
The International Arab Journal of Information Technology, Vol. 17, No. 6, November 2020                                                    947 

Computer Vision-based Early Fire Detection Using 

Enhanced Chromatic Segmentation and Optical Flow 

Analysis Technique 

Arnisha Khondaker1, Arman Khandaker1, and Jia Uddin2 

1Department of Computer Science and Engineering, BRAC University, Bangladesh 
2Department of Technology Studies, Woosong University, South Korea 

Abstract: Recent advances in video processing technologies have led to a wave of research on computer vision-based fire 

detection systems. This paper presents a multi-level framework for fire detection that analyses patterns in chromatic 

information, shape transmutation, and optical flow estimation of fire. First, the decision function of fire pixels based on 

chromatic information uses majority voting among state-of-the-art fire color detection rules to extract the regions of interest. 

The extracted pixels are then verified for authenticity by examining the dynamics of shape. Finally, a measure of turbulence is 

assessed by an enhanced optical flow analysis algorithm to confirm the presence of fire. To evaluate the performance of the 

proposed model, we utilize videos from the Mivia and Zenodo datasets, which have a diverse set of scenarios including indoor, 

outdoor, and forest fires, along with videos containing no fire. The proposed model exhibits an average accuracy of 97.2% for 

our tested dataset. In addition, the experimental results demonstrate that the proposed model significantly reduces the rate of 

false alarms compared to the other existing models. 
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1. Introduction 

Fire is a common disaster that claims thousands of lives 

and does insurmountable damage to property every 

year. Early fire detection has, therefore, become 

increasingly important to protect against this hazard. 

Even though sensor-based fire detection systems 

relying on heat or smoke signals are ubiquitous, these 

systems have multiple drawbacks. First, sensor-based 

detectors have to be densely distributed because they 

have limited coverage in terms of area. This results in 

raised expenses for both installation and maintenance 

[4]. Second, heat and smoke do not spread 

instantaneously [12], making the sensors intrinsically 

slow at picking up these signals from the environment. 

To overcome these challenges, computer vision-based 

fire detection techniques have been gaining traction 

over the last couple of years [4, 7]. 

Cutting-edge computer vision algorithms utilizing 

layers of pattern recognition can make feasible early 

detection of fire [6, 9, 11]. For accurate detection, these 

layers attempt to analyse various distinctive features of 

fire, which include its characteristic color, shape, 

flickering rate, and growth, and the spatiotemporal 

difference in frame sequences. This paper presents a 

method of (Luminance (Y), Blue-luminance (U), Red-

luminance (V)) (YUV) color segmentation, a generic 

shape analysis technique, and enhanced optical flow 

analysis of candidate fire regions for robust detection of 

fire. 

 
The remainder of this paper is organized as follows. 

Related works are overviewed in section 2, and the 

proposed model is illustrated in detail in section 3. 

Experimental results are presented in section 4, and 

the paper is concluded in section 5. 

2. Related Works 

In the last few decades, several methods have been 

proposed to detect fire in videos acquired by 

traditional video surveillance cameras. Some form of 

color evaluation is common to all models of fire 

detection. Color information can be extracted using 

chromatic segmentation algorithms that rely on 

multiple color spaces, such as Red Green Blue (RGB) 

[7, 13], YCbCr (Green (Y), Blue (Cb), Red (Cr)) [3, 

6], L*a*b* [4], YUV [9], Hue-Saturation-Value 

(HSV), or even a blend of different color spaces [16]. 

Chen et al. [5] employed a statistical color model 

and used the intensity and saturation information of 

the red component in conjunction with a binary 

background mask with median filtering. The method 

uses statistical values of chromatic information and is 

straightforward to understand and implement. 

Variations of the formulae originally proposed by 

Chen are presented in a vast body of literature. Celik 

derived and developed new rules based on YCbCr [4]. 

These were later altered and utilized in [3]. Chen and 

Huang [8] modeled their works on HSV, and 
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Seebamrungsat et al. [16] implemented their techniques 

in both HSV and YCbCr color spaces. A probabilistic 

approach based on YUV color space is exploited in [1], 

where the thresholding of potential fire pixels relies on 

a support vector machine instead of a naïve heuristic. 

