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Abstract: The problem of synthesizing adequate inductive invariants lies at the heart of automated software verification. The 

state-of-the-art machine learning algorithms for synthesizing invariants have gradually shown its excellent performance. 

However, synthesizing disjunctive invariants is a difficult task. In this paper, we propose a method k++ Support Vector 

Machine (SVM) integrating k-means++ and SVM to synthesize conjunctive and disjunctive invariants. At first, given a 

program, we start with executing the program to collect program states. Next, k++SVM adopts k-means++ to cluster the 

positive samples and then applies SVM to distinguish each positive sample cluster from all negative samples to synthesize the 

candidate invariants. Finally, a set of theories founded on Hoare logic are adopted to check whether the candidate invariants 

are true invariants. If the candidate invariants fail the check, we should sample more states and repeat our algorithm. The 

experimental results show that k++SVM is compatible with the algorithms for Intersection Of Half-space (IOH) and more 

efficient than the tool of Interproc. Furthermore, it is shown that our method can synthesize conjunctive and disjunctive 

invariants automatically.  
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1. Introduction 

With the increasing size and complexity of software, it 

is more difficult and complex to verify the correctness 

of the software. Thus, how to ensure the correctness of 

software has aroused enough attentions [19, 26, 27]. In 

order to handle this problem, one of the popular 

techniques is the software verification [4]. 

However, the limitations of manual verification are 

becoming more and more obvious, and software 

verification technology needs innovative development. 

In recent years, the automated techniques and tools for 

software verification have gradually become an 

important research direction [10]. 

In the process of automated program verification, 

synthesizing inductive invariants plays a key role [28]. 

An invariant means that it is closed with respect to the 

transition relation of the program, and it guarantees 

that any execution of a statement in the program 

changes from a state that belongs to the invariant 

region to other state. Once adequate inductive 

invariants have been found, the problem of software 

verification can be reduced to logical validity of 

verification conditions, which are solved with the 

advances in automated logic solvers [7, 8]. What’s 

more, invariants also can be useful for compiler 

optimization, program understanding [18], bug 

detection [5]. 

In the past, people have put forward a lot of 

solutions to synthesize inductive invariants including 

model checking, abstract interpretation [3], Craig’s  

 
interpolation [20]. Although, these techniques are able 

to compute invariants, they have their own inherent 

hardness, accompanied by certain limitations. For 

example, model checking can successfully synthesize 

invariants when the program has a finite state-space or 

the paths in the program are bounded. However, for 

programs over an infinite domain, such as integers, 

with unbounded number of paths in the program, 

model checking is doomed to fail [7]. With the rapid 

development of artificial intelligence, the state-of-the-

art machine learning algorithms, such as Support 

Vector Machine (SVM) [17, 24], decision trees [8, 15], 

and learning using Examples, Counter-examples, and 

Implications (ICE) [6], have been applied to synthesize 

invariants in recently years.  

Recently, a great deal of approaches are based on 

guess-and-check model to synthesize invariants [6, 8 

17, 22, 23, 24, 25]. Roughly speaking, those models 

regard the problem of synthesizing invariants as two 

parts, learner and teacher. The learner synthesizes 

candidate invariants and the teacher checks whether 

the candidate invariants are true invariants by a set of 

theories founded on Hoare logic in each round. If not, 

this model should give more details for learner to 

revise candidate invariants until the candidate 

invariants pass the checking. A common problem with 

the guess-and-check model is that their effectiveness is 

often limited by the samples collected in the first phase 

[17]. The paper [17] gives us an ideal that we can use 

selective samples to improve the efficiency.  
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In this paper, we develop a new method, called 

k++SVM, based on k-means++ [1], SVM [2], Hoare 

logic [13, 23, 25], selective samples and the guess-and-

check model to synthesize invariants. At first, we 

collect samples and then cluster positive samples by k-

means++. Secondly, SVM is adopted to separate 

positive samples from negative samples and get the 

hyper plane equations. The final step is to check the 

correctness of our results by Hoare logic.  

1.1. Our Contributions  

This paper makes the following contributions: 

 We propose a method based on k-means++, SVM, 

Hoare logic, selective samples and the guess-and-

check model to synthesize not only conjunctive 

invariants but disjunctive invariants as well. 

