
The International Arab Journal of Information Technology, Vol. 17, No. 6, November 2020 847

Synthesizing Conjunctive and Disjunctive Linear

Invariants by K-means++ and SVM

Shengbing Ren and Xiang Zhang

School of Computer Science and Engineering, Central South University, China

Abstract: The problem of synthesizing adequate inductive invariants lies at the heart of automated software verification. The

state-of-the-art machine learning algorithms for synthesizing invariants have gradually shown its excellent performance.

However, synthesizing disjunctive invariants is a difficult task. In this paper, we propose a method k++ Support Vector

Machine (SVM) integrating k-means++ and SVM to synthesize conjunctive and disjunctive invariants. At first, given a

program, we start with executing the program to collect program states. Next, k++SVM adopts k-means++ to cluster the

positive samples and then applies SVM to distinguish each positive sample cluster from all negative samples to synthesize the

candidate invariants. Finally, a set of theories founded on Hoare logic are adopted to check whether the candidate invariants

are true invariants. If the candidate invariants fail the check, we should sample more states and repeat our algorithm. The

experimental results show that k++SVM is compatible with the algorithms for Intersection Of Half-space (IOH) and more

efficient than the tool of Interproc. Furthermore, it is shown that our method can synthesize conjunctive and disjunctive

invariants automatically.

Keywords: Software verification, conjunctive invariant, disjunctive invariant, k-means++, SVM.

Received September 5, 2018; accepted January 28, 2020

https://doi.org/10.34028/iajit/17/6/3

1. Introduction

With the increasing size and complexity of software, it

is more difficult and complex to verify the correctness

of the software. Thus, how to ensure the correctness of

software has aroused enough attentions [19, 26, 27]. In

order to handle this problem, one of the popular

techniques is the software verification [4].

However, the limitations of manual verification are

becoming more and more obvious, and software

verification technology needs innovative development.

In recent years, the automated techniques and tools for

software verification have gradually become an

important research direction [10].

In the process of automated program verification,

synthesizing inductive invariants plays a key role [28].

An invariant means that it is closed with respect to the

transition relation of the program, and it guarantees

that any execution of a statement in the program

changes from a state that belongs to the invariant

region to other state. Once adequate inductive

invariants have been found, the problem of software

verification can be reduced to logical validity of

verification conditions, which are solved with the

advances in automated logic solvers [7, 8]. What’s

more, invariants also can be useful for compiler

optimization, program understanding [18], bug

detection [5].

In the past, people have put forward a lot of

solutions to synthesize inductive invariants including

model checking, abstract interpretation [3], Craig’s

interpolation [20]. Although, these techniques are able

to compute invariants, they have their own inherent

hardness, accompanied by certain limitations. For

example, model checking can successfully synthesize

invariants when the program has a finite state-space or

the paths in the program are bounded. However, for

programs over an infinite domain, such as integers,

with unbounded number of paths in the program,

model checking is doomed to fail [7]. With the rapid

development of artificial intelligence, the state-of-the-

art machine learning algorithms, such as Support

Vector Machine (SVM) [17, 24], decision trees [8, 15],

and learning using Examples, Counter-examples, and

Implications (ICE) [6], have been applied to synthesize

invariants in recently years.

Recently, a great deal of approaches are based on

guess-and-check model to synthesize invariants [6, 8

17, 22, 23, 24, 25]. Roughly speaking, those models

regard the problem of synthesizing invariants as two

parts, learner and teacher. The learner synthesizes

candidate invariants and the teacher checks whether

the candidate invariants are true invariants by a set of

theories founded on Hoare logic in each round. If not,

this model should give more details for learner to

revise candidate invariants until the candidate

invariants pass the checking. A common problem with

the guess-and-check model is that their effectiveness is

often limited by the samples collected in the first phase

[17]. The paper [17] gives us an ideal that we can use

selective samples to improve the efficiency.

848 The International Arab Journal of Information Technology, Vol. 17, No. 6, November 2020

In this paper, we develop a new method, called

k++SVM, based on k-means++ [1], SVM [2], Hoare

logic [13, 23, 25], selective samples and the guess-and-

check model to synthesize invariants. At first, we

collect samples and then cluster positive samples by k-

means++. Secondly, SVM is adopted to separate

positive samples from negative samples and get the

hyper plane equations. The final step is to check the

correctness of our results by Hoare logic.

1.1. Our Contributions

This paper makes the following contributions:

 We propose a method based on k-means++, SVM,

Hoare logic, selective samples and the guess-and-

check model to synthesize not only conjunctive

invariants but disjunctive invariants as well.

 We show that our method has the ability to

automatically synthesize conjunctive and

disjunctive invariants. Actually, automatically

synthesizing conjunctive and disjunctive invariants

is a big challenge. Our method solves this problem

in a unique way.

 We have implemented our method in Python for

synthesizing invariants and we compare it with the

algorithm Intersection of Half-space (IOH) and a

tool named Interproc. The experimental results

show that our method is compatible with IOH.

Furthermore, it is shown that our method can

synthesize conjunctive and disjunctive invariants

automatically while the IOH and Interproc cannot.