However, detectors based on color analysis fail to 

consider other important characteristics of fire, such as 

shape, growth and flickering. It is easy to trigger the 

chromatic filter by secondary luminous sources like 

light bulbs in the scene or variation in the luminescence 

of the scene. To reduce the number of false-positive, 

other features of fire must be taken into account. 

Previously, frame differencing [16] and image 

segmentation based on colour analysis [6, 9, 13] were 

used. In [10], Gaussian mixture models are used to 

extract the moving foreground from the static 

background. Although a Gaussian mixture model has 

high accuracy, it is too expensive computationally, 

which makes it unsuitable for real-time fire detection. 

Khan et al. [11] used a novel foreground extraction 

technique based on the rapidly changing value of the 

blue channel in fire pixels. Foggia et al. [9] used an 

unusual multi-expert system with a novel motion 

descriptor that adopts a bag-of-words approach 

commonly observed in Natural Language Processing 

(NLP) algorithms. Another technique popularly used to 

detect the temporal behaviour of flame boundaries is 

wavelet transformation [4, 17]. However, to gain 

satisfactory results from wavelet analysis, the frame 

rate must be sufficiently high, limiting its applicability. 

Other feasible approaches include optical flow analysis 

as carried out in [15] and enhanced in [14]. This has 

been observed to be highly effective in separating the 

uniform motion of rigid objects from the disorderly 

movement of fire plumes. However, a static threshold 

of 2 for optical flow complexity was used in [15], and 

the overall performance was not satisfactory with a 

more diverse dataset. 

3. Proposed Model 

The proposed model utilizes three major phases for the 

detection of fire. An overview of the model is 

illustrated in Figure 1. 

 
Figure 1. Workflow of the proposed model displaying the different 

phases and their brief descriptions. 

3.1. Chromatic Segmentation in YUV Color 

Space 

The non-chemical fire has a characteristic color that 

almost always appears in the red-yellow range. 

Chromatic segmentation based on this distinctive 

feature thus naturally acts as the primary trigger for 

fire detection. Among the existing segmentation 

methods, many are well-formulated using principled 

techniques of image processing, while others are 

based on heuristic thresholds and empirical 

observation. Based on the experimental analysis, 

pixels in most flames exhibit a Red channel value 

greater than that of Green, as well as a Green channel 

value greater than that of Blue [3]: 

𝑅(𝑖, 𝑗) ≥ 𝐺(𝑖, 𝑗) > 𝐵(𝑖, 𝑗) 

Where R(i,j), G(i,j), and B(i,j) are the Red, Green, and 

Blue (RGB) channel values of pixel (i,j) respectively. 

We have used YUV color space as it considers the 

chrominance and luminance of a pixel [4]. The 

constraints in [4] can be equivalently expressed in the 

YUV plane by converting from RGB to YUV using 

the well-known conversion rules specified in [17]. 

Based on the converted output, the following rules can 

be used to define a fire pixel, so that we obtain the 

following generic pixel (x,y) of the image: 

𝑟1(𝑥, 𝑦) = {1 𝑖𝑓 𝑌(𝑥, 𝑦) > 𝑈(𝑥, 𝑦) 

    𝑟2(𝑥, 𝑦) = {
1      𝑖𝑓 𝑉(𝑥, 𝑦) > 𝑈(𝑥, 𝑦)

0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 
 

Where rn(x,y) indicates any pixel in spatial location 

(x,y), which takes the value of 1 if it exhibits fire-like 

color and 0 otherwise. Y(x,y, U(x,y), and V(x,y) are the 

Y, U, and V channel values in spatial location (x,y), 

respectively. 