 We show that our method has the ability to 

automatically synthesize conjunctive and 

disjunctive invariants. Actually, automatically 

synthesizing conjunctive and disjunctive invariants 

is a big challenge. Our method solves this problem 

in a unique way. 

 We have implemented our method in Python for 

synthesizing invariants and we compare it with the 

algorithm Intersection of Half-space (IOH) and a 

tool named Interproc. The experimental results 

show that our method is compatible with IOH. 

Furthermore, it is shown that our method can 

synthesize conjunctive and disjunctive invariants 

automatically while the IOH and Interproc cannot. 

1.2. Organization  

The rest of the paper is organized as follows. We 

simply introduce our method by the way of two 

examples in section 2. Next, section 3 reviews related 

work. In section 4, we describe necessary material 

including sampling, k-means++, algorithms for 

intersection of half-space and Hoare logic. And then 

we give a detailed process of k++SVM in section 5. In 

section 6, we show the experimental results and verify 

the effectiveness of our algorithm. Finally, section 7 

concludes with some directions for future work. 

2. The Motivating Examples 

2.1. Conjunctive Invariants 

Considering the program in Figure 1, it has two integer 

variables x and y. After passing two loops, the value of 

x and y have changed. In the end, we should check 

whether the bad state error() can be reached by the 

value of y. If the error() state cannot be reached, the 

initial values of x, y and their metabolic values in the 

program paths are good states. If we give a arbitrary 

values of x, y, then the error() state is reached after 

executing the program. Only the initial values of x, y, 

except their values in the path, are bad states. Suppose 

we consider a path that goes through the two loops 

once. We sample these two points {(0, 0), (1, 1)} as 

good states and points {(0, 1), (1, 0)} as bad states. 

Figure 1 gives the codes and plots the distribution of 

these four points. The solid points represent positive 

samples and the hollow points represent negative 

samples.  

By observing the program, we find the tendency of 

the variables is linear, thus only linear inequalities, 

rather nonlinear inequalities, can better characterize the 

intrinsic properties of this program. So we adopt the 

machine learning algorithm of linear kernel SVM to 

obtain the linear inequalities. Unfortunately, the 

distribution of this four points cannot be separated by 

using linear kernel SVM once. However, there exist 

two linear inequality 2y<2x+1 and 2y>2x-1 which are 

able to represent invariants (see the two straight lines 

in Figure 1). Our solution is that, firstly, we use k-

means++ to cluster the positive samples (0,0), (1,1) as 

one cluster in the condition the value of k is 1. If we 

choose the negative sample (0, 1) with positive sample 

cluster and use linear kernel SVM, we can get the 

invariant 2y<2x+1. Similarly, if we choose another 

negative samples (1, 0) with positive sample cluster 

and use SVM, we can get the invariants 2y>2x-1. After 

we take the intersection of two inequalities, we can get 

the result 2y>2x-1˄ 2y<2x+1. Because the type of x 

and y is integer, our result can be equivalent 

to  x≤y  x≥y   . And then we can regard x=y as final 

result. Finally, by a set of theories of Hoare logic, it 

can be checked that x=y is an invariant which is 

sufficient to prove the error() state is unreachable. 

1.  foo(){ 

2.    x = y = 0; 

3.    while(*){ 

4.      x++; y++; 

5.    } 

6.    while(x != 0){ 

7.       x--; y--; 

8.    } 

9.    if(y != 0){ 

10.    error(); 

11.  } 

12. }  

Figure 1. Conjunctive invariants. 

2.2. Disjunctive Invariants 

Considering the program in Figure 2, we sample in the 

same way as example 1. For instance, if we assume the 

values of x and y are (0, -3), then the states we reach 

are {(-1, -2), (-2, -1), (-3, 0)} and thus these are all 

good states. Similarly, if we define their values as (-2, 

2), then the states we reach are {(-1, 1), (0, 0)} which 

violate the assertion and thus (-2, 2) is a bad state. And 

if we directly define their values are (0, 0), then the 

loop will not run and the value of x is 0 which violates 

the assertion as well. We plot samples in a coordinate 

system.  