1.2. Organization

The rest of the paper is organized as follows. We

simply introduce our method by the way of two

examples in section 2. Next, section 3 reviews related

work. In section 4, we describe necessary material

including sampling, k-means++, algorithms for

intersection of half-space and Hoare logic. And then

we give a detailed process of k++SVM in section 5. In

section 6, we show the experimental results and verify

the effectiveness of our algorithm. Finally, section 7

concludes with some directions for future work.

2. The Motivating Examples

2.1. Conjunctive Invariants

Considering the program in Figure 1, it has two integer

variables x and y. After passing two loops, the value of

x and y have changed. In the end, we should check

whether the bad state error() can be reached by the

value of y. If the error() state cannot be reached, the

initial values of x, y and their metabolic values in the

program paths are good states. If we give a arbitrary

values of x, y, then the error() state is reached after

executing the program. Only the initial values of x, y,

except their values in the path, are bad states. Suppose

we consider a path that goes through the two loops

once. We sample these two points {(0, 0), (1, 1)} as

good states and points {(0, 1), (1, 0)} as bad states.

Figure 1 gives the codes and plots the distribution of

these four points. The solid points represent positive

samples and the hollow points represent negative

samples.

By observing the program, we find the tendency of

the variables is linear, thus only linear inequalities,

rather nonlinear inequalities, can better characterize the

intrinsic properties of this program. So we adopt the

machine learning algorithm of linear kernel SVM to

obtain the linear inequalities. Unfortunately, the

distribution of this four points cannot be separated by

using linear kernel SVM once. However, there exist

two linear inequality 2y<2x+1 and 2y>2x-1 which are

able to represent invariants (see the two straight lines

in Figure 1). Our solution is that, firstly, we use k-

means++ to cluster the positive samples (0,0), (1,1) as

one cluster in the condition the value of k is 1. If we

choose the negative sample (0, 1) with positive sample

cluster and use linear kernel SVM, we can get the

invariant 2y<2x+1. Similarly, if we choose another

negative samples (1, 0) with positive sample cluster

and use SVM, we can get the invariants 2y>2x-1. After

we take the intersection of two inequalities, we can get

the result 2y>2x-1˄ 2y<2x+1. Because the type of x

and y is integer, our result can be equivalent

to x≤y x≥y  . And then we can regard x=y as final

result. Finally, by a set of theories of Hoare logic, it

can be checked that x=y is an invariant which is

sufficient to prove the error() state is unreachable.

1. foo(){

2. x = y = 0;

3. while(*){

4. x++; y++;

5. }

6. while(x != 0){

7. x--; y--;

8. }

9. if(y != 0){

10. error();

11. }

12. }

Figure 1. Conjunctive invariants.

2.2. Disjunctive Invariants

Considering the program in Figure 2, we sample in the

same way as example 1. For instance, if we assume the

values of x and y are (0, -3), then the states we reach

are {(-1, -2), (-2, -1), (-3, 0)} and thus these are all

good states. Similarly, if we define their values as (-2,

2), then the states we reach are {(-1, 1), (0, 0)} which

violate the assertion and thus (-2, 2) is a bad state. And

if we directly define their values are (0, 0), then the

loop will not run and the value of x is 0 which violates

the assertion as well. We plot samples in a coordinate

system.



-

-

Synthesizing Conjunctive and Disjunctive Linear Invariants by K-means++ and SVM 849

1.fun(){

2.sint x,y;

3. assume x = 0, y != 0;

4. while (y != 0){

5. if (y<0){

6. x = x - 1; y = y + 1;

7. }else{

8. x = x + 1; y = y - 1;

9. }

10. }

11. assert (x != 0);

12.}

Figure 2. Disjunctive invariants.

Then we arbitrarily choose one negative sample and

all positive samples and continue to use linear kernel

SVM. Of course, we cannot get a correct result,

because positive samples are distributed among

multiple clusters. Under these circumstances, positive

and negative samples cannot be linear separated. The

solution is that we use k-means++ to cluster positive

samples first. The value of k in k-means++ is two,

which is the most suitable value with this example.

Then we separate every positive samples cluster

respectively from all negative samples by using SVM.

Then the result is y > -x + 0.5 y < -x - 0.5 . It is worth noting

that all negative samples, rather than one negative

sample, are chosen. There are some differences from

the last example. For separating every positive samples

cluster from all negative samples, using SVM once is

workable under this kind of circumstances. Similarly,

we should check whether our results are correct in the

end.

3. Related Work

The closest related work for invariants generation were

based on machine learning algorithms and guess-and-

check model. In [24], the authors originally proposed a

method using SVM to compute invariants. For linear

invariants, when the samples could not be linearly

separated, the authors come up with a method, called

IOH, to get the invariants by using linear kernel SVM

many times. In [17], the authors proposed to apply

IOH to synthesize conjunctive invariants and path-

sensitive classification to synthesize disjunctive

invariants. Moreover, the technique in that paper

reduced the number of guess-and-check iterations by

selective samples. In [15], the authors considered the

problem of inferring the inductive invariants for

verifying program safety as binary classification. They

utilized decision tree algorithm to learn candidate

invariants in form of arbitrary boolean combinations of

numerical in-equalities. The paper [6] proposed a

robust framework ICE for learning invariants. ICE had

two components: a white-box teacher and a black-box

leaner. The leaner synthesized invariants and the

teacher checked the correctness of the invariants in

each round. If the check failed, the teacher come up

with constraints for leaner to refine invariants. This

method was a typical form of guess-and-check model.

