
The International Arab Journal of Information Technology, Vol. 17, No. 6, November 2020 839

A Self-Healing Model for QoS-aware Web Service

Composition

Doaa Elsayed1, Eman Nasr3, Alaa El Ghazali4, and Mervat Gheith2

1Department of Information Systems and Technology, Cairo University, Egypt
2Department of Computer Science, Cairo University, Egypt

3Independent Researcher, Egypt
4Department of Computer and Information Systems, Sadat Academy for Management Sciences, Egypt

Abstract: In the Web Service Composition (WSC) domain, Web Services (WSs) execute in a highly dynamic environment, as a

result, the Quality of Service (QoS) of a WS is constantly evolving, and this requires tracking of the global optimization

overtime to satisfy the users’ requirements. In order to make a WSC adapt to such QoS changes of WSs, we propose a self-

healing model for WSC. Self-healing is the automatic discovery, and healing of the failure of a composite WS by itself due to

QoS changes without interruption in the WSC and any human intervention. To the best of our knowledge, almost all the

existing self-healing models in this domain substitute the faulty WS with an equivalent one without paying attention to the WS

selection processes to achieve global optimization. They focus only on the WS substitution strategy. In this paper, we propose a

self-healing model where we use our hybrid approach to find the optimal WSC by using Parallel Genetic Algorithm based on

Q-learning, which we integrate with K-means clustering (PGAQK). The components of this model are organized according to

IBM’s Monitor, Analyse, Plan, Execute, and Knowledge (MAPE-K) reference model. The PGAQK approach considers as a

module in the Execute component. WS substitution strategy has also been applied in this model that substitutes the faulty WS

with another equivalent one from a list of candidate WSs by using the K-means clustering technique. K-means clustering is

used to prune the WSs in the search space to find the best WSs for the environment changes. We implemented this model over

the NET Framework using C# programming language. A series of comparable experiments showed that the proposed model

outperforms improved GA to achieve global optimization. Our proposed model also can dynamically substitute the faulty WSs

with other equivalent ones in a time-efficient manner.

Keywords: Web service composition, self-healing, quality of service, user requirements, K-means clustering.

Received June 29, 2018; accepted January 28, 2020

https://doi.org/10.34028/iajit/17/6/2

1. Introduction

Service Oriented Architecture (SOA) is an

architectural style that uses loosely coupled,

distributed, and adaptive software applications [19].

Web Service (WS) is the underpinning of SOA. With

the popularity of WSs, Web Service Composition

(WSC) that combines atomic WSs from different

service providers together to satisfy users'

requirements has become one of the challenges in the

SOA [7]. The selection of the best WS from a lot of

candidate WSs according to Quality of Service (QoS)

is called QoS-aware WSC, which has become one of

the current hot topics [7]. As far as we know, there are

currently two main approaches proposed in the

literature for QoS-aware WSC, namely local and

global optimization [12]. The local optimization

approach involves selecting the best WS from its set of

candidate WSs for each Abstract Web Services (AWS)

individually. Although this approach is optimized

locally and efficient with low time complexity of

O(m), where m is the number of concrete WSs for each

AWS [26], the global QoS constraints of WSC may not

be satisfactory. Therefore, there are many algorithms

to solve the global optimization problem. The global

optimization approach considers QoS constraints and

preferences as a whole, for example, when the whole

response time is constrained. Genetic Algorithms

(GAs) are approaches commonly used for solving a

global optimization problem in QoS-aware WSC. The

performance of GAs depends on the initial population.

Therefore, we attempted to address this restriction in a

recent paper [8] by utilizing Q-learning to generate the

initial population to improve the performance of GAs.

The nature of GAs is time-consuming, so in another

recent paper [9], we aimed to make the algorithm as

time-efficient as possible by using the synchronous

master-slave Parallel Genetic Algorithm (PGA).

