved the 

selection of the selected carrier character. The 

complexity of the algorithm is highly dependent on 

optimistic selection of Sinsertion. The selected procedure 

in Equation (9) is one of the possible choices out of 

many and has selected to show the capability of 

method and to extract some basic features of it, as 

described in Equations (5) and (6). This is why the 

brute force has not been calculated. 

References 

[1] Bailer W., “WbStego Steganography Tool” [web 

site], http://wbs- tego.wbailer.com, 

wbStego4open overview, Last Visited, 2018. 

[2] Bender W., Gruhl D., Morimoto N., and Lu A., 

“Techniques for Data Hiding,” IBM Systems 

Journal, vol. 35, pp. 313-336, 1996. 

[3] Culnane C., Treharne H., and Ho A., “A New 

Multi-Set Modulation Technique for Increasing 

Hiding Capacity of Binary Watermark for Print 

and Scan Processes,” in Proceedings of the 5th 

International Conference on Digital 

Watermarking, Germany, pp. 96-110, 2006. 

[4] Hamad N., “Hiding Text Information in a Digital 

Image Based on Entropy Function,” The 

International Arab Journal of Information 

Technology, vol. 7, no. 2, pp. 146-151, 2010. 

[5] Hernandez-Castro J., Blasco-Lopez I., Estevez-

Tapiador J., and Ribagorda-Garnacho A., 

“Steganography in Games: A General 

Methodology and its Application to the Game of 

Go,” Computers and Security, vol. 25, no. 1, pp. 

64-71, 2006. 

[6] Herodotus, the Histories, J. M. Dent and Sons 

Ltd., 1992. 

[7] Hossain M., Al Haque S., and Sharmin F., 

“Variable Rate Steganography in Gray Scale 

Digital Images Using Neighborhood Pixel 

Information,” The International Arab Journal of 

Information Technology, vol. 7, no. 1, pp. 34-38, 

2010. 

 (10) 



838                                                    The International Arab Journal of Information Technology, Vol. 17, No. 6, November 2020 

[8] Katzenbeisser S., Information Hiding Techniques 

for Steganography and Digital Watermarking, 

Artech House, 1999. 

[9] Kessler G., “An Overview of Steganography for 

the Computer Forensics Examiner,” Forensic 

Science Communications, vol. 6, no. 3, pp. 1-27, 

2004. 

[10] Kwan M., “The SNOW Home Page,” 

http://www.darksi- de.com.au/snow, Last Visited, 

2018. 

[11] Murphy B., “Syntactic Information Hiding in 

Plain Text,” Master Thesis, Trinity College, 2011. 

[12] Pierce J., “An Introduction to Information 

Theory: Symbols, Signals and Noise,” Dover 

Publications, pp. 75, 1961. 

[13] Political Declaration on HIV and AIDS: 

Intensifying Our Efforts to Eliminate HIV and 

AIDS, United Nations, A/RES/65/277, Resolution 

adopted by the General Assembly, USA, 2011. 

[14] Por L., Ang T., and Yin D., “WhiteSteg: A New 

Scheme in Information Hiding Using Text 

Steganography,” WSEAS Transactions on 

Computers, vol. 7, no. 6, pp. 735-745, 2008. 

[15] Por L. and Delina B., “Information Hiding: A 

New Approach in Text Steganography,” in 

Proceedings of the 7th WSEAS International 

Conference on Applied Computer and Applied 

Computational Science, Hangzhou, pp. 689-695, 

2008. 

[16] Por L., Wong K., and Chee K., “UniSpaCh: A 

Text-Based Data Hiding Method Using Unicode 

Space Characters,” The Journal of Systems and 

Software, vol. 85, no. 5, pp. 1075-1082, 2012. 

[17] Rahman M., Khalil I., Yi X., and Dong H., 

“Highly Imperceptible and Reversible Text 

Steganography Using Invisible Character based 

Codeword,” in Proceedings of the Pacific Asia 

Conference on Information Systems, PACIS 

Proceedings, 21st Pacific Asia Conference on 

Information Systems, Langkawi, pp. 1-13, 2017. 

[18] Reddy H. and Raja K., “Wavelet based Non LSB 

Steganography,” International Journal of 

Advanced Networking and Applications, vol. 03, 

no. 3, pp. 1203-1209, 2011. 

[19] Schuman M., “Spain’s Death Spiral and the 

Hypocrisy of the Euro,” Times Business, vol. 179, 

no. 15, 2012.  

[20] Tacticus A., Aineias the Tactician: How to 

Survive under Siege, Clarendon Press, 1990. 

[21] Tasheva A., Tasheva Z., and Nakov P., “Image 

Based Steganography Using Modified LSB 

Insertion Method with Contrast Stretching,” in 

Proceedings of the 18th International Conference 

on Computer Systems and Technologies, New 

York, pp. 233-240, 2017. 

[22] Tolstoy L., War and Peace, A Penn State 

Electronic Classics Series Publication, 

Pennsylvania State University, 1805. 

[23] Topkara M., Topkara U., and Atallah M., 

“Words are Not Enough: Sentence Level Natural 

Language Watermarking,” in Proceedings of 

ACM Workshop on Content Protection and 

Security, Santa Barbara, pp. 37-46, 2006.  

[24] Unicode Standard version 6.1, General 

Punctuation, Supplement Punctuation, Range 

2E00-2E7F, Unicode Inc. Press, USA, 2011. 

 

Ahmad Esmaeilkhah was born in 

June, 1981. He received his B.Sc. in 

2007, M.Sc. in 2013 in electrical 

engineering and his Ph.D. in 2019 in 

Telecommunication Engineering. 

He is now with University of Urmia. 

The main areas of his interest are 

Antenna, Scaling of Electromagnetic Structures, Radar 

and Steganography. 

Changiz Ghobadi was born in 

June, 1960 in Iran. He received his 

B.Sc. in Electrical Engineering 

Electronics and M.Sc. degrees in 

Electrical Engineering 

Telecommunication from Isfahan 

University of Technology, Isfahan, 

Iran and Ph.D. degree in Electrical-

Telecommunication from University of Bath, Bath, 

UK in 1998. Now he is a Professor in the Department 

of Electrical Engineering of Urmia University, Urmia, 

Iran. 

Javad Nourinia received his B.Sc. 

in Electrical and Electronic 

Engineering from Shiraz University, 

M.Sc. degree in Electrical and 

Telecommunication Engineering 

from Iran University of Science and 

Technology, and Ph.D. degree in 

Electrical and Telecommunication from University of 

Science and Technology, Tehran Iran in 2000. Now he 

is a Professor in the Department of Electrical 

Engineering of Urmia University, Urmia, Iran.  

Maryam Majidzadeh was born in 

1987 in Urmia, Iran. She received 

her B.Sc., in electrical engineering 

from Urmia University in 2009. As 

well, she received her M.Sc. and 

Ph.D. degrees in communication 

engineering from the same 

university in 2012, and 2016 respectively. She is now 

assistant professor in Department of Electrical and 

Computer Engineering, Urmia Girls Faculty, West 

Azerbaijan branch, Technical and Vocational 

University (TVU), Urmia, Iran.  