The paper [23] described a general framework for

computing invariants by iteratively executing two

phases. The search phase applied randomized search to

discover candidate invariants and the validate phase

applied checker to validate the correctness of the

candidate invariants. The paper [22] proposed a data

driven approach for generating algebraic polynomial

loop invariants. Firstly, the method collected the value

of the variables by executing a specific program.

Secondly, it obtained a data matrix according to a

template and upper bound d. Next, this method used

linear algebra techniques to compute a candidate

invariant. Finally, it checked the effectiveness of the

candidate invariants. Our work is inspired by above

paper. Our method uses machine algorithms to

synthesize invariants, adopts guess-and-check model to

ensure the correctness of the invariants and collects

selective samples to reduce the number of iterations.

4. Preliminaries

4.1. Sampling

If we regard a program as a transition system, the

states of program can be split in two states-good states

and bad states-when we execute the program. The

good states are states that include the initial states of

the program and can satisfy a specified safety

specification while bad states cannot satisfy. If the

program is correct, then there is no transition sequence

from an initial state to a bad state. Reach is the set of

reachable states and I is an adequate inductive

invariant that to distinguish these two states [7] (see

Figure 3). If we can assure any state in the program

belongs to Init and Reach, this program is correct.

Figure 3. Program state space.

The above interpretations guide us how to sample.

A good state is defined as any state that the program

could conceivably reach when it is started from a state

consistent with the precondition [20]. In other words,

the initial value and their changed values which can

make bad state is unreachable are both positive

samples. Similar, bad states are defined as states,

except the states in program path, that will make

assertion fail after executing the program. Thus, the

values that will make assertion fail represent the

negative samples.

In the following, we give the formalized description

of good states and bad states. Suppose that we are

given a Hoare triple in the following form:



-

-



850 The International Arab Journal of Information Technology, Vol. 17, No. 6, November 2020

tion//postcondi{Post}

body/ /Loop){C} Cond While(

tion/ /precondi{Pre}

We assume that s represents those state before Pre, s’

are the states in the loop body, and s’’ are the states out

of loop body but before the Post. The positive samples

a negative samples are:

}

Post 's'

's's's Pres

| states's' states,s' states,s

{ states eP







ositiv

}

Post 's'

's's's Pres

| states's' states,s' states,s

{ states Negative









4.2. K-means++

K-means++ proposed by Arthur and Vassilvitskii [1] in

paper, is a kind of unsupervised machine learning

algorithm on the basis of k-means for clustering. Given

a train set and a hyper parameter k which decides the

number of the result cluster, k-means is first to select k

samples arbitrarily as the initial cluster center and then

calculate the distance, Euclidean distance is the most

common, from each sample point to each cluster center.

Next, this algorithm classifies the nearest sample

referred to the different cluster centers as one cluster.

Afterwards, it recalculates the centroid of each sample

cluster. Finally, it repeats the above steps until the

centroid no longer changes. The difference between k-

means++ and k-means is only the selection of the

initial cluster center. k-means selects initial cluster

center arbitrarily, but k-means++ selects initial cluster

center according to the principle that the distribution of

the initial cluster center is dispersed as far as possible.

We refer the readers to [1] for details of the algorithm.

This paper gets a conclusion that k-means++ improves

both the speed and the accuracy of k-means through

mathematical proof and experiments.

When we adopt k-means++ algorithm, the most

difficult thing is how to choose the most suitable value

of k which is related to the number of clusters. In our

algorithm, we gradually increase the value of k by 1

and find the optimal value of the k by the way of

iteration. The specific method will be discussed in

section 4. It is because of this way, IOH is compatible

with our algorithm, and also the most suitable value of

k will also be found at the first time.

4.3. Algorithm for intersection for Half-Space

In the limitation where only linear kernel SVM can be

used with the linear tendency of variables, we adopt

the algorithms for intersection of half-space when the

samples cannot be separated by using linear kernel

SVM only once. We give out the pseudo code of the

IOH and explain the steps in detail (See Algorithm 1).

First, we have three samples sets X+, X-, M and a

hyperplane set H. X+ and X- are the sets of positive

samples and negative samples respectively. M

represents the samples misclassified by the hyperplane

H. At the beginning, the set of H is empty and all the

samples has not been classified. Thus, all the positive

samples have been classified correctly and all the

negative samples have been classified by mistake. The

set of M is equal to X- right now. Secondly, while the

set of M is not empty, we arbitrarily choose a sample b

from M and use SVM to get a hyperplane h with

samples b and X-. Then we remove the samples

classified correctly by h from M, and then define H as

H h. We repeat the above steps until all samples have

been classified correctly. In others word, the end

condition of the loop is that M is empty. Finally, H is

the result we try to find.