WSs execute autonomously in a highly dynamic

environment. Accordingly, WSC is characterized by

continuous evolution, as service providers may change

the QoS properties of WSs, existing WSs may be

unavailable, new WSs may become available, and

variations in the infrastructure may affect the

performance of the existing WSs [6]. Therefore, WSC

should be equipped with self-healing ability, which

means that a composite WS is automatically

discovered and healed itself according to the QoS

https://doi.org/10.34028/iajit/17/6/2

840 The International Arab Journal of Information Technology, Vol. 17, No. 6, November 2020

changes without stopping the WSC process, and

without any human intervention [18, 19]. The lack of

an effective self-healing ability during WSC at runtime

may violate the users’ requirements. In the literature,

several approaches have been proposed to solve the

QoS-aware WSC problem in a dynamic environment,

e.g., [1, 21, 22, 23, 24, 25]. These approaches do not

take into consideration the case of some WSs’ failures

that can lead to a whole disability of this WSC

workflow. Furthermore, these approaches cannot

support self-healing execution. In a recent paper [8],

we proposed a new hybrid approach for dynamic

optimization of WSC by using PGA based on Q-

learning that we integrated with K-means clustering.

We called this hybrid approach PGAQK. In this

current paper, we propose a self-healing model that

integrates our PGAQK approach with IBM’s

autonomic Monitor, Analyse, Plan, Execute, and

Knowledge (MAPE-K) reference model to fulfill the

QoS goals of WSC when changes occur in the

operational environment. The main focus of this model

is to keep WSC up to date of QoS changes that occur at

design and run times and satisfy global optimization.

The rest of this paper is organized as follows.

Section 2 gives a brief review of the related literature.

Section 3 presents our proposed new self-healing

model. Section 4 gives the evaluation of our model.

Finally, section 5 gives the conclusion and future work.

2. Related Work

In this section, we review the related work of self-

healing WSC available in the literature. Angarita et al.

[4] analysed the impact on the execution time of WSC

using different Fault Tolerant (FT) techniques in

different execution scenarios. This study focuses on

backward, forward, and replication recovery

techniques. The selection of these recovery techniques

is dynamic based on context information, the effect of

QoS attributes, and the execution state of composite

WSs when the failure occurs. Gupta and Bhanodia [11]

proposed a subset replacement mechanism for fault

tolerance in the WSC process. The replacement policy

of their mechanism replaces the subset of WSs that

contains the failed WS with another equivalent subset.

During the execution, their mechanism identifies

subsets of the failed WSs, and the subsets of the

equivalent ones. Then, the equivalent subsets are

ranked, and the best subset among them is selected.

Their mechanism, as published, was the prototype, and

there was no implementation. Rajendran et al. [18]

proposed a Dynamic Self-Healing (DSH) method that

uses the substitution healing method to heal a WS in a

dynamic environment. This method focuses on the

response time programming and the availability of the

WSs. Karray et al. [14] proposed an approach to

enhance the reliability of WSs based on aspect-

oriented programming and case-based reasoning. Their

approach implementation is in weather WSs. Li et al.

[15] also proposed a framework based on case-based

reasoning. Their framework is composed of a business

process part, an extractor part, and a case-based

reasoning part. The business process achieves the

users’ requirements. The extractor part extracts the

Functional Requirement (FR), Non-Functional

Requirement (NFR), and fault information. The faulty

information is classified into a case with a solution and

case without a solution. Their framework is not

efficient in complex WSC structures due to the case-

base becoming very large, and it doesn’t have

techniques to maintain it.

Boumhamdi and Jarir [5] presented the state of the

art of various types of failures and recovery methods.

They also proposed architecture for detecting and

dynamically recovering failure of the Business Process

Execution Language (BPEL) process based on the FR

of a user’s preferences. This architecture is composed

of five components. These components are request

analyser, discovered component, constraints manager,

selection manager, and orchestrator. When the

composite WS failure occurs, the BPEL adapter

substitutes the failure WS with alternative WS.