Moreover, it is empirically demonstrated that the Y 

component of fire pixels is generally larger than the 

mean 𝑌 component in a frame. Similar rules [9] can be 

equivalently expressed as follows: 

𝑟3(𝑥, 𝑦)  =  {1 𝑖𝑓  𝑌(𝑥, 𝑦)  >  𝑌𝑚𝑒𝑎𝑛 
                        0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} 

𝑟4(𝑥, 𝑦)  =  {1 𝑖𝑓 𝑈(𝑥, 𝑦)  <  𝑈𝑚𝑒𝑎𝑛 

                        0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} 

𝑟5(𝑥, 𝑦)  =  {1 𝑖𝑓 𝑉(𝑥, 𝑦)  >  𝑉𝑚𝑒𝑎𝑛 

                        0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} 

Likewise, the mean values of the three channels in 

YUV color space for an MxN image can be defined as 

follows: 
 

Ymean =  (
1

M∗N
) . ∑ ∑ Y(i, j)N

j=0

M

i=0
 

Umean =  (
1

M∗N
) . ∑ ∑ U(i, j)

N

j=0

M

i=0
 

Vmean  =  (
1

M∗N
) . ∑ ∑ V(i, j)

N

j=0

M

i=0
 

(7) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(8) 

(9) 
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Where Y(i,j), U(i,j), and V(i,j) are the Y, U, and V 

components of a pixel in spatial locatisson (i,j) in YUV 

color space, respectively. 

Furthermore, it has been shown that fire pixels show 

a significant difference between U and V components 

[3]. 

|𝑉(𝑥, 𝑦) –  𝑈(𝑥, 𝑦)|  ≥  𝑡𝑐 

Where tc is the threshold that must be exceeded. 

However, in the experimental analysis, it was 

observed that Equation (10) works poorly in the case of 

relatively brighter flames. Therefore, in this paper, 

Equation (10) was modified into Equations (11) and 

(12) to eliminate the threshold value. 

𝑟6(𝑥, 𝑦)  =  {1  𝑖𝑓 ( 0.025 ∗  𝑉(𝑥, 𝑦) –  0.025 ∗  𝑈(𝑥, 𝑦)  −  1)  > 0 

                        0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} 

𝑟7(𝑥, 𝑦)  = {1 𝑖𝑓 ( 0.025 ∗  𝑈(𝑥, 𝑦) –  0.025 ∗  𝑉(𝑥, 𝑦)  −  1)  > 0 

                       0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} 

Figure 2 illustrates the improved performance of the 

split rules in detecting a fire region compared to the 

existing Equation (10). 

A common limitation of chromatic filtering 

algorithms [2] is that they perform logical conjunction 

of all the rules to segment out the region of interest. 

This approach often fails to detect visually distant 

flames. To overcome this limitation, a more liberal 

approach is undertaken in the proposed system by 

taking a vote on all the rules and segmenting the image 

based on the majority decision, as described in 

Equation (13). 

   

a) The original frame of a 

bright flame at close 

proximity. 

b) Segmentation using 

Equation (10). 

c) Segmentation using 

Equations (11) and (12). 

Figure 2. Comparison showing improved accuracy of the enhanced 

equations in Red squares. 

φ𝑀(𝑥, 𝑦) = ∑ r𝑘(𝑥, 𝑦)7
𝑘=1  

𝐹𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑥, 𝑦) = {1 𝑖𝑓 𝜑𝑀(𝑥, 𝑦) ≥ 𝑀 

                                      0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} 

Where M denotes the number of rules that must give a 

positive indication. 𝜑𝑀 (𝑥, 𝑦) is a measure of the 

number of rules applied to pixel (x,y) as a fire pixel. 

Fcandidate (x,y) is the candidate fire pixel (x,y), which is 1 

if it is indeed a fire pixel and 0 otherwise 

The smaller is the value for M in Equation (13), the 

larger is the number of false positives. The value is 

therefore chosen such that any potential fire pixel is not 

ignored by being too restrictive. By empirical study, in 

this paper, the value of M was adjusted to be 4. 

Additionally, the shape and optical flow analyses are 

designed to address this issue. Figure 3 shows that the 

majority decision rule can extract fire regions more 

accurately. 

   

a) A frame from a video 

with a fire generated in a 

bucket in indoor 

conditions. 

b) The binary mask of (a) 

without application of the 

majority voting rule 

specified in Equation 

(13). 

c) Shows the binary mask 

of (a) when the majority 

voting rule is applied. 