Algorithm 1: IOH

Input: Positive sample: X+

Negative samples: X-

Cost parameter:c := 1000

Output: Candidate Invariants::H

1: H := true

2: M := X−

3: While | M | ≠ 0 :

4: Arbitrarily choose b from M

5: h := Process (SVM (X+, {b}), X+, X−)

6:  b’M s.t. h (b’)<0

7: Remove b’ from M

8: H := H∧ h

9: End While

10: Return H

We realize IOH by the computer language of Python

and apply it for the samples generated by make_circles

function in the Python packages of sklearn. The result

is showed in Figure 4. The circle points and triangle

points represent negative samples and positive samples

respectively. We can get the conclusion that IOH is

feasible and inspiring.

Figure 4. A inspiring result for IOH.

4.4. Hoare Logic

Hoare logic [22], also known as Floyd-Hoare logic, is

a formal system developed by British computer

scientist Hoare [13]. The purpose of this system is to

provide a set of logical rules for the correctness of

computer programs using strict mathematical logic

Synthesizing Conjunctive and Disjunctive Linear Invariants by K-means++ and SVM 851

reasoning. The central feature of the Hoare logic is the

Hoare triple:

 {P}C{Q}

In Hoare triple, P represents precondition, Q is the

post-condition and C means the code segment. If a

program is correct, it means that when P holds, after

the execution of C, Q holds upon exit.

As the program with loop, the invariant is loop

invariant. Loop invariant synthesis is a huge challenge

[16]. It is an assertion that has been held since the

beginning of the execution of the loop until the end of

the loop. Just let a theorem prover execute only once,

we can check whether invariant I is true. Here is the

formal description of the program with loops:

 B{C}{Q} while{P}

B represents loop condition and C is the code in loop.

According to Hoare logic, given an invariant I, by

decomposing the formal description, we can get these

two results:

 B}C{I}{I

B}{Q}!{I

On the basis of existing theories, we can confirm that I

is a correct invariant as long as {I} => {P} ,

 B}C{I}{I and {Q}B}!{I  . The sign of 

means implicating. For example, x=y implicates x>=y.

In other words, while the condition x=y holds, x>=y

also holds.

In our experiments, the I in the program of Figure 1

is x=y, and P is x=y=0. }{}{ Ip  without any doubt.

}{}{ ICBI  holds, because the changes of x and y

are the same in C. B is 0!x  , so !B is x=0. BI !

means x=y and x=0. We can get a conclusion that y=0

which can avoid program execution, and the program

statement of error() is a true invariant.

If we found that I is an error invariant by theorem

prover, we need to sample more. Specifically, if we

just sampled three points {(0, 1), (0, 0), (1, 1)}, we can

get an invariant 5.0y  x by using our algorithms.

Because the type of variables x and y are integer, the

invariant is equal to yx . {I} => {P} holds, but

{Q}B}!{I  does not hold. It means some bad

states are contained by I, so we should collect more

samples and repeat our algorithm.

The above is a theoretical proof. In the actual

experiment, Z3 theorem prover [21] helps us to verify

the correctness of candidate invariants.

5. K++SVM

IOH is inspiring, but there are still problems waiting to

be solved. Considering the program in Figure 2, after

sampling, it is found that the positive samples are

distributed among multiple clusters. IOH just choose

one negative sample, it is surprised to discover IOH is

infeasible under this situation. Thus, k++SVM emerges

as the times required for solving this kind of problem.

At first, we follow a program to sample positive

samples and negative samples. Then, k++SVM defines

the value of k as 1 at the beginning, and then adopts k-

means++ algorithm to cluster the positive samples as k

clusters. Next, our algorithm uses linear kernel SVM to

separate samples. If samples can be separated, we get

the candidate invariants. Otherwise, SVM is used to

eliminate single negative samples one by one for

getting the expression of hyperplane equations. If it is

valid, the candidate invariants are found. If not, this

algorithm lets the value of k add 1 and cluster the

positive samples again. Then repeat algorithm till it

can distinguish samples and get the candidate

invariants. Finally, we should check whether the

candidate invariants are true invariants. If the check

succeeds, we get the final result. Otherwise, we should

sample more states and repeat our algorithm.

Our algorithm is based on the guess-and-check

model, some common problems with this model are

that the effectiveness of algorithm is limited by the

samples not only generated in the first phases [17], but

also generated when the check fails. If the distribution

of sampling points is reasonable, the iteration numbers

between guess and check are fewer and the

effectiveness of algorithm is higher. The most ideal

situation is that our algorithm get the true invariants

just only using guess-and-check model once. This

situation is hard to achieve, but we have solutions to

get close to this situation. Firstly, a large number of

samples are needed, which can make sure that they

include the samples characterizing the program. In fact,

only the samples which can characterize the program

are participated in the construction of invariants,

because the support vector is only related to those

samples. Secondly, we get the heuristics from paper

[17]. According to this paper, sampling through

verification provides useful new samples by paying a

high cost. So it applies method selective Sampling() to

selectively generate new sample while are closed to the

candidate invariants. Our method also collect selective

samples to improve the efficiency of algorithm.