Jayashree and Anand [13] proposed a runtime fault

detection process for static, semi-dynamic, and

dynamic for WSC. BPEL is used to implement and test

static and semi-dynamic WSs; Web Ontology

Language for Services (OWL-S) is used to implement

and test dynamic WSs. Once faulty WSs are detected,

the meaningful error message displays to the user to

understand where and why the fault has occurred. The

user takes the necessary decision that resubmits the

service request or substitutes the failure WSs with

equivalent ones. Their approach is tested by use a

sample WS application. Subramanian et al. [20] extend

BPEL with a self-healing policy to enhancement it.

This policy monitors the BPEL activities due to

unexpected failures in the WS process, diagnoses the

cause of failure, and suggests a solution to this failure.

Diagnoses part policy uses the database to store failure

information. If failure information is not in the

database, human intervention is required. Poonguzhali

et al. [17] presented a self-healing approach which

focuses on WS unavailability. Their approach is

composed of BPEL monitor, diagnoser, and path

substituter. Their approach alternates the routing path,

which contains the failure WS to the nearby router to

the composer. Their mechanism, as published, is a

prototype, and there was no implementation.

The substitution process in most self-healing models

suffers from time consumption because these models

have to search all WSs in the search space to find the

corresponding WSs to the faulty WS. These models

also do not consider WS selection processes to achieve

global optimization. Therefore, we integrate our

PGAQK approach with IBM’S MAPE-K to adjust

WSC to appropriate a variable environment where the

A Self-Healing Model for QoS-aware Web Service Composition 841

properties of the composite WSs continue being

variable and also achieve better global optimization.

3. Our Proposed Self-Healing Model

Figure 1 gives an illustration of our proposed self-

healing model. The inputs to this model are sequential

AWS workflow and the candidate WSs that can use to

construct the concrete WSC. The components of this

model organize according to the MAPE-K loop. The

explanation that underpins the components of this

model describes in more detail below in the following

subsections.

3.1. The Execute Component

The Execute component involves the PGAQK module

and the adaptation manager module. PGAQK is a

global optimization approach, which comprises PGA,

Q-learning, and K-means clustering, as mentioned

before. These techniques are integrated to generate a

global optimal WS selection plan that results in

concrete WSC, which can ensure the users’ QoS

requirements. The general process of WS selection

using PGAQK illustrates in Figure 2. The PGAQK is

composed of creating the Q-table using Q-learning,

encoding the Q-table to the initial population, and

applying the master-slave PGA on the population. Our

recent publications [6, 7] describe how to create Q-

table and encode it to the initial population. In the

master-slave PGA, the single initial population stores

in the master, and the fitness function is distributed and

evaluated in the slaves. After the master receives the

fitness value for all populations from the slave, the

roulette wheel selection is applied to select the parent

chromosomes. Then the crossover is applied to the

parent chromosomes depended on the crossover rate.

Finally, the K-means clustering mutation is applied to

the new offspring from the crossover. PGAQK in

detail is described in our recent publication [14].

Figure 1. The flowchart of our proposed self-healing model.

842 The International Arab Journal of Information Technology, Vol. 17, No. 6, November 2020

Figure 2. The flowchart of PGAQK architecture.

The adaptation manager receives notification from

the adaptation policy module in the Plan component

when a fault detects at the system. Once the fault is

detected at design time, the PGAQK process pauses

temporarily until the adaption action finish. Then, the

PGAQK process resumes. At runtime, the fault can

occur in atomic WS during the execution of the WSC.

This atomic fault can lead to all WSC failure. It is

mandatory to detect this failure, and the adaptation

manager works on it based on a specified adaptation

policy.

3.2. The Plan Component

The role of the Plan component is to identify the

appropriate adaptation policy for the current situation.