Figure 3. Comparison between the binary masks of a sample 

frame. 

3.2. Shape Analysis 

A distinguishing feature of flames is their complex 

shape that varies rapidly as a function of time. As 

suggested in [9], blobs from two consecutive frames 

from the previous step (section 3.1) are identified, and 

the ratio of their perimeter and area is calculated, 

which can be described as follows: 

𝑅𝑡  =
𝑃𝑡

𝐴𝑡
 

Where Rt is the ratio of perimeter Pt and area At. 

This ratio for the fire blobs is considerably larger 

than the ratio calculated for ordinary objects that 

manage to slip through the previous step. For further 

substantiation, the ratio for a blob detected in frame t 

is compared with the nearest blob detected in the next 

frame t+1. This can be stated as follows: 

𝑆𝑡𝑣  =
𝑟𝑡 – 𝑟𝑡+1

𝑟𝑡
 

Where Stv denotes the change in shape. 

If Stv in Equation (15) is higher than the given 

threshold t, this step classifies the frame as containing 

the fire. In this paper, by empirical study, t was 

adjusted to be 0.4 for our dataset. This phase of the 

model is intended to remove ordinary non-fire objects 

exhibiting the color of fire. 

 
 

a) Sample frame at time t. 

 
 

b) Frame at time t+1. 

  

c) Segmented frame before performing 

shape analysiswith the spurious non-

moving regions marked in red circles. 

d) Segmented frame after shape 

analysis with thespurious regions 

eliminated. 

Figure 4. Output of two consecutive frames from a video 

containing both fire and non-fire regions exhibiting the 

characteristic color of fire. 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 
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Figure 4 presents the result of the shape analysis of a 

sample scenario. Most of the non-growing regions were 

eliminated due to the shape and growth analyses. 

3.3. Optical Flow Analysis 

Fire is a turbulent physical phenomenon, and the inner 

edges of fire plumes exhibit a chaotic displacement as a 

function of time. This feature is so unique to fire that 

successful extraction results in a dramatic reduction of 

false positives. This feature can be extracted using 

optical flow tracking algorithms. In the proposed 

system, an enhanced Lucas-Kanade optical flow 

analysis technique is suggested to calculate the 

turbulence of fire [15]. 

The Lucas-Kanade Tracking (LKT) algorithm uses a 

set of corners to track a sequence of frames. At first, the 

Features from the Accelerated Segment Test (FAST) 

algorithm are utilized to detect 50 corners in the fire-

like regions. These corners are subsequently fed into 

the Lucas-Kanade tracker to be tracked across a 

sequence of frames. The LKT algorithm then calculates 

and returns a set of motion velocity vectors for each of 

these corners from frame 𝑡 to frame t+1. The vectors 

can be represented as follows: 

𝑝 =  [𝑝𝑥, 𝑝𝑦]
𝑖
, 𝑖 = 0, 1, 2, … , 𝑛 

𝑞 =  [𝑞𝑥 , 𝑞𝑦]𝑖 , 𝑖 = 0, 1, 2, … , 𝑛 

Where p and q denote the starting and ending points, 

respectively, of a corner from frame t to frame ts+1, 

and n indicates the number of corners. 

The result of the LKT algorithm on a set of corners 

is depicted in Figure 5. The velocity vectors of the 

corners detected in fire are represented using purple 

lines. The longer lines indicate faster movement of the 

corner. 
 

 
 

a) Original frame from a video with 

fire in outdoor conditions. 

 
 

b) The velocity vectors calculated from the 

corners detected in the flame region in (a). 

Figure 5. Velocity vectors obtained from a frame containing forest 

fire. 

We can calculate the average flow rate of fire using 

the vectors calculated in Equations (16) and (17), which 

gives a rough measure of complexity. The average flow 

rate is calculated using the following Equation: 

𝐹 =
1

𝑛
∑ √(𝑝𝑦𝑘 − 𝑞𝑦𝑘)2  + (𝑝𝑥𝑘 − 𝑝𝑥𝑘)2)

𝑛

𝑘=0
 

Where n denotes the number of corners being tracked, 

and F is the average flow rate. 

