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Abstract: This paper investigates the using of Gray Level Co-Occurrence Matrix (GLCM) based on supervised texture 

segmentation. In most texture segmentation methods, the processing algorithm is applied to a window of the original image 

rather than to the entire image using sliding scheme. To attain a good segmentation accuracy especially in the boundaries, 

optimal size of window is determined, or windows of variant sizes are used. Both options are very time consuming. Here, a new 

technique is proposed to build an efficient GLCM based texture segmentation system. This scheme uses a fixed window of 

variant apertures. This will reduce the computation overhead and recourses that required to compute GLCM, and will improve 

the segmentation accuracy. Image's windows are multiplied with a matrix of local operators. After that, GLCM is computed 

and features are extracted and classified and the segmented image is produced. In order to reduce the segmentation time, two 

similarity metrics are used to classify the texture pixels. Euclidean metric is used to find the distance between the current and 

previous GLCM. If it is above a predefined threshold, then the computation of GLCM descriptors are required. Gaussian 

metric is used as a distance measure between two GLCM descriptors. Furthermore, a median filter is applied to the segmented 

image. Finally, the transition and misclassified regions are refined. The proposed system is parallelized and implemented on a 

multicore processor. 
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1. Introduction 

Texture segmentation is one of the most image 

segmentation challenging problems. It is difficult to 

choose a suitable mathematical model to describe 

variant types and sizes of primitive textures. From the 

computer vision point of view, it is difficult to 

recognize significant edges within the non-

homogeneous intensity distributions of texture image. 

Another issue is that the primitive texture is usually 

unstable against changes in scale, translation and 

rotation. 

 To cope with after challenges, it is crucial to build 

an efficient texture descriptor (feature extractor) that is 

well describes texture. In addition, an efficient 

classification criteria should be followed to segment the 

descriptors to different texture classes. 

 Typically, image is evaluated by using one of the 

two approaches. In the first approach a different 

pyramidal scales of the original image is utilized [12, 

14, 15] to determine in which scale of the pyramid the 

texture primitive is included. 

 Image segmentation pyramids is classified into 

regular and irregular types. Although that the pyramidal 

approach based segmentation is invariant against noise, 

the regular type suffers from many limitations: the most 

important is incapability to segment elongated objects. 

To address the limitations, irregular type is proposed. 

However, the irregular type is more complex and time 

consumed to be achieved [1]. The second approach 

evaluates the original image over a specified Region Of  

 
Interest (ROI) or window [3, 5, 11, 18]. This approach 

is more suitable for processing image that is 

composited of elongated regions. Window size has a 

significant effect on the segmentation accuracy. Large 

window size leads to more stable texture features but 

tends to blur the edges, while small window size leads 

to misclassify the textured boundaries. Thus, an 

efficient windowing should be achieved. A good 

window is the one that leads to discriminate among 

variant texture primitives and to achieve a sufficient 

texture representation within it.  

In [3], the optimal window size for Gray Level Co-

Occurrence Matrix (GLCM) descriptors according to 

the texture that is to be classified is determined by 

using semivariogram method. 13×13 and 7×7 pixels 

windows are determined to be optimal for the building 

and vegetation sample images respectively. Ouma et 

al. [9] investigate the use of an optimal window size 

for wavelet based textured feature extractor to classify 

urban tree texture.  

The experiments presented in [10] shows that the 

integration of multi-sized windows yields lower 

classification errors than when optimal single-sized 

windows are considered. A coarse-to-fine strategy is 

used in [17] to generate an ideally step-like transition 

closer to a dashed vertical line by adjusting the 

window size adaptively from 27×27 to 9×9. The 

adjustment is applied only in the target area of 

transition boundary. While 3×3, 5×5, and 7×7 

windows are applied to TerraSAR-X (TSX) images in 
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the work presented in [7], in order to define the most 

suitable parameters discriminating between different 

land cover types. 

 The original 160×120 image is divided into multiple 

windows of 80×60, 40×30, and 20×15 in the work 

presented in [8]. The GLCM of different parameters is 

applied to each of these windows and a set of features 

are extracted together from these windows and the 

textures are classified by their features using machine 

learning approaches.  