Adaptation policies correspond to self-healing features

that enable configuration to respond to WS failure such

as unavailability of WS and poor response. In our case,

the adaptation action mainly focuses on substitution

strategy in the case of unavailability of service, service

failure, and variation in the QoS attribute of WS. The

substitution strategy identifies the WS that replaces the

faulty WS. The K-means clustering is applied to cluster

the candidate WSs to identify the cluster that has the

nearly QoS equivalent to faulty WS. In algorithm 1, the

pseudocode for the substitution strategy is illustrated.

Algorithm 1: The pseudocode for the substitution strategy

Retrieve the fitness function score of the faulty WS.

Retrieve the cluster number of the faulty WS.

Repeat for each candidate WSs in the cluster number of the

failure WS.

Calculate the substitution Coefficient between the faulty WS,

and candidate WSs by using (1):

𝑆𝑐(𝑄𝑖 , 𝑄𝑗) =
𝐹𝑄𝑗

𝐹𝑄𝐽
−𝐹𝑄𝑖

Where 𝑆𝑐(𝑄𝑖 , 𝑄𝑗) represents the substitution Coefficient

between faulty WS𝑗, and candidate WS𝑖. 𝑄𝑖 represents candidate

WS. 𝑄𝐽 represents the faulty WS. 𝐹𝑄𝑗
 represents the fitness

function of faulty WS, and 𝐹𝑄𝑖
 represents the WS of candidate

WS𝑖.
Until all candidate WSs in the cluster have been covered.

Select the candidate WS with the highest substitution

Coefficient.

End applying K-means clustering algorithm in the case of faulty

WS.

In the case of emerging new WS to candidate WSs, the

fitness value of this WS calculate by using Multiple

Criteria Decision Making (MCDM) to aggregate all

QoS attributes to the same scale. For the negative QoS

attributes such as response time and cost, values are

scale according to the Equation (2). For the positive

QoS attributes such as availability, and reliability the

values are scale according to the Equation (3). After

that, this WS assigns to the corresponding WS cluster

based on fitness value.

{
∑

(𝑄𝑖𝑗−𝐿𝑖𝑗)

(𝑈𝑖𝑗−𝐿𝑖𝑗)

𝑟
𝑗=1 ∗ 𝑤𝑗

∑ 1 ∗ 𝑤𝑗
𝑟
𝑗=1

|
𝑖𝑓𝑈𝑖𝑗 − 𝐿𝑖𝑗 ≠ 0

𝑖𝑓𝑈𝑖𝑗 − 𝐿𝑖𝑗 = 0
}

{
∑

(𝑈𝑖𝑗−𝑄𝑖𝑗)

(𝑈𝑖𝑗−𝐿𝑖𝑗)

𝑟
𝑗=1 ∗ 𝑤𝑗

∑ 1 ∗ 𝑤𝑗
𝑟
𝑗=1

|
𝑖𝑓𝑈𝑖𝑗 − 𝐿𝑖𝑗 ≠ 0

𝑖𝑓𝑈𝑖𝑗 − 𝐿𝑖𝑗 = 0
}

Equations (2) and (3) assume that each service has r

QoS criteria. A Q is a QoS matrix of WSs, in which

each row Qj corresponds to a WS i, while each column

corresponds to a QoS dimension. Uij and Lij are the

upper, and lower values of a QoS criterion in the matrix

Q respectively. wj represents the weight criterion j.

These values are provided by the users into the range of

0 to1 based on their preferences.

In the case of variation in QoS attributes of WS, the

WS removes from the WS cluster and then assigns it

into the corresponding WS cluster based on new fitness

value.

3.3. The Monitor, and Analysis Component

The Monitor and Analysis component is responsible for

capturing changes in the environment. This component

(1)

(2)

(3)

A Self-Healing Model for QoS-aware Web Service Composition 843

involves the QoS monitor module and the concrete WS

monitor module. The QoS monitor module is

responsible for capturing changes in the candidate

WSs. Whenever this module detects a change that

occurs in candidate WSs, PGAQK in the Execute

component suspends until the adaptation policy

executes.

The concrete WS monitor is responsible for

capturing changes in the concrete WS at the runtime. If

they are relevant, the trigger sends to the Plan

component to determine the adaptation policy.