The condition for the change of the value of k is that

IOH cannot get the candidate invariants, but this

description is not an algorithmic language. In fact, in

the process of algorithm implementation, we need to

change the value of k as long as the capacity of M is

not reduced. Every time, we choose one negative

sample and then use SVM to separate the one negative

sample from positive samples (or positive samples

cluster). That is to say, every time we can at least

separate out one negative sample. If the capacity of M

reduces, we continue to execute the algorithm.

Otherwise, we stop IOH and let the value of k add 1.

Here we give the pseudo code (see Algorithm 2).

 (1)

 (2)

 (3)

 (4)

852 The International Arab Journal of Information Technology, Vol. 17, No. 6, November 2020

Algorithm 2: k++SVM

Input: Positive sample: X+

Negative samples: X-

Cost parameter:c := 1000

Output: True Invariants: H

1: k := 1

2: Cluster(x+,k),obtain X: {X1+, X2+,...., Xk+}

3: If (SVM can be used):

4: For i=1 to k (i=k is allowed):

5: h := Process (SVM (Xi+, {b}))

6: H := H∨ h

7: End For

8: Else:

9: For i=1 to k (i=k is allowed):

10: M := X-

11: While | M | ≠ 0 :

12: Arbitrarily choose b from M

13: h := Process (SVM (Xi+, {b}))

14: b’M s.t. h (b’)<0

15: Remove b’ from M

16: If (| M | == | M |’):

17: k := k+1

18: Goto 2

19: Else:

20: Hi := h hi

21: End While

22: H := H∨Hi

23: End For

24: add selective samples

25: Goto 2 (only once)

26: If (H is indeed invariants):

27: Return H

28: Else:

29: Add more samples to X+ and X-

30: Goto 2

6. Implementation and Evaluation

We have implemented a prototype version of the

algorithm described in this paper in the computer

language of Python. First, we obtain constraint

expression file whose type is txt by using CBMC tool

(http://www.cprover.org/cbmc). CBMC is a Bounded

Model Checker for C and C++ programs and, just right,

all of our experimental programs are C programs.

Secondly, according to the constraint expression file,

we generate samples by using the z3 Satisfiability

Modulo Theories (SMT) solver [21] for constraint

solving. Next, to realize our algorithm and show result,

numpy, sklearn, codecs, re and matplotlib packages of

Python are adopted. Finally, we use SMT slover [21]

to check whether the candidate invariants are true

invariants.

The k-means++ and SVM in k++SVM are

supported by off-the-shelf sklearn packages of Python.

There is an important problem concerning the value

that the cost parameter c of SVM algorithm should

take. In order to guarantee that under certain conditions

the programs will never violate assertion, our classifier

is not allowed to misclassify. A low value of c allows

the generated classifier to make errors on the training

data. So, we assign a very high value to c (1000 in our

experiments). We conduct all of the following

experiments on a core I5 CPU with 8GB of RAM

running Windows 10.

The results are shown in Tables 1 and 2. In Table 1,

Num is the experiment number. File is the name of the

program, and we can find it in the reference behind the

name; LOC are code lines; Invariants are the invariants

of the program output by using IOH. There into, Fail

means that finding invariants by IOH is failed; Our

Invariants are the invariants output by using k++SVM;

Total means the total number of the samples including

positive samples and negative examples; K is the value

of k in k++SVM; we can find the code of 13th

experiment in Figure 5.

Figure 5. The code of 13th.

In Table 2, Times and our times is running time of

the IOH and k++SVM respectively. The statistical time

is from input samples to output candidate invariants.

Table 1. Experimental results.

NUM File LOC Invariants Our Invariants Total K Type Interproc

1 Figure 7 [10] 8 8x  8x  22 1 con Y

2 Figure 1-a [24] 14
)5.0(

)5.0(





xy

xy

)5.0(

)5.0(





xy

xy
 40 1 con Y

3 ex1 [13] 22 22  yaxa 22  yaxa 36 1 con N

4 Figure 2 [9] 18 y3 x y3 x 62 1 con Y

5 fse06 [10] 8)5.0()5.0( xy)5.0()5.0( xy 36 1 con N

6 Figure 1[12] 6 0 nx 0 nx 43 1 con Y

7 Figure 1-a [17] 8 16x  y 16x  y 100 1 con Y

8 Figure 1-b [17] 9 Fail 00x  y 82 2 dis N

9 Figure 1-d [17] 6 Fail 130x  xy 120 2 dis N

10 Figure 1 [15] 10 Fail)5.0()5.0( xyxy 50 2 dis N

11 Figure 4 [11] 8 Fail)5.0()5.0( iji 40 2 dis N

12 Figure 1 [11] 8 Fail)5.0()5.0( xy 42 2 dis N

13 Quad 6 Fail
)5.05.0(

)5.05.0(





yx

yx
 46 2 dis N

http://www.cprover.org/cbmc).Secondly,generating

Synthesizing Conjunctive and Disjunctive Linear Invariants by K-means++ and SVM 853

Table 2. Running time comparison.