In the works presented above, it can be noticed that 

different window sizes and image resolutions, are 

employed. The whole segmentation algorithm is 

applied to each window or image resolution. This add 

more computational power and time overhead. Time 

reduction becomes a crucial requirement especially for 

fast processing of video sequence or large medical 

image. Therefore, the goal of this paper is to achieve a 

good segmentation in reduced computation time and 

variant parameters. The paper proposes new techniques 

to solve the aforementioned issues: 

 Using of local operators: instead of using variant 

sizes of windows, fixed size of window with variant 

aperture can be used. Consequently, the same 

algorithm can be used to process texture of variant 

primitives and a extra modification of the algorithm 

parameters is avoided and then more stable features 

are extracted.  

 To reduce the segmentation time, two metrics are 

used to classify the texture pixel. The first one 

(Euclidean) check if the adjacent GLCMs are close 

enough, then redundant computation of GLCM 

descriptors are avoided. Otherwise, Gaussian metric 

is used to find distance between two vectors of 

GLCM descriptors.  

 Further refinement is achieved by using median 

filtering of the image that is already segmented. 

 Further reduction of segmentation time is achieved 

by parallelizing the proposed algorithm among 

multiple cores of the host processor. 

2. Texture Description Using GLCM 

The GLCM texture analysis method is investigated in 

this paper. Haralick et al. [4], defined the GLCM as a 

one of the best known texture analysis methods. The 

selection of GLCM is based on some attractive features 

that extracted from previous studies. GLCM has been 

used in many applications, such as in content based 

image retrieval, biomedical, etc. Furthermore, GLCMs 

of an original image is approximately the same with 

GLCMs of its rotation. That is based on using four 

directions for each descriptor. The most common 

statistic in medical field is co-occurrence texture 

models, which demonstrates better classification 

accuracy [16]. The co-occurrence matrix includes 

second-order grey-level information, which is mostly 

related to human perception and the discrimination of 

textures. As presented in [13], it performs the best 

among all texture models. 

GLCM is a statistical texture analysis method 

which deals with supervised texture segmentation in a 

frame partition using level-set deformable model 

implementation.  

The GLCM is computed in a user defined moving 

window rather than computing it for the entire image. 

Using a moving window, neighborhoods of the pixel 

are defined and texture features for each window in an 

image is computed. The GLCM and its computation 

along moving window can be represented in 

mathematical notation as: 

ij ij
P (a) p (I(r a))      r D    

where: 

I : is the input image. 

r: is a 2D position within the moving window. 

D: is the moving window within the image. 

a: is the displacement moving step. 

pij: is the GLCM which defined as: 

 

[Δx, Δy]: is specifying the offset between the pixel-of-  

interest located at (x,y) and its neighbor. It takes four 

options: [0, d], [-d, d], [-d, 0], [-d, -d]. 

nD: is the dimention of the moving window i,j ϵ 

{0,1,2,……,L-1}, L: level of gray tone. 

The number of possible intensity levels in the 

image determines the size of GLCM. For an 8-bit 

image (256 possible levels), GLCM will be of size 

256×256. This is not a problem when working with 

one matrix, but co-occurrence usually used in 

sequences. In order to reduce computation load, an 

approach used frequently is to quantize the intensities 

to limited levels to keep the size of GLCM 

manageable. For example, in the case of 256 

intensities we can do this by letting the first 32 

intensity levels equal to 1, the next 32 equal to 2, and 

so on. This will result in a co-occurrence matrix of 

size 8×8. 

After the formulation of GLCM, a set of 

descriptors useful for characterizing the content of 

GLCM is to be computed. Some of these descriptors 

that are used in this paper is defined as follows [4]: 
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Where mx, my and σx, σy denote the mean and standard 

deviations of the row and column sums of the matrix 

Pij, respectively. 

In order to capture all possible texture patterns in a 

further step, different displacements (d=1, 2, 3, 4,….) 

for four directions (θ =0°, 45°, 90°, 135°) are evaluated. 

In this paper, five texture descriptors (Equations (2, 3, 

4, 5, 6)) are computed for each directions. Therefore, 

for each texture displacement, 20 descriptors (5 

descriptors×4 direction) are computed. It is found that 

the more the number of descriptors, the more 

complicated textured primitive is specified, but at the 

same time the generalization is reduced, particularly in 

the transition regions. Therefore, a moderate number of 

descriptors is selected.  