Currently, tracked changes may include:

1. The availability of WS may evolve as new WS

emerge, and old WS replaces or existing WS

temporarily disconnected due to maintenance.

2. QoS attribute value such as price is variation.

3.4. The Knowledge Component

All the knowledge that other components need is stored

in this component. It considers as a storage layer. After

constructing the AWS workflow, the candidate WSs

attributes for each AWSs extract from WSDL files and

store in candidate WSs storage in

the Knowledge component. These candidate WSs use

in the PGAQK module in the Execute component to

construct concrete WSs workflow. The initial

population storage creates by using the Q-learning

technique in the PGAQK module, and it changes in

each PGA generation. After applying the K-means

clustering in the candidate WSs, the K-means centroids

and candidate WSs clusters create and store in K-

means centroids storage and candidate WSs storage.

These storages use in the PGAQK module at K-means

clustering mutation operator and in the adaptation

policy module in the Plan component.

4. Aluations

In this section, we report the experiments that we

carried out for evaluating our new self-healing model.

We used the Quality of Web Service (QWS) dataset [2,

3] in our experiments, which include 364 data records.

The data records were collected from all kinds of

public sources on the Web, such as Universal

Description, Discovery, and Integration (UDDI)

registries, search engines, and service portals. In our

experiments, we consider three QoS attributes for

services; namely, cost, response time, and reliability.

The weight of the cost, response time, and reliability

services are 0.5, 0.2, and 0.3 respectively. In order to

evaluate our proposed model, the algorithm was

implemented over .NET Framework platform 4.7 using

C# programming language. The SQL server 2014 was

used to save the Knowledge layer component. The

experimental results were conducted on a Dell Laptop

with an Intel Core i7 at 2.50 GHz, 8 GB Random

Access Memory (RAM), and running Microsoft

Windows 10.

We held two experiments for evaluation. The first

one compares our new model with the improved GA

approach utilized by Liue et al. [16] to compare the

resulting fitness value results. The second experiment

compares our model with the PGAQK approach

proposed in the recent paper [14] to compare time

consumption to substitute the faulty WSs with another

equivalent one.

4.1. Fitness Value Results

The first experiment aims to examine the efficiency of

this model in the Execute component to enable WSC to

achieve the optimal solution. In a recent paper [14], we

showed the effectiveness of the PGAQK module in the

Execute component compared to the traditional PGA

and Q-learning approaches in terms of fitness values. In

this paper, the fitness of the PGAQK module is

evaluated by comparing it with the improved GA

approach utilized by Liue et al. [16] which combines

Ant Colony Optimization (ACO), and GA. In [16], GA

is improved by utilizing ACO to generate the initial

population. We use the parameters given in Table 1

below to test data. We implemented the algorithm and

recorded the best fitness value.

Table 1. Parameters setting.

Parameter Value

Crossover probability 0.8

Mutation 0.2

∝ 0.5

𝜸 0.8

𝜺 −greedy 0.85

Number of ants 70

Alpha, and Beta 1

Iteration 72

The fitness function in PGAQK is the total reward

for each AWS in a WSC path. The number of the initial

population is the same as the episodes’ number. Figures

3, 4, and 5 illustrate the experiment’s results for 500,

1000, and 2000 chromosomes in the initial population

respectively. The number of generations is 10, 20, 50,

and 100. The WSC consists of 10 AWSs. The optimal

solution is the chromosome with the best cumulative

reward. As could be seen from Figures 3, 4, and 5 the

optimal solution in the case of using PGAQK is

generally better than the optimal solution in the case of

using Improved GA. to As could be seen from these

figures, the best optimal solution was 8.14. In the case

of using PGAQK, the best optimal solution found in

500, 1000, and 2000 chromosomes in the initial

population while this optimal solution didn’t find in the

case of using improved GA.

844 The International Arab Journal of Information Technology, Vol. 17, No. 6, November 2020

Figure 3. The optimal solutions for 500 chromosomes in the

population.