 

a) The original frame of fire plumes at 

close vantage point (scene 1). 

 

b) Corresponding velocity vectors 

for (a). 

  

c) The original frame of fire plumes at 

close vantage point (scene 2). 

d) Corresponding velocity vectors 

for (c). 

Figure 6. Velocity vectors of a frame containing indoor fire 

plumes. 

This flow rate complexity represents the chaotic, 

non-deterministic motion of the local features of fire. 

Consequently, the value of this will differ between fire 

and non-fire objects. The proposed model makes use 

of this average flow rate complexity to analyze the 

possibility of fire. In the empirical study, the value of𝑛 

in Equation (18) has been concretized to be 10, and 

the complexity is calculated n times. Every time the 

complexity exceeds the threshold 0.5, a counter is 

incremented. If the complexity exceeds the threshold 

more times than not in n attempts, the scene is 

considered a potential fire scene. The average flow 

rate values for 1000 such n-frame scenes are then 

extracted and subsequently trained using a scaled 

conjugate gradient back-propagation neural network. 

  

a) The original frame from a video 

with sunlight shimmering through a 

forest containing trees and leaves 

having the characteristic color of fire. 

b) The corresponding motion vectors 

obtained from (a). 

Figure 7. Motion vectors of a non-fire scene with fire-like 

properties. 

To test the efficacy of the model, the n-frames 

scene is fed to the neural network for analysis, which 

then attempts to classify the 𝑛-frames scene as a fire 

or non-fire scene. The model successfully 

demonstrates promising performance in picking up a 

pattern from the flow rate complexity. Figure 6 

illustrates the velocity vectors of a sample fire, where 

the vectors of fire are quite dispersing and chaotic. 

The turbulent motion vectors in the fire scenes 

depicted in Figure 6 are easily distinguishable from 

the relatively calm motion vector in the non-fire scene 

in Figure 7. 

 

 

(17) 

(16) 

(18) 
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4. Experimental Results 

To evaluate the performance of the proposed model as 

a simulation tool, we utilized MATLAB and tested it 

using a diverse dataset containing videos in a wide 

variety of scenarios. The dataset includes videos 

containing the fire at different illumination levels and 

videos with ordinary objects that display fire-like color. 

The dataset was prepared predominantly using videos 

from the Mivia [9] dataset with some videos from 

Zenodo, and the rest were taken from YouTube or 

recorded personally. The videos can be broadly divided 

into three categories: indoor, outdoor, and forest fires. 

The proposed model yields a comparatively greater 

true positive rate in scenarios where the fire is situated 

in a distant region. It excels over the competing models 

in these cases because these models employ a stricter 

set of color segmentation rules in their first phase of 

analysis. The restrictive color rules fail to extract the 

small fire regions in the scenarios where the fire is 

located far distant. Consequently, the comparatively 

liberal color rules employed in the proposed model 

yield a better true positive rate. 

The results of the enhanced segmentation rules that 

yield this better accuracy of True Positive (TP) in 

percentage (%) are presented in Tables 1 and 2.  

Table 1. Comparison of the performance of enhanced Equations 
(11) and (12) versus traditional Equation (10). 

Case Average TP Average FP 

Using Equation (10) 93.0 2.6 

Using enhanced Equations (11) and (12) 97.7 2.9 

Table 2. Comparison of the performance of the majority voting rule 
in Equation (13). 

Case Average TP Average FP 

Without using Equation (13) 82.2 8.7 

Using Equation (13) 98.9 18.0 

The average TP rate is the percentage of fire pixels 

correctly identified in a scene, whereas the average 

False Positive (FP) rate is the percentage of non-fire 

pixels misidentified as fire. Enhanced Equations (11) 

and (12) identify a greater number of true fire pixels 

compared to Equation (10). This test was carried out 

against frames containing very bright flames. Even 

better performance is provided by the majority voting 

rule in Equation (13), which identifies 98.9% of fire 

pixels correctly. This test was carried out against 

frames containing flames situated far away. Although it 

simultaneously increases the average FP rate, the effect 

of this is eliminated by the optical flow analysis phase. 