NUM 1 2 3 4 5 6 7 8 9 10 11 12 13

File Figure 7 Figure 1-a ex1 Figure 2 fse06 Figure 1 Figure 1-a Figure 1-b Figure 1-d Figure 7 Figure 4 Figure 1 Quad

Times(ms) 1.946 1.578 2.529 3.494 1.989 5.550 5.405 Fail Fail Fail Fail Fail Fail

OurTimes(ms) 1.927 1.627 2.488 4.559 2.594 6.933 5.940 23.630 33.490 43.865 3.128 159.152 30.456

In the last column of Table 1, Interproc means

whether the true invariants can be synthesized by the

verifier Interproc. Y and N respectively indicate that it

can or cannot synthesize true invariants. Interproc [14]

is an interprocedural analyzer for a small imperative

language with procedure calls. In the basis of the

technique of abstract interpretation, it infers invariants

on the numerical variables of analyzed program.

The invariant comparison of experimental results are

shown in Table 3. Num is the experiment number in

Table 1; Reference means the source of the code;

Invariants represent the results given in source; Our

Invariants are the results obtained by our method.

Table 3. Invariants comparison.

NUM Reference Invariants Our Invariants

2 [24] yx 0.5) + x <(y 0.5) - x >(y 

5 [28])0()0(y  x 0.5)- >(x 0.5)- >(y 

10 [15] 0x  y 0.5) -x - <(y 0.5) +x - >(y 

12 [11])1()1( yx 0.5) >(y 0.5)- <(x 

Comparing our experimental results with other paper,

there is nothing different between them (see Table 3).

For example, in our 12th experiment, the invariants

are 0.5) >(y 0.5)- <(x  , but the result in paper [11]

is 1) >=(y 1)- <=(x  . In our 5th experiment, the

invariants are 0.5)- >(y 0.5)- >(x  , but in paper [4]

the invariants are  0)>=(y 0)>=(x . The reason is

that the type of the variables is integer, and the

hyperplane parameter exported by SVM are the type of

float. Just change our results to 0.5 units, we can get the

same results. More specifically, in our 2rd experiment,

by simplifying our result, we can get the

conclusion x)<=(y x)>=(y  . As the final result,

our invariant is x = y which is the same as the result in

paper [24].

Figure 6. The code of 9th experiment.

In section 3.4, we prove that x=y is the true invariant.

Suppose we use other machine learning algorithms,

rather than linear kernel SVM, we get a nonlinear

invariant (the form of circle in Figure 6). We also can

prove that this kind of result is wrong. This gives us a

heuristic idea. For a specific program, we are not

supposed to only pursue that the algorithms can

distinguish positive and negative samples, in spite of

the essential characteristics of the change of the

program variables. This point is well verified why the

form of invariants should be linear.

In order to evaluate our method in synthesizing

invariants, we investigate the following research

question:

 RQ1 the first research question which we would

like to answer to is: does our method help to

synthesize disjunctive invariants?

Through the 8~13th experimental results in Table 1, it

is obvious that the invariants with the form of

disjunctive can only be computed by our method,

while the IOH and Interproc cannot. Compared with

Interproc, it is because that our method regards the

problem of synthesizing invariants as the problem of

classification by sampling and using classification

algorithm. By analyzing samples rather than specific

procedural logic, our method can synthesize

disjunctive invariants. Not like the IOH, our method

should cluster the positive samples before

classification. According to our results, whether the

target invariants are conjunctive or disjunctive depend

on the number of the positive sample’ clusters. If the

number of positive sample’ cluster, that is the value of

k, is one, the target invariants are conjunctive.

Otherwise, they are disjunctive. However, the number

of the positive sample’ clusters are not determined by

the distance, but, intrinsically, the situation that

whether the positive samples clusters can be separated

clearly from negative samples. This point is also just

reflected in the condition that the value of k should be

changed when the samples cannot be separated clearly.

 RQ2 the second research question which we would

like to answer is: does our method have the ability

to automatically synthesize invariants? IOH and

Interproc cannot synthesize disjunctive invariants

and Interproc cannot compute the invariants in 3th

and 5th experiment. What’s more, when we using

Interproc, we should manually choose the form of

target invariant first. Specifically, only when we

choose convex polyhedra option to complete our 4th

experiment and choose octagon option to complete

2th experiment, Interproc is able to get the right

invariants. This is a contradictory problem. In fact,

before executing Interproc, we don't know which

option should be chosen to get the right results.

Through our experimental results, only our method

can automatically synthesize disjunctive invariants.



-

-

854 The International Arab Journal of Information Technology, Vol. 17, No. 6, November 2020

Because our method obtains the program feature by

the relation of samples, rather than the logic relation

in a program. And then our method judges that the

invariants are conjunctive or disjunctive by the value

of k. If k is equal to 1, the invariants are conjunctive.