3. The Proposed Technique 

The main steps for image segmentation system is 

presented in the following algorithm: 

Algorithm 1: GLCM based texture segmentation algorithm 

1. Subdivide the texture image into n-overlapping  

slides, select the aperture size, pattern and slide  

moving steps. 

2. Reset GLCMi, Initialize Grayi, moving step i=0.  

3. Start with new slide index: i.  

4. Compute GLCMi. 

5. If dist(GLCMi, GLCMi-1)<threshold, then assign 

 each of the slide pixel to Grayi-1 and go to 9 else 

 continue. 

6. Feature extraction: calculate GLCM descriptors  

vector (≤N descriptors). 

7. Calculate distance between slide vector with a bank  

of reference feature vectors (each of N descriptors). 

8. Classification: assign each of the slide pixel to one 

gray level (label of the closest reference vector). 

9. If slide index < n, then go to 3 else continue. 

10. Apply traditional median filter. 

11. If the segmentation quality is poor, then change the 

 aperture size and go to 2, else continue. 

12. End. 

 Here, the moving window is scanned over the image in 

overlapped steps. To avoid using windows of different 

sizes, a fixed window of variant aperture is used. This 

can be achieved by multiplying the input window with 

a matrix of local operators (W) of ones and zeros. Now, 

Equation (1) can be rewritten as: 

     ))(()( WarIpaP ijij   

The distribution of ones and zeros in W can define the 

pattern of the window and its aperture. In Figure 1, one 

can see that the moving window is not restricted of its 

traditional first order pattern of neighbourhood (Figure 

1-a). But it can take any other pattern (Figure 1-d). The 

one's operators define the size of the aperture (Figure 1-

b, and 1-c).  

      
              

 

 

 

                

                  

              a) First order neighbourhood.             b) Second order neighbourhood. 

      

              

 

 

 

 

           

              c) Third order neighbourhood.            d) Fourth order neighbourhood.   

Figure 1. Neighbourhood pattern with central pixel. 

Since the operators are only ones or zeros, no 

multiplication operation is required for weighting the 

input (I) in the region D (in hardware AND operation 

can be used).For each window in local position a, 

GLCM is computed. Then Features of each window 

are extracted (the GLCM N-descriptors). To reduce 

the computational overhead, different approaches are 

used:  

1. The intensity level of the input texture image is 

quantized to 20 levels. Then instead of 256×256 

elements of GLCM, 20×20 elements GLCM is 

produced.  

2. When computing texture descriptors by scanning 

the window slide throughout an image, shifting the 

window one step in an overlapping fashion does not 

change many of the GLCM elements, particularly 

inside the same texture class. Therefore, if the 

distance between the current and the previous 

GLCM is too low, the distance between their 

descriptors is also expected to be too low. Then 

there is no need to re-compute the GLCM 

descriptors vector of the current window and the 

previous gray level can be assigned to it. 

3. The distance between the extracted feature with the 

reference features which obtained in a supervised 

fashion is computed. Each reference vector that is 

stored in the feature vectors bank should have an 

adequate number of elements (descriptors). The 

moving window may be described with a smaller 

number of descriptor (< N: select good descriptors 

from each vector) to decrease the time of 

computations. 

The distance measure is crucial factor for good 

segmentation quality for both inter and intra class 

regions. For more discussion about the similarity 

metrics, dealing with the transition regions and 

refinements, the following subsections are presented. 

3.1. Similarity Measure 

In this paper two distance metrics are used: the 

Euclidean distance and Gaussian curve. To find the 
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distance between two GLCMs, and since that all 

elements of the GLCM are homogeneous (totally 

integer values, or totally real values in a normalized 

GLCM), the Euclidean metric can be used. On the other 

hand, we find that the most popular Euclidean or 

Manhattan metrics may not be suitable to find the 

closest reference vector with the descriptors vector of 

the slide under the test. This is due to the distribution 

heterogeneity of each of the GLCM descriptor. Thus, a 

Gaussian curve is employed to find similarity measure 

between two vectors. The mathematical representation 

is defined as: 
2

2

( )