Figure 4. The optimal solutions for 1000 chromosomes in the

population.

Figure 5. The optimal solutions for 2000 chromosomes in the

population.

Figure 6 illustrates the experiment results for 500,

1000, 2000, 2500, 3000, 3500, and 4000 chromosomes

in the initial population. The number of generations is

10. In the case of using PGAQK, the optimal solution

in the initial population of 500 chromosomes was 7.86.

Then the curve progressively increased until it reached

the best optimal solution of 8.14 in the cases of 1500,

and 2000 chromosomes in the initial population. After

that, the curve went down in the case of 2500

chromosomes in the initial population. In the cases of

3000, 3500, and 4000 chromosomes in the initial

population, the best optimal solution was obtained

again. In using the improved GA approach, the best

optimal solution was 5.9, which was obtained in the

case of 3000 chromosomes in the initial population.

Hence it could be deduced that PGAQK is better than

the improved GA approach.

Figure 6. The optimal solution from 500 to 4000 chromosomes in

the initial population.

4.2. Execution Time

For the cost of our proposed model, we measured it by

using the execution time for substituting the 2% of

faulty WSs with another equivalent one. We chose to

measure the execution time in seconds. Figure 7

illustrates the computation time for the same 100

chromosomes for the proposed model, and the PGAQK

approach proposed in the recent paper [14]. The

number of AWS is varied from 10 to 100 AWSs. As

could be seen from Figure 5, the time consumption to

substitute the 2% of faulty WSs with another

equivalent one by using the PGAQK approach is much

more effective than our proposed model when the

AWS less than 30 AWSs. Otherwise, the time

consumption of our proposed model is much more

effective than the PGAQK approach.

Figure 7. The total time to substitute the faulty WSs with another

equivalent one when AWS varied from 10 to 100.

In the second experiment, the number of the initial

population is varied from 100 to 1000 chromosomes;

the number of AWSs is 10 WSs. As could be seen from

Figure 8, the time consumption to substitute the 2% of

faulty WSs with another equivalent one by using the

PGAQK is much more effective than our proposed

model when the chromosome less than 300

chromosomes. Otherwise, the time consumption of our

proposed model is much more effective than the

PGAQK approach. Hence, we can deduce that the time

consumption of our proposed model is much more

effective when the number of chromosomes more than

200 chromosomes or in the case of AWS is more than

30 AWSs.

A Self-Healing Model for QoS-aware Web Service Composition 845

Figure 8. The total time to substitute the faulty WSs with another

equivalent one when the initial population varied from 100 to 1000.

5. Conclusions, and Future Work

This paper presents a new self-healing model for QoS-

aware WSC, which focuses on adjusting WSC to

appropriate a variable environment where the

properties of the composite WSs continue being

variable and also attend to the WS selection processes

to achieve global optimization. Therefore, this model

integrates the PGAQK approach with IBM's MAPE-K

reference model. The PGAQK approach is a module in

the Execute component used to achieve global

optimization and fulfill emerging users’ requirements.

The PGAQK approach in this model was improved by

clustering and preserving the candidate WSs in

the Knowledge component. When a faulty WS occurs,

the most appropriate cluster is determined from

the Knowledge component, and then the equivalent WS

to the faulty WS is determined from that specific

cluster. Experiment results show that the PGAQK in

the Execute component is more effective than the

improved GA approach in terms of fitness value. In

terms of computation time, our model improved WS

substitution time, especially when the number of

atomic WSs is large. In our future work, we intend to

improve the time of our proposed model to achieve

global optimization. We intend to investigate other

ways of adapting compositions including changes in

the structure of the composition’s workflow, e.g.,

replacing one WS with a set of WSs, or vice-versa.

References

[1] Abbassi I., Graiet M., Boubaker S., Mourad K.,

and Hadj-Alouane N., “A Formal Approach for

Verifying QoS Variability in Web Services

Composition using EVENT-B,” in Proceedings

of the IEEE International Conference on Web

Services, New York, pp. 519-526, 2015.