Otherwise, they are disjunctive. The way to

determine the value of k is that we gradually

increase the value of k by 1 with the condition the

positive samples cannot be separated clearly from

negative samples. The optimal value of the k can be

founded by the way of iterating. That is just the

reason why our method have ability to automatically

synthesize invariants.

 RQ3 the third research question is: how about the

performance between IOH and our method? As the

disjunctive invariant, IOH is useless. As the

conjunctive invariant, referring to the Table 2, the

running time of k++SVM is closed to IOH.

Generally speaking, the running time of k++SVM is

slightly higher than IOH, but sometimes slightly

lower. It is reasonable that k++SVM is slightly

higher, because k++SVM is more complex and

should use k-means++ algorithm extra. The situation

that k++SVM is slightly lower is unexpected, but it

is still reasonable, because both the k++SVM and

IOH are defective. When they use SVM, they choose

one negative sample randomly. This randomness

results that the iterations of SVM cannot be

controlled, although it does not have a great impact

on the results. This is the point that we will research

in the future.

 RQ4 the fourth research question is: how about the

performance in synthesizing disjunctive invariants

by our method? Generally, referring to the Table 2,

the running time of synthesizing disjunctive

invariants is much higher than the running time of

synthesizing conjunctive invariants by our method. It

is reasonable, because the method of synthesizing

disjunctive invariants have repeatedly used the

method of synthesizing conjunctive invariants. In

any case, because the time unit is still in the

millisecond level, the running time of synthesizing

disjunctive invariants by our method is acceptable.

7. Conclusions

We have shown that synthesizing invariants by

machine learning algorithm can be profitable. In

particular, when the target invariants are disjunctive,

the k++SVM based on k-means++ and SVM is valid. In

this paper, we use the theory method based on Hoare

logic to prove the correctness of the invariants.

Through our experiments, we have also verified that

k++SVM is not only compatible with IOH, but can

synthesize disjunctive invariants that IOH and Interproc

cannot solve.

As the future work, we would like to modify our

algorithm to eliminate the randomness and to make it

more stable and robust.

References

[1] Arthur D. and Vassilvitskii S., “K-Means++:

The Advantages of Careful Seeding,” in

Proceedings of the 18th Annual ACM-SIAM

Symposium on Discrete Algorithms, New

Orleans, pp. 1027-1035, 2007.

[2] Cortes C. and Vapnik V., “Support-Vector

Networks,” Machine Learning, vol. 20, no. 3, pp.

273-297, 1995.

[3] Cousot P. and Cousot R., “Abstract

Interpretation: A Unified Lattice Model for

Static Analysis of Programs by Construction or

Approximation of Fixpoints,” in Proceedings of

the ACM Sigact-Sigplan Symposium on

Principles of Programming Languages, New

York, pp. 238-252, 1977.

[4] D'Silva V., Kroening D., and Weissenbacher G.,

“A Survey of Automated Techniques for Formal

Software Verification,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits

and Systems, vol. 27, no. 7, pp. 1165-1178, 2008.

[5] Ding Z., Wang R., Hu J., and Liu Y., “Detecting

Bugs of Concurrent Programs with Program

Invariants,” in Proceedings of the IEEE

International Conference on Software Quality,

Reliability and Security Companion, Vienna, pp.

1-15, 2016.

[6] Garg P., Löding C., Madhusudan P., and Neider

D., “ICE: A Robust Framework for Learning

Invariants,” in Proceedings of the International

Conference on Computer Aided Verification,

Vienna, pp. 69-87, 2014.

[7] Garg P., “Learning-Based Inductive Invariant

Synthesis,” Thesis, Univerisity of Illinois

Urbana-Champaign, 2015.

[8] Garg P., Neider D., Madhusudan P., and Roth D.,

“Learning Invariants Using Decision Trees and

Implication Counterexamples,” Acm Sigplan

Notices, vol. 51, no. 1, pp. 499-512, 2015.

[9] Gulavani B., Chakraborty S., Nori A., and

Rajamani S., “Automatically Refining Abstract

Interpreta-tions,” in Proceedings of the Theory

and Practice of Software, International

Conference on TOOLS and Algorithms for the

Construction and Analysis of Systems, Budapest,

pp. 443-458, 2008.

[10] Gulavani B., Henzinger T., Kannan Y., and Nori

A., “SYNERGY: A New Algorithm for Property

Checking,” in Proceedings of the ACM Sigsoft

Inter-national Symposium on Foundations of

Software Engineering, Portland, pp. 117-127,

2006.

Synthesizing Conjunctive and Disjunctive Linear Invariants by K-means++ and SVM 855

[11] Gulwani S., Srivastava S., and Venkatesan R.,

“Program Analysis as Constraint Solving,” in

Proceedings of the ACM Sigplan Conference on

Programming Language Design and

Implementation, Tucson, pp. 281-292, 2008.

[12] Gupta A. and Rybalchenko A., “InvGen: An

Efficient Invariant Generator,” in Proceedings of

the International Conference on Computer Aided

Verification, Grenoble, pp. 634-640, 2009.

[13] Hoare C., “An Axiomatic Basis for Computer

Programming,” Communications of the ACM, vol.