-

-
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1.fun(){ 

2.sint x,y; 

3.  assume x = 0, y != 0;  

4.  while (y != 0){ 

5.    if (y<0){ 

6.      x = x - 1; y = y + 1; 

7.    }else{ 

8.      x = x + 1; y = y - 1; 

9.    } 

10. } 

11.  assert (x != 0); 

12.} 

 

Figure 2. Disjunctive invariants. 

Then we arbitrarily choose one negative sample and 

all positive samples and continue to use linear kernel 

SVM. Of course, we cannot get a correct result, 

because positive samples are distributed among 

multiple clusters. Under these circumstances, positive 

and negative samples cannot be linear separated. The 

solution is that we use k-means++ to cluster positive 

samples first. The value of k in k-means++ is two, 

which is the most suitable value with this example. 

Then we separate every positive samples cluster 

respectively from all negative samples by using SVM. 

Then the result is y > -x + 0.5 y < -x - 0.5 . It is worth noting 

that all negative samples, rather than one negative 

sample, are chosen. There are some differences from 

the last example. For separating every positive samples 

cluster from all negative samples, using SVM once is 

workable under this kind of circumstances. Similarly, 

we should check whether our results are correct in the 

end. 

3. Related Work 

The closest related work for invariants generation were 

based on machine learning algorithms and guess-and-

check model. In [24], the authors originally proposed a 

method using SVM to compute invariants. For linear 

invariants, when the samples could not be linearly 

separated, the authors come up with a method, called 

IOH, to get the invariants by using linear kernel SVM 

many times. In [17], the authors proposed to apply 

IOH to synthesize conjunctive invariants and path-

sensitive classification to synthesize disjunctive 

invariants. Moreover, the technique in that paper 

reduced the number of guess-and-check iterations by 

selective samples. In [15], the authors considered the 

problem of inferring the inductive invariants for 

verifying program safety as binary classification. They 

utilized decision tree algorithm to learn candidate 

invariants in form of arbitrary boolean combinations of 

numerical in-equalities. The paper [6] proposed a 

robust framework ICE for learning invariants. ICE had 

two components: a white-box teacher and a black-box 

leaner. The leaner synthesized invariants and the 

teacher checked the correctness of the invariants in 

each round. If the check failed, the teacher come up 

with constraints for leaner to refine invariants. This 

method was a typical form of guess-and-check model. 

The paper [23] described a general framework for 

computing invariants by iteratively executing two 

phases. The search phase applied randomized search to 

discover candidate invariants and the validate phase 

applied checker to validate the correctness of the 

candidate invariants. The paper [22] proposed a data 

driven approach for generating algebraic polynomial 

loop invariants. Firstly, the method collected the value 

of the variables by executing a specific program. 

Secondly, it obtained a data matrix according to a 

template and upper bound d. Next, this method used 

linear algebra techniques to compute a candidate 

invariant. Finally, it checked the effectiveness of the 

candidate invariants. Our work is inspired by above 

paper. Our method uses machine algorithms to 

synthesize invariants, adopts guess-and-check model to 

ensure the correctness of the invariants and collects 

selective samples to reduce the number of iterations. 

4. Preliminaries 

4.1. Sampling 

If we regard a program as a transition system, the 

states of program can be split in two states-good states 

and bad states-when we execute the program. The 

good states are states that include the initial states of 

the program and can satisfy a specified safety 

specification while bad states cannot satisfy. If the 

program is correct, then there is no transition sequence 

from an initial state to a bad state. Reach is the set of 

reachable states and I is an adequate inductive 

invariant that to distinguish these two states [7] (see 

Figure 3). If we can assure any state in the program 

belongs to Init and Reach, this program is correct. 

 

Figure 3. Program state space. 

The above interpretations guide us how to sample. 

A good state is defined as any state that the program 

could conceivably reach when it is started from a state 

consistent with the precondition [20]. In other words, 

the initial value and their changed values which can 

make bad state is unreachable are both positive 

samples. Similar, bad states are defined as states, 

except the states in program path, that will make 

assertion fail after executing the program. Thus, the 

values that will make assertion fail represent the 

negative samples. 