2( )
c

f e



 

  

Where   is a descriptor value. The c and σ are the 

centre and width of Gaussian curve, respectively. For 

each GLCM descriptor, Note that the similarity ranges 

is from 0 to 1. It equals to 0 for two completely 

dissimilar descriptors, and 1 for descriptors with 

matching central. An input vector is mapped to all the 

reference vectors. Each feature of this vector is mapped 

to all specified features of reference vectors. Then the 

sum of all Gaussian outputs among reference vectors 

and input one are calculated. Finally, the input vector is 

assigned to the reference vector where the summation 

of Gaussian outputs is the maximum. The former 

metric is considered good if the values it assigns to 

similar pairs of GLCM are consistently lower than the 

values it assigns to dissimilar GLCM. In contrast, the 

later metric is considered good if the values it assigns to 

similar pairs of GLCM descriptors are consistently 

higher than the values it assigns to dissimilar GLCM 

descriptors. For both metrics, a threshold (or an 

interval) is assigned beforehand, such that metric values 

above the threshold (interval) indicate similarity and 

below the threshold (interval) indicate dissimilarity. 

3.2. Transition Region and the Refinement 

 The transition between two or more completely 

different classes of texture is known as a transition 

region. Two techniques deal with transition region. The 

first technique depends on using new shapes of the 

moving window in the feature extraction stage. To 

explain our approach let's begin with the standard 

texture image downloaded from Brodatz dataset [1]. 

The images are digitized at a resolution of 256×256 

pixels and at 8-bit grey scale level. This image contains 

five different textures joined with sharp transition 

regions. First, according to the algorithm presented in 

Algorithm 1, clear reference sub-images are extracted 

from the original image (Figure 2-a). 

 In Figure 2-a, one can see that a rectangular pattern 

is used to extract each reference or extracted sub-

image. Each of sub-image depends on the weights of 

the window. If instance, a 13×13 slice is used, then the 

weights shown in Figure 1-a represents the extraction 

without any mask. Now, if the first sub-image from 

the original image (which contains two textures) is 

extracted, its feature vector cannot be clustered in any 

of the five referenced feature vectors correctly, 

because it is assumed to be as a new class. The size of 

the window should be small enough to reduce this 

effect.  

 

 

 

 

 

 

 

 

 

 

 

 
a) Broadatz texture image and its extracted and reference sub-images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) Processing of undefined sub-images using local operators. 

 

 

 

 

 

 

 

 

 
 

 

 

c) Segmentation of the processed sub-images. 

Figure 2. Segmentation process. 

But this may lead to increase the misclassification 

rate in regions other than the transition edges. We use 

local operators to avoid using windows of different 

sizes. These operators are adapted to function the 

behavior of window with a variant aperture.  
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Now, if the window's aperture becomes smaller 

enough (Figure 1-b and 1-c), keeping in mind that the 

window size is constant, then, the Haralick descriptors 

can match the descriptors of the first reference sub-

image, and then the pixel can exactly classified to the 

first class. Processing and segmentation of undefined 

windows with local operators are shown in Figure 2-b 

and Figure 2-c respectively.  

The window aperture can take different shapes with 

different aperture sizes as shown in Figure 1-d and 1-e. 

The influence of using such shape is to sharpening the 

transition regions of rotated angles (45o, 135o). Note 

that there is no time overhead imposed by using the 

above technique. 

The second technique is illustrated in algorithm 1, 

where a traditional median filtering is applied to the 

already segmented image. Afterword, the transition 

regions and misclassified spots within the truly 

segmented region are refined. The above algorithm well 

works with window of smaller size. 

4. Parallel Implementation of The Proposed 

Algorithm 

Over the past decade, computing architectures have 

started on a clear trend towards increased parallelism 

and heterogeneity, with most mainstream 

microprocessors now including General Purpose Multi-

Cores (GPMCs), and system architectures commonly 

integrating accelerators such as Graphics-Processing 

Units (GPUs) and Field Programmable Gate Arrays 

(FPGAs) over PCI and even on the same chip. 

Numerous studies have shown that such architectures 

can accelerate applications by orders of magnitude 

compared to sequential software [2]. 