[2] Al-Masri E. and Mahmoud Q., “Discovering the

Best Web Service,” in Proceedings of the 16th

International Conference on World Wide Web,

New York, pp. 1257-1258, 2007.

[3] Al-Masri E. and Mahmoud Q., “QoS-based

Discovery, and Ranking of Web Services,” in

Proceedings of 16th International Conference on

Computer Communications and Networks,
Honolulu, pp. 529-534, 2007.

[4] Angarita R., Cardinale Y., and Rukoz M.,

“Reliable Composite Web Services Execution:

Towards a Dynamic Recovery Decision,”

Electronic Notes in Theoretical Computer

Science, vol. 302, pp. 5-28, 2014.

[5] Boumhamdi K. and Jarir Z., “An Approach to

Support Monitoring, and Recovery of BPEL

Processes at Runtime,” International Journal of

Computer Applications, vol. 43, no. 2, pp. 34-41,

2012.

[6] Cardellini V., Casalicchio E., Grassi V., Iannucc

S., Presti F., and Mirandola R., “MOSES: a

Platform for Experimenting with QoS-driven

Self-adaptation Policies for Service Oriented

Systems,” in Proceedings of Software

Engineering for Self-Adaptive Systems 3.

Assurances, Germany, pp. 409-433, 2013.

[7] Dai Y., Yang L., and Zhang B., “QoS-Driven

Self-Healing Web Service Composition Based on

Performance Prediction,” Journal of Computer

Science, and Technology, vol. 24, no. 2, pp. 250-

261, 2009.

[8] Elsayed D., Nasr E., Ghazali A., and Gheith M.,

“A New Hybrid Approach using Genetic

Algorithm, and Q-learning for QoS-aware Web

Service Composition,” in Proceedings of the 3rd

International Conference on Advanced Intelligent

Systems, and Informatics, Cairo, pp. 537-546

2017.

[9] Elsayed D., Nasr E., Ghazali A., and Gheith M.,

“Integration of Parallel Genetic Algorithm, and

Q-learning for QoS-aware Web Service

Composition,” in Proceedings of the 12th

International Conference on Computer

Engineering, and Systems, Cairo, pp. 221-226,

2017.

[10] Elsayed D., Nasr E., Ghazali A., and Gheith M.,

“PGAQK: An Adaptive QoS-aware Web Service

Composition Approach,” International Journal of

Intelligent Engineering, and Systems, vol. 11, no.

4, pp. 231-240, 2018.

[11] Gupta S. and Bhanodia P., “A Fault Tolerant

Mechanism for Composition of Web Services

using Subset Replacement,” International

Journal of Advanced Research in Computer, and

Communication Engineering, vol. 2, no. 8, pp.

3080-3085, 2013.

[12] Jatoth C., Gangadharan G., and Buyya R.,

“Computational Intelligence based QoS-aware

Web Service Composition: A Systematic

Literature Review,” IEEE Transactions on

Services Computing, vol. 10, no. 3, pp. 475-492,

2015.

[13] Jayashree K. and Anand S., “Run Time Fault

Detection System for Web Service Composition,

846 The International Arab Journal of Information Technology, Vol. 17, No. 6, November 2020

and Execution,” Smart Computing Review, vol. 5,

no. 5, pp. 469-482, 2015.

[14] Karray M., Ghedira C., and Maamar Z.,

“Towards a Self-Healing Approach to Sustain

Web Services Reliability,” in Proceedings of the

Workshops of International Conference on

Advanced Information Networking, and

Applications, Singapore, pp. 267-272, 2011.

[15] Li G., Liao L., Song D., Wang J., Sun F., and

Liang G., “A Self-healing Framework for QoS-

Aware Web Service Composition via Case-Based

Reasoning,” in Proceedings of Asia-Pacific Web

Conference, Sydney, pp. 654-661, 2013.