In the following, we give the formalized description 

of good states and bad states. Suppose that we are 

given a Hoare triple in the following form: 



-

-


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tion//postcondi{Post}

body/ /Loop){C} Cond While(

tion/ /precondi{Pre}
 

We assume that s represents those state before Pre, s’ 

are the states in the loop body, and s’’ are the states out 

of loop body but before the Post. The positive samples 

a negative samples are: 

}

Post  's'      

's's's  Pres    

| states's' states,s' states,s    

{  states eP







ositiv

 

}

Post  's'      

's's's  Pres    

| states's' states,s' states,s    

{  states Negative









 

4.2. K-means++ 

K-means++ proposed by Arthur and Vassilvitskii [1] in 

paper, is a kind of unsupervised machine learning 

algorithm on the basis of k-means for clustering. Given 

a train set and a hyper parameter k which decides the 

number of the result cluster, k-means is first to select k 

samples arbitrarily as the initial cluster center and then 

calculate the distance, Euclidean distance is the most 

common, from each sample point to each cluster center. 

Next, this algorithm classifies the nearest sample 

referred to the different cluster centers as one cluster. 

Afterwards, it recalculates the centroid of each sample 

cluster. Finally, it repeats the above steps until the 

centroid no longer changes. The difference between k-

means++ and k-means is only the selection of the 

initial cluster center. k-means selects initial cluster 

center arbitrarily, but k-means++ selects initial cluster 

center according to the principle that the distribution of 

the initial cluster center is dispersed as far as possible. 

We refer the readers to [1] for details of the algorithm. 

This paper gets a conclusion that k-means++ improves 

both the speed and the accuracy of k-means through 

mathematical proof and experiments.  

When we adopt k-means++ algorithm, the most 

difficult thing is how to choose the most suitable value 

of k which is related to the number of clusters. In our 

algorithm, we gradually increase the value of k by 1 

and find the optimal value of the k by the way of 

iteration. The specific method will be discussed in 

section 4. It is because of this way, IOH is compatible 

with our algorithm, and also the most suitable value of 

k will also be found at the first time. 

4.3. Algorithm for intersection for Half-Space 

In the limitation where only linear kernel SVM can be 

used with the linear tendency of variables, we adopt 

the algorithms for intersection of half-space when the 

samples cannot be separated by using linear kernel 

SVM only once. We give out the pseudo code of the 

IOH and explain the steps in detail (See Algorithm 1). 

First, we have three samples sets X+, X-, M and a 

hyperplane set H. X+ and X- are the sets of positive 

samples and negative samples respectively. M 

represents the samples misclassified by the hyperplane 

H. At the beginning, the set of H is empty and all the 

samples has not been classified. Thus, all the positive 

samples have been classified correctly and all the 

negative samples have been classified by mistake. The 

set of M is equal to X- right now. Secondly, while the 

set of M is not empty, we arbitrarily choose a sample b 

from M and use SVM to get a hyperplane h with 

samples b and X-. Then we remove the samples 

classified correctly by h from M, and then define H as 

H h. We repeat the above steps until all samples have 

been classified correctly. In others word, the end 

condition of the loop is that M is empty. Finally, H is 

the result we try to find. 

Algorithm 1: IOH 

Input:      Positive sample: X+ 

Negative samples: X- 

Cost parameter:c := 1000 

Output: Candidate Invariants::H 

1: H := true 

2: M := X− 

3: While | M | ≠ 0 : 

4:  Arbitrarily choose b from M 

5:  h := Process (SVM (X+, {b}), X+, X−) 

6:   b’M s.t. h (b’)<0 

7:  Remove b’ from M 

8:  H := H∧ h 

9: End While 

10: Return H 
 

We realize IOH by the computer language of Python 

and apply it for the samples generated by make_circles 

function in the Python packages of sklearn. The result 

is showed in Figure 4. The circle points and triangle 

points represent negative samples and positive samples 

respectively. We can get the conclusion that IOH is 

feasible and inspiring. 

 
Figure 4. A inspiring result for IOH. 