Additionally, the performance of the proposed model 

with enhanced color rules and an optical flow analysis 

technique is compared with the model presented by 

Khan et al. [11] and Rinsurongkawong et al. [15]. 

Assessment is performed concerning the rates of true 

positives and false positivesin a scene of 10 frames, and 

the corresponding model’s capability to correctly 

classify the 10-frame scene as a fire scene or non-fire 

scene. 

Table 3 shows the comparison of the models in 

different environments, which reveals that the 

proposed model yields an overall average accuracy of 

97.2%, outperforming both Khan’s et al. [11] and 

Rinsurongkawong’s et al. [15] models. Furthermore, 

the proposed model achieved greater success in the 

reduction of false positives, demonstrating an only 

2.21% false-positive rate compared to 7.78% and 

6.76% for Khan’s et al. [11] and Rinsurongkawong’s 

et al.  [15] models, respectively. 

Table 3. Comparison of the models exposed to a diverse set of 

scenarios. 

 
Khan et al. [11] 

(in %) 

Rinsurongkawong et al. 

[15] (in %) 

Proposed Model 

(in %) 

Class TP FP TP FP TP FP 

Indoor 96.04 5.84 96.98 14.46 99.06 2.1 

Outdoor 90.4 3.94 91.76 2.84 94.6 3.14 

Forest 99.73 17.43 99.43 0.47 98.33 0.83 

Overall 94.7 7.78 95.5 6.76 97.2 2.21 

Khan’s et al. [11] model is typically weaker when 

there is sunlight in the background. Khan et al. [11] 

uses a novel foreground extraction technique that 

exploits the flickering property of fire by detecting the 

rapidly changing blue channel value of fire pixels. 

However, this property is also true for the pixels in 

sunlight, yielding an alarming rate of false positives in 

scenes containing sunlight. The proposed model, in 

contrast, does not suffer from this weakness due to its 

reliance on dynamic optical flow analysis, which 

yields different results for fire and sunlight. 

Similar to the proposed model, Suchet’s [15] model 

also does not suffer from the limitation of Khan’s 

model. However, Suchet’s [15] model is weaker when 

objects exhibiting the characteristic color of fire are 

moved in a haphazard, unpredictable way. Suchet [15] 

employs an optical flow analysis technique that 

calculates the variation of optical flow over time. 

However, the model uses a naïve thresholding 

approach that fails to differentiate the unpredictable 

motion of fire from the unpredictable motion of an 

object moving in a non-deterministic way.  

Alternatively, the proposed model calculates the 

average flow rate of candidate pixels and employs a 

back-propagating neural network to identify a pattern 

from the average flow rate, which reduces the false 

positives rate. Overall, the model is powerful in its 

ability to detect fire in all types of scenarios. It 

performs equally well in detecting indoor, outdoor, 

and forest fires at different levels of illumination and 

varying levels of distance from the camera. Moreover, 

compared to the competing models, it increases the 

true positive rate of detection and significantly reduces 

the false positive rate. 
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5. Conclusions and Future Work 

A robust fire detection system has been proposed in this 

paper which analyzes several properties of fire, 

including color, shape, and turbulence. An enhanced 

chromatic segmentation algorithm using a majority 

voting system to detect Fcandidate (x,y) if 𝜑𝑀(𝑥, 𝑦) >=

4has been adopted in cohesion witha generic shape 

analysis technique to detect two of the most 

fundamental visual properties of fire. As the final and 

most important step of the model, an enhanced LKT 

optical flow analysis algorithm was proposed to detect 

the disorderly motion of fire plumes. Otherwise, the 

rate of false-positive would be higher. The proposed 

model was tested using a diverse dataset, and it 

outperformed existing models by exhibiting an average 

accuracy of 97.2%.  

Future work will be intended to carry out the optical 

flow analysis step using a hybrid neural network that is 

trained directly with a set of principled turbulence 

values as the feature vector. 
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