[16] Liu H., Zhong F., Ouyang B., and Wu J., “An

Approach for QoS-aware Web Service

Composition based on Improved Genetic

Algorithm,” in Proceedings of the International

Conference on Web Information Systems, and

Mining, Sanya, pp. 123-128, 2010.

[17] Poonguzhali S., JerlinRubini L., and Divya S., “A

Self-Healing Approach for Service Unavailability

in Dynamic Web Service Composition,” The

International Journal of Computer Science, and

Information Technologies, vol. 5, no. 3, pp. 4381-

4383, 2014.

[18] Rajendran V., Chua F., and Chan G., “Self-

Healing in Dynamic Web Service Composition,”

in Proceedings of the 5th International

Conference on Future Internet of Things, and

Cloud, Prague, pp. 206-211, 2017.

[19] Rastegari Y. and Shams F., “A Dynamic

Architecture for Runtime Adaptation of Service-

based Applications,” The International Arab

Journal of Information Technology, vol. 16, no.

3, pp. 397-406, 2019.

[20] Subramanian S., Thiran P., Narendra N.,

Mostefaoui G., and Maamar Z., “On the

Enhancement of BPEL Engines for Self-Healing

Composite Web Services,” in Proceedings of the

International Symposium on Applications, and

the Internet, Turku, pp. 33-39, 2008.

[21] Wang H., Chen X., Wu Q., Yu Q., Zheng Z., and

Bouguettaya A., “Integrating On-policy

Reinforcement Learning with Multi-agent

Techniques for Adaptive Service Composition,”

in Proceedings of the 12th International

Conference Service Oriented Computing, Paris,

pp. 154-168, 2014.

[22] Wang H., Wang X., Hu X., Zhang X., and Gu M.,

“A Multi-Agent Reinforcement Learning

Approach to Dynamic Service Composition,”

Journal of Information Sciences, vol. 363, pp. 96-

119, 2016.

[23] Wang H., Wu Q., Chen X., Yu Q., Zheng Z., and

Bougu A., “Adaptive, and Dynamic Service

Composition via Multi-agent Reinforcement

Learning,” in Proceedings of the IEEE

International Conference on Web Services,

Anchorage, pp. 447-454, 2014.

[24] Wang H., Zhou X., Zhou X., Liu W., and Li W.,

“Adaptive, and Dynamic Service Composition

Using Q-Learning,” in Proceedings of the 22nd

International Conference on Tools with Artificial

Intelligence, Arras, pp. 145-152, 2010.

[25] Xia Y., Chen P., Bao L., Wang M., and Yang J.,

“A QoS-Aware Web Service Selection Algorithm

Based On Clustering,” in Proceedings of the

IEEE International Conference on Web Services,
Washington, pp. 428-435, 2011.

[26] Zou G., Lu Q., Chen Y., Huang R., Xu Y., and

Xiang Y., “QoS-Aware Dynamic Composition of

Web Services using Numerical Temporal

Planning,” IEEE Transactions on Services

Computing, vol. 7, no. 1, pp. 18-31, 2014.

Doaa Elsayed received her Ph.D.

degree in Information Systems, and

Technology from Cairo University,

Egypt, in 2019. She is currently a

Lecturer at the Computer, and

Information Systems Department in

Sadat Academy for Management

Sciences. Her research interests include web services,

requirements engineering, optimization algorithms, and

data mining.

Eman Nasr is a Ph.D. degree holder in Computer

Science. She is currently an Independent Scholar. Her

research interests include software engineering,

requirements engineering, and embedded software

systems.

Alaa El Ghazali is currently a

Professor of Computer and

Information Systems at Sadat

Academy for Management Sciences,

Egypt. His research interests include

software engineering economics,

decision support systems, business

intelligence, and mobile computing.

Mervat Gheith is currently an Associate Professor in

the Department of Computer Science in the Faculty of

Graduate Studies for Statistical Research at Cairo

University, Egypt.