4.4. Hoare Logic 

Hoare logic [22], also known as Floyd-Hoare logic, is 

a formal system developed by British computer 

scientist Hoare [13]. The purpose of this system is to 

provide a set of logical rules for the correctness of 

computer programs using strict mathematical logic 
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reasoning. The central feature of the Hoare logic is the 

Hoare triple: 

 {P}C{Q}  

In Hoare triple, P represents precondition, Q is the 

post-condition and C means the code segment. If a 

program is correct, it means that when P holds, after 

the execution of C, Q holds upon exit. 

As the program with loop, the invariant is loop 

invariant. Loop invariant synthesis is a huge challenge 

[16]. It is an assertion that has been held since the 

beginning of the execution of the loop until the end of 

the loop. Just let a theorem prover execute only once, 

we can check whether invariant I is true. Here is the 

formal description of the program with loops: 

 B{C}{Q}  while{P}  

B represents loop condition and C is the code in loop. 

According to Hoare logic, given an invariant I, by 

decomposing the formal description, we can get these 

two results: 

  B}C{I}{I  

B}{Q}!{I  

On the basis of existing theories, we can confirm that I 

is a correct invariant as long as {I} => {P} , 

  B}C{I}{I and {Q}B}!{I  . The sign of   

means implicating. For example, x=y implicates x>=y. 

In other words, while the condition x=y holds, x>=y 

also holds. 

In our experiments, the I in the program of Figure 1 

is x=y, and P is x=y=0. }{}{ Ip   without any doubt. 

}{}{ ICBI   holds, because the changes of x and y 

are the same in C. B is 0!x  , so !B is x=0. BI !  

means x=y and x=0. We can get a conclusion that y=0 

which can avoid program execution, and the program 

statement of error() is a true invariant. 

If we found that I is an error invariant by theorem 

prover, we need to sample more. Specifically, if we 

just sampled three points {(0, 1), (0, 0), (1, 1)}, we can 

get an invariant 5.0y  x  by using our algorithms. 

Because the type of variables x and y are integer, the 

invariant is equal to yx . {I} => {P}  holds, but 

{Q}B}!{I   does not hold. It means some bad 

states are contained by I, so we should collect more 

samples and repeat our algorithm. 

The above is a theoretical proof. In the actual 

experiment, Z3 theorem prover [21] helps us to verify 

the correctness of candidate invariants. 

5. K++SVM 

IOH is inspiring, but there are still problems waiting to 

be solved. Considering the program in Figure 2, after 

sampling, it is found that the positive samples are 

distributed among multiple clusters. IOH just choose 

one negative sample, it is surprised to discover IOH is 

infeasible under this situation. Thus, k++SVM emerges 

as the times required for solving this kind of problem. 

At first, we follow a program to sample positive 

samples and negative samples. Then, k++SVM defines 

the value of k as 1 at the beginning, and then adopts k-

means++ algorithm to cluster the positive samples as k 

clusters. Next, our algorithm uses linear kernel SVM to 

separate samples. If samples can be separated, we get 

the candidate invariants. Otherwise, SVM is used to 

eliminate single negative samples one by one for 

getting the expression of hyperplane equations. If it is 

valid, the candidate invariants are found. If not, this 

algorithm lets the value of k add 1 and cluster the 

positive samples again. Then repeat algorithm till it 

can distinguish samples and get the candidate 

invariants. Finally, we should check whether the 

candidate invariants are true invariants. If the check 

succeeds, we get the final result. Otherwise, we should 

sample more states and repeat our algorithm. 

Our algorithm is based on the guess-and-check 

model, some common problems with this model are 

that the effectiveness of algorithm is limited by the 

samples not only generated in the first phases [17], but 

also generated when the check fails. If the distribution 

of sampling points is reasonable, the iteration numbers 

between guess and check are fewer and the 

effectiveness of algorithm is higher. The most ideal 

situation is that our algorithm get the true invariants 

just only using guess-and-check model once. This 

situation is hard to achieve, but we have solutions to 

get close to this situation. Firstly, a large number of 

samples are needed, which can make sure that they 

include the samples characterizing the program. In fact, 

only the samples which can characterize the program 

are participated in the construction of invariants, 

because the support vector is only related to those 

samples. Secondly, we get the heuristics from paper 

[17]. According to this paper, sampling through 

verification provides useful new samples by paying a 

high cost. So it applies method selective Sampling() to 

selectively generate new sample while are closed to the 

candidate invariants. Our method also collect selective 

samples to improve the efficiency of algorithm. 