12, no. 1, pp. 53-56, 1969.

[14] Jeannet B., “Interproc Analyzer for Recursive

Programs with Numerical Variables,”

http://popart.inrialpes.fr/interproc/interprocweb.cg

i, pp. 6-11, Last Visited, 2010.

[15] Krishna S., Puhrsch C., and Wies T., “Learning

Invariants using Decision Trees,” Computer

Science, vol. 21, no. 7, pp. 44-59, 2015.

[16] Lin S., Sun J., Xiao H., Liu Y., Sanán D., and

Hansen H., “FiB: Squeezing Loop Invariants by

Interpolation between Forward/Backward

Bredicate Transformers,” in Proceedings of the

IEEE/ACM International Conference on Auto-

mated Software Engineering, Urbana, pp. 793-

803, 2017.

[17] Li J., Sun J., Li L., and Le Q., “Automatic Loop-

Invariant Generation and Refinement through

Selective Sampling,” in Proceedings of the

Ieee/Acm International Conference on Auto-

mated Software Engineering, Buenos Aires, pp.

782-792, 2017.

[18] Jun S., Pham L., Thi L., Wang J., and Peng X.,

“Learning Likely Invariants to Explain Why a

Program Fails,” in Proceedings of the

International Conference on Engineering of

Complex Computer Systems, Melbourne, pp. 70-

79, 2018.

[19] Mcdonald J., Trigg T., Roberts C., and Darden B.,

“Security in Agile Development: Pedagogic

Lessons from an Undergraduate Software

Engineering Case Study,” in Proceedings of

Cyber Security Symposium, Coeur d'Alene, pp.

127-141, 2015.

[20] Mcmillan K., “Interpolation and SAT-Based

Model Checking,” in Proceedings of the

Computer Aided Verification, Berlin Heidelberg,

Germany, pp. 1-13, 2003.

[21] Moura L. and Bjørner N., “Z3: An Efficient SMT

Solver,” in Proceedings of International

Conference on Tools and Algorithms for the

Construction and Analysis of Systems, Budapest,

pp. 337-340, 2008.

[22] Sharma R., Gupta S., Hariharan B., Aiken A.,

Liang P., and Nori A., “A Data Driven Approach

for Algebraic Loop Invariants,” in Proceedings of

European Conference on Programming

Languages and Systems, Rome, pp. 574-592,

2013.

[23] Sharma R., “From Invariant Checking to

Invariant Inference Using Randomized Search,”

in Proceedings of Computer Aided Verification,

Vienna, pp. 88-105, 2014.

[24] Sharma R., “Interpolants as Classifiers,” in

Proceedings of International Conference on

Computer Aided Verification, Berlin, pp. 71-87,

2012.

[25] Sharma R. and Aiken A., “Verification as

Learning Geometric Concepts,” in Proceedings

of International Static Analysis Symposium,

Seattle, pp. 388-411, 2013.

[26] Stavnycha M., Yin H., and Römer T., “A Large-

Scale Survey on the Effects of Selected

Development Practices on Software

Correctness,” in Proceedings of International

Conference on Software and System Process,

Korea, pp. 117-121, 2015.

[27] Uqaili I. and Ahsan S., “Machine Learning

Based Prediction of Complex Bugs in Source

Code,” The International Arab Journal of

Information Technology, vol. 17, no. 1, pp. 26-

37, 2020.

[28] Vizel Y., Gurfinkel A., Shoham S., and Malik S.,

“IC3 - Flipping the E in ICE,” in Proceedings of

International Conference on Verification, Model

Checking and Abstract Interpretation, Paris, pp.

521-538, 2017.

http://pop-art.inrialpes.fr/

856 The International Arab Journal of Information Technology, Vol. 17, No. 6, November 2020

Shengbing Ren was born on August

4, 1969 at Yueyang City, Hunan

Province, China. He received his

Bachelor of Science degree in

Computer Software from Department

of Mathematics, Huazhong Normal

University, Hubei Province, China in

1992. He received his Master’s degree in Computer

Application Technology in 1995 from Department of

Computer, Central South University of Technology,

Hunan Province, China. He received his Doctor’s

degree in Control Theory and Control Engineering in

2007 from School of Information Science and

Engineering, Central South University, Hunan Province,

China. His research interests include: software

engineering, embedded system, image processing,

pattern recognition, dependable software. He is a

professor in School of Computer Science and

Engineering, Central South University, China. He is a

Senior Member of China Computer Federation. He

accomplished 11 research projects including 2 the

National Natural Science Foundation of China as a key

member, and over 60 papers was published. Now, he is

dedicated to the research concentrated mostly on

dependable software and pattern recognition.

Xiang Zhang was born on April19,

1993 at Anqing City, Anhui

Province, China. He received his

Bachelor of Science degree in

communication engineering, Central

South University of forestry science

and technology University, Hunan

Province, China in 2015. He received his Master’s

degree in software engineering, Central South

University of Technology, Hunan Province, Chinain

2019.His research interests include: software

engineering, machine learning. He is a student in

School of Computer Science and Engineering, Central

South University, China.