 Although, using a specific hardware on FPGA is 

expected to give best performance in term of speed and 

real time applications, and using FPGA is the most 

flexible hardware choice according to the feature of re-

programmability, however, the software based 

implementations are more flexible and their 

development time are much less than the FPGA. 

Therefore, implementing the mentioned algorithms on a 

multi core parallel architecture such as GPMC or GPU 

is an excellent alternative to provide moderate 

performance. It is important to emphasise that GPU is 

not accessible for all researchers. Therefore, GPMC can 

be selected as an initial platform toward more powerful 

implementation (GPU or FPGA). 

Starting from 2004, GPMCs are replacing traditional 

Central Processing Units (CPUs) in both personal 

computers and servers. Generically called “multi-

cores”, they are already offered by most of the big 

players-Intel, Sun, Advanced Micro Devices (AMD), 

and IBM. GPMCs are homogeneous platforms with 

complex cores, based on traditional processor 

architectures; they are typically shared-memory 

architectures, with multiple layers of caches, and they 

are used as stand-alone processors [6]. The purpose of 

using multi cache levels is to reduce cores access to 

the global shared memory as much as possible. 

 The main drawback of GLCM is that the 

computation of the GLCMs and texture features are 

computationally intensive and time-consuming. In this 

paper we focus our implementation on using GPMCs 

as a type of multi-cores programmable parallel 

machines. 

 MATLAB is one of the most commonly popular 

languages used in technical computing. It is prefer to 

develop an algorithm in Matlab first. Then, it can be 

converted the code into C or FORmula TRA Nslation 

(FORTRAN) for real life demands. The MATLAB 

Distributed Computing Server (MDCS) offered by the 

Math WorksInc along with Parallel Computing 

Toolbox (PCT) provides tools and routines for 

parallelizing sequential tasks. The PCT provides 

functionality to run MATLAB code on multicore 

systems and clusters. Such as parallel for-loop 

execution, or creation/manipulation of distributed 

arrays as well as message passing functions for 

implementing fine grained parallel algorithms. Parallel 

Matlab environment is used to write a parallel 

program for GLCM computation using the mentioned 

multi-core processor. 

 A parallel MATLAB program is written by using 

either parfor loops statement or spmd. The parfor 

approach is a limited but it is a simple way to 

distribute the work over the available cores where the 

MDCS automatically distribute the load balance 

among the available cores. The spmd statement is 

powerful, but requires rethinking the program and 

data, then the user can manually distribute the load 

balance for a each specific core (see Figure 3). 

Figure 3. Parallel distribution of image partitions if four cores are 

available. 

Also, a standard parallel programming library based 

on the fork-join parallel paradigm: OpenMP is used. 

The C language with the fork-join model of OpenMP 

is a suitable choice for multi-threading the data shown 

in Figure 3. 

5. Results and Discussions 

The proposed system is implemented on General 

Purpose Multi-Cores (GPMCs) platform. A laptop 
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Image blocks
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Image blocks
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provided with a processor type of Intel® Core™ i5 

2.4GHz is used for segmentation using GLCM.. This 

parallel platform is programmed by using either 

MATLAB parallel paradigm or C-language supported 

by OpenMP shared memory parallel paradigm.  

The segmentation result of the texture image shown 

in Figure 2 is presented in Figures 4 and 5. In every 

part of Figure 4, the segmentation results before and 

after using of median filter are shown. The 

misclassified pixels and the percentage of error (E%) 

over the best segmented image achieved in this paper 

are also presented. It can be noticed that in all parts of 

the Figure 6, using median filter reduces the 

misclassified pixel and E%. In Figure 4-a (top), a 

degraded result and large misclassified pixel and 

segmentation error is clearly shown when smaller 

window size is used (local operators are all 1's). The 

same can be seen in Figure 4-a (middle) with window 

of medium size, but some improvements inside the 

texture classes are achieved. Although that larger size 

of window will improve the inter classes segmentation 

quality, but this leads to degrade the intra classes 

quality (the transition regions or borders).      