The condition for the change of the value of k is that 

IOH cannot get the candidate invariants, but this 

description is not an algorithmic language. In fact, in 

the process of algorithm implementation, we need to 

change the value of k as long as the capacity of M is 

not reduced. Every time, we choose one negative 

sample and then use SVM to separate the one negative 

sample from positive samples (or positive samples 

cluster). That is to say, every time we can at least 

separate out one negative sample. If the capacity of M 

reduces, we continue to execute the algorithm. 

Otherwise, we stop IOH and let the value of k add 1. 

Here we give the pseudo code (see Algorithm 2). 

 (1) 

 (2) 

 (3) 

 (4) 
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Algorithm 2: k++SVM 

Input:      Positive sample:  X+ 

Negative samples:  X- 

Cost parameter:c :=  1000 

Output: True Invariants: H 

1:    k := 1 

2:    Cluster(x+,k),obtain X: {X1+, X2+,...., Xk+} 

3:    If  (SVM can be used): 

4:    For i=1 to k (i=k is allowed): 

5:      h := Process (SVM (Xi+, {b})) 

6:      H := H∨ h 

7:    End For 

8:    Else: 

9:     For i=1 to k (i=k is allowed): 

10:           M := X- 

11:           While | M | ≠ 0 : 

12:   Arbitrarily choose b from M 

13:   h := Process (SVM (Xi+, {b})) 

14:   b’M s.t. h (b’)<0 

15:   Remove b’ from M 

16:   If  (| M | == | M |’): 

17:        k := k+1 

18:        Goto 2 

19:   Else: 

20:               Hi := h hi 

21:            End While 

22:            H := H∨Hi 

23:        End For 

24:  add selective samples 

25:  Goto 2 (only once) 

26:    If  (H is indeed invariants): 

27:     Return H 

28:    Else: 

29:     Add more samples to X+ and X- 

30: Goto 2 

6. Implementation and Evaluation 

We have implemented a prototype version of the 

algorithm described in this paper in the computer 

language of Python. First, we obtain constraint 

expression file whose type is txt by using CBMC tool 

(http://www.cprover.org/cbmc). CBMC is a Bounded 

Model Checker for C and C++ programs and, just right, 

all of our experimental programs are C programs. 

Secondly, according to the constraint expression file, 

we generate samples by using the z3 Satisfiability 

Modulo Theories (SMT) solver [21] for constraint 

solving. Next, to realize our algorithm and show result, 

numpy, sklearn, codecs, re and matplotlib packages of 

Python are adopted. Finally, we use SMT slover [21] 

to check whether the candidate invariants are true 

invariants. 

The k-means++ and SVM in k++SVM are 

supported by off-the-shelf sklearn packages of Python. 

There is an important problem concerning the value 

that the cost parameter c of SVM algorithm should 

take. In order to guarantee that under certain conditions 

the programs will never violate assertion, our classifier 

is not allowed to misclassify. A low value of c allows 

the generated classifier to make errors on the training 

data. So, we assign a very high value to c (1000 in our 

experiments). We conduct all of the following 

experiments on a core I5 CPU with 8GB of RAM 

running Windows 10. 

The results are shown in Tables 1 and 2. In Table 1, 

Num is the experiment number. File is the name of the 

program, and we can find it in the reference behind the 

name; LOC are code lines; Invariants are the invariants 

of the program output by using IOH. There into, Fail 

means that finding invariants by IOH is failed; Our 

Invariants are the invariants output by using k++SVM; 

Total means the total number of the samples including 

positive samples and negative examples; K is the value 

of k in k++SVM; we can find the code of 13th 

experiment in Figure 5.  

 

 

Figure 5. The code of 13th. 

In Table 2, Times and our times is running time of 

the IOH and k++SVM respectively. The statistical time 

is from input samples to output candidate invariants.

Table 1. Experimental results. 