In Figure 4-a (bottom), our proposed algorithm is 

used but with the Euclidean similarity metric for 

descriptors assignment. A segmentation deformation 

can be noticed even with the filtered version. The 

effectiveness of the proposed algorithm when the 

Gaussian metric is used is shown in Figure 4-b. Note 

that a big improvement of the segmentation quality is 

achieved. The best results is achieved with aperture of 

size of 9×9 pixels (Figure 4-b (middle)) in comparison 

with either too big (Figure 4-b (top)) and too small 

(Figure 4-b (bottom)) aperture sizes. The output image 

in this case is chosen as a reference to test the other 

cases, since that it is hard to achieve a segmented image 

that is totally free of misclassified pixels. Thus, E% is 

approximated to zero. As it can be noticed, a relatively 

small size of window and aperture is used to reduce the 

transition region effect. At the same time using median 

filter refines the image and reduce the effect of 

choosing these small sizes inside the texture classes. 

The results when using both similarity metrics are 

shown in Figure 5-a. As we mentioned earlier, the goal 

is to reduce the computation time and to preserve the 

segmentation quality as possible. Segmented images 

with low misclassified pixel and low E% are achieved 

when different threshold values are employed. Better 

transition region refinement are achieved in comparison 

to some works [11, 19] (Figure 5-b) that used the same 

testing image. Depending on the application, the 

threshold can be chosen as a trade-off between the time 

and the required quality. The segmentation time is 

reduced to about half when the error reaches to 4.86 

(Figure 6-a). 

The segmentation time based on calculating GLCM 

with 256×256 Broadatz texture image in Matlab and 

OpenMP C-program is shown in Figure 6-b. By 

examining the chart of six cores, it can be noticed that 

the best performance is achieved when three or four 

cores are employed. When employing five or six 

cores, the execution time cannot be reduced but even 

increased due to the memory access overhead issue. 

This is why the chart goes up after more cores are 

employed. A longer segmentation time is consumed 

when using parfor statement in comparison to the time 

consumed when using spmd. The core assignment 

overhead is released when explicit assignment is 

performed in spmd rather than the automatic 
assignment that performed when using perfor 

statement.  
The proposed method gives almost a 3× 

performance gain as a speedup. The overall speedup 

can be computed from the time results as a ratio 

between sequential execution time and parallel 

execution time. The speedup is achieved due to the 

reduction of computations by decreasing the required 

descriptors, and by distributing computations over the 

multiple processor cores. Based on the results of the 

technique of time reduction proposed in this paper and 

presented in Figure 6-a, the above speedup can be 

duplicated. A considerable reduction of segmentation 

time is achieved in comparison with works mentioned 

in the literature. 

6. Conclusions and Future Works 

New techniques are employed to build an efficient 

GLCM based texture segmentation system using a 

fixed window of variant apertures. A matrix of local 

operators are multiplied with the window slide. Then 

the most accurate class of the texture region that is to 

be classified is determined especially in transition 

regions. A well segmentation quality is achieved 

either within-texture class variance or between-texture 

class variance. A reasonable reduction in segmentation 

time is accomplished when Euclidean distance metric 

is used to determine whether the current GLCM is 

similar to the previous one. If it is attained, then 

redundant calculations of GLCM descriptors are 

avoided. Using Gaussian similarity metric to find 

distance between two vectors of GLCM descriptors, 

gives a good classification accuracy. A considerable 

refinement of the segmentation quality is achieved 

when median filter is applied to the image that is 

already segmented. The resulted speedup can be 

duplicated according to a threshold value that should 

be selected depending on the application. A relatively 

small size of sliding window can be used with the 

above technique and gives acceptable results. Also, 

extra modification of algorithm parameters are 

avoided due to use of fixed size of moving window. 

These two features are very desirable if the 

algorithm proposed is implemented in hardware for 

higher performance as it may be used with video 

image. The latter is left for future work. 
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a) The proposed algorithm is partially applied. 

b) The proposed algorithm is wholly applied using Gaussian similarity metric. 
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Figure 4. Segmentation results with variant parameters and classification criteria’s. 
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a) Classification error and time reduction variation with different threshold values. 

 
b) Parallelizing GLCM segmentation of 256×256 Broadatz texture image in Matlab and 

C-program using parfor statement, spmd statement and C-language with OpenMP. 

Figure 6. The segmentation processing time. 
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