NUM File LOC Invariants Our Invariants Total K Type Interproc 

1 Figure 7 [10] 8 8x   8x   22 1 con Y 

2 Figure 1-a [24] 14 
)5.0(

)5.0(





xy

xy
 

)5.0(

)5.0(





xy

xy
 40 1 con Y 

3 ex1 [13] 22 22  yaxa  22  yaxa  36 1 con N 

4 Figure 2 [9] 18 y3 x  y3 x  62 1 con Y 

5 fse06 [10] 8 )5.0()5.0(  xy  )5.0()5.0(  xy  36 1 con N 

6 Figure 1[12] 6 0 nx  0 nx  43 1 con Y 

7 Figure 1-a [17] 8 16x  y  16x  y  100 1 con Y 

8 Figure 1-b [17] 9 Fail  00x  y  82 2 dis N 

9 Figure 1-d [17] 6 Fail  130x  xy  120 2 dis N 

10 Figure 1 [15] 10 Fail  )5.0()5.0(  xyxy  50 2 dis N 

11 Figure 4 [11] 8 Fail  )5.0()5.0(  iji  40 2 dis N 

12 Figure 1 [11] 8 Fail  )5.0()5.0(  xy  42 2 dis N 

13 Quad 6 Fail  
)5.05.0(

)5.05.0(





yx

yx
 46 2 dis N 

 

http://www.cprover.org/cbmc).Secondly,generating
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Table 2. Running time comparison. 

NUM 1 2 3 4 5 6 7 8 9 10 11 12 13 

File Figure 7 Figure 1-a ex1 Figure 2 fse06 Figure 1 Figure 1-a Figure 1-b Figure 1-d Figure 7 Figure 4 Figure 1 Quad 

Times(ms) 1.946 1.578 2.529 3.494 1.989 5.550 5.405 Fail Fail Fail Fail Fail Fail 

OurTimes(ms) 1.927 1.627 2.488 4.559 2.594 6.933 5.940 23.630 33.490 43.865 3.128 159.152 30.456 

 

In the last column of Table 1, Interproc means 

whether the true invariants can be synthesized by the 

verifier Interproc. Y and N respectively indicate that it 

can or cannot synthesize true invariants. Interproc [14] 

is an interprocedural analyzer for a small imperative 

language with procedure calls. In the basis of the 

technique of abstract interpretation, it infers invariants 

on the numerical variables of analyzed program. 

The invariant comparison of experimental results are 

shown in Table 3. Num is the experiment number in 

Table 1; Reference means the source of the code; 

Invariants represent the results given in source; Our 

Invariants are the results obtained by our method. 

Table 3. Invariants comparison. 

NUM Reference Invariants Our Invariants 

2 [24] yx  0.5) + x <(y  0.5) - x >(y   

5 [28] )0()0(y  x  0.5)- >(x  0.5)- >(y   

10 [15] 0x  y  0.5) -x - <(y  0.5) +x - >(y   

12 [11] )1()1(  yx  0.5) >(y  0.5)- <(x   

 

Comparing our experimental results with other paper, 

there is nothing different between them (see Table 3). 

For example, in our 12th experiment, the invariants 

are 0.5) >(y   0.5)- <(x  , but the result in paper [11] 

is 1) >=(y   1)- <=(x  . In our 5th experiment, the 

invariants are  0.5)- >(y 0.5)- >(x   , but in paper [4] 

the invariants are  0)>=(y  0)>=(x . The reason is 

that the type of the variables is integer, and the 

hyperplane parameter exported by SVM are the type of 

float. Just change our results to 0.5 units, we can get the 

same results. More specifically, in our 2rd experiment, 

by simplifying our result, we can get the 

conclusion  x)<=(y    x)>=(y  . As the final result, 

our invariant is x = y which is the same as the result in 

paper [24]. 

 
Figure 6. The code of 9th experiment. 

 

In section 3.4, we prove that x=y is the true invariant. 

Suppose we use other machine learning algorithms, 

rather than linear kernel SVM, we get a nonlinear 

invariant (the form of circle in Figure 6). We also can 

prove that this kind of result is wrong. This gives us a 

heuristic idea. For a specific program, we are not 

supposed to only pursue that the algorithms can 

distinguish positive and negative samples, in spite of 

the essential characteristics of the change of the 

program variables. This point is well verified why the 

form of invariants should be linear. 

In order to evaluate our method in synthesizing 

invariants, we investigate the following research 

question: 

 RQ1 the first research question which we would 

like to answer to is: does our method help to 

synthesize disjunctive invariants? 

Through the 8~13th experimental results in Table 1, it 

is obvious that the invariants with the form of 

disjunctive can only be computed by our method, 

while the IOH and Interproc cannot. Compared with 

Interproc, it is because that our method regards the 

problem of synthesizing invariants as the problem of 

classification by sampling and using classification 

algorithm. By analyzing samples rather than specific 

procedural logic, our method can synthesize 

disjunctive invariants. Not like the IOH, our method 

should cluster the positive samples before 

classification. According to our results, whether the 

target invariants are conjunctive or disjunctive depend 

on the number of the positive sample’ clusters. If the 

number of positive sample’ cluster, that is the value of 

k, is one, the target invariants are conjunctive. 

Otherwise, they are disjunctive. However, the number 

of the positive sample’ clusters are not determined by 

the distance, but, intrinsically, the situation that 

whether the positive samples clusters can be separated 

clearly from negative samples. This point is also just 

reflected in the condition that the value of k should be 

changed when the samples cannot be separated clearly. 

 RQ2 the second research question which we would 

like to answer is: does our method have the ability 

to automatically synthesize invariants? IOH and 

Interproc cannot synthesize disjunctive invariants 

and Interproc cannot compute the invariants in 3th 

and 5th experiment. What’s more, when we using 

Interproc, we should manually choose the form of 

target invariant first. Specifically, only when we 

choose convex polyhedra option to complete our 4th 

experiment and choose octagon option to complete 

2th experiment, Interproc is able to get the right 

invariants. This is a contradictory problem. In fact, 

before executing Interproc, we don't know which 

option should be chosen to get the right results. 

Through our experimental results, only our method 

can automatically synthesize disjunctive invariants. 



-

-
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Because our method obtains the program feature by 

the relation of samples, rather than the logic relation 

in a program. And then our method judges that the 

invariants are conjunctive or disjunctive by the value 

of k. If k is equal to 1, the invariants are conjunctive. 

Otherwise, they are disjunctive. The way to 

determine the value of k is that we gradually 

increase the value of k by 1 with the condition the 

positive samples cannot be separated clearly from 

negative samples. The optimal value of the k can be 

founded by the way of iterating. That is just the 

reason why our method have ability to automatically 

synthesize invariants. 

 RQ3 the third research question is: how about the 

performance between IOH and our method? As the 

disjunctive invariant, IOH is useless. As the 

conjunctive invariant, referring to the Table 2, the 

running time of k++SVM is closed to IOH. 

Generally speaking, the running time of k++SVM is 

slightly higher than IOH, but sometimes slightly 

lower. It is reasonable that k++SVM is slightly 

higher, because k++SVM is more complex and 

should use k-means++ algorithm extra. The situation 

that k++SVM is slightly lower is unexpected, but it 

is still reasonable, because both the k++SVM and 

IOH are defective. When they use SVM, they choose 

one negative sample randomly. This randomness 

results that the iterations of SVM cannot be 

controlled, although it does not have a great impact 

on the results. This is the point that we will research 

in the future. 

 RQ4 the fourth research question is: how about the 

performance in synthesizing disjunctive invariants 

by our method? Generally, referring to the Table 2, 

the running time of synthesizing disjunctive 

invariants is much higher than the running time of 

synthesizing conjunctive invariants by our method. It 

is reasonable, because the method of synthesizing 

disjunctive invariants have repeatedly used the 

method of synthesizing conjunctive invariants. In 

any case, because the time unit is still in the 

millisecond level, the running time of synthesizing 

disjunctive invariants by our method is acceptable. 

7. Conclusions 

We have shown that synthesizing invariants by 

machine learning algorithm can be profitable. In 

particular, when the target invariants are disjunctive, 

the k++SVM based on k-means++ and SVM is valid. In 

this paper, we use the theory method based on Hoare 

logic to prove the correctness of the invariants. 

Through our experiments, we have also verified that 

k++SVM is not only compatible with IOH, but can 

synthesize disjunctive invariants that IOH and Interproc 

cannot solve.  

As the future work, we would like to modify our 

algorithm to eliminate the randomness and to make it 

more stable and robust. 
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