
8 The International Arab Journal of Information Technology, Vol. 16, No. 1, January 2019

GLCM Based Parallel Texture Segmentation using

A Multicore Processor

Shefa Dawwd

Department of Computer Engineering, Mosul University, Iraq

Abstract: This paper investigates the using of Gray Level Co-Occurrence Matrix (GLCM) based on supervised texture

segmentation. In most texture segmentation methods, the processing algorithm is applied to a window of the original image

rather than to the entire image using sliding scheme. To attain a good segmentation accuracy especially in the boundaries,

optimal size of window is determined, or windows of variant sizes are used. Both options are very time consuming. Here, a new

technique is proposed to build an efficient GLCM based texture segmentation system. This scheme uses a fixed window of

variant apertures. This will reduce the computation overhead and recourses that required to compute GLCM, and will improve

the segmentation accuracy. Image's windows are multiplied with a matrix of local operators. After that, GLCM is computed

and features are extracted and classified and the segmented image is produced. In order to reduce the segmentation time, two

similarity metrics are used to classify the texture pixels. Euclidean metric is used to find the distance between the current and

previous GLCM. If it is above a predefined threshold, then the computation of GLCM descriptors are required. Gaussian

metric is used as a distance measure between two GLCM descriptors. Furthermore, a median filter is applied to the segmented

image. Finally, the transition and misclassified regions are refined. The proposed system is parallelized and implemented on a

multicore processor.

Keywords: GLCM, haralick descriptors, median filter, moving window, texture segmentation.

Received November 13, 2014; accepted September 19, 2016

1. Introduction

Texture segmentation is one of the most image

segmentation challenging problems. It is difficult to

choose a suitable mathematical model to describe

variant types and sizes of primitive textures. From the

computer vision point of view, it is difficult to

recognize significant edges within the non-

homogeneous intensity distributions of texture image.

Another issue is that the primitive texture is usually

unstable against changes in scale, translation and

rotation.

 To cope with after challenges, it is crucial to build

an efficient texture descriptor (feature extractor) that is

well describes texture. In addition, an efficient

classification criteria should be followed to segment the

descriptors to different texture classes.

 Typically, image is evaluated by using one of the

two approaches. In the first approach a different

pyramidal scales of the original image is utilized [12,

14, 15] to determine in which scale of the pyramid the

texture primitive is included.

 Image segmentation pyramids is classified into

regular and irregular types. Although that the pyramidal

approach based segmentation is invariant against noise,

the regular type suffers from many limitations: the most

important is incapability to segment elongated objects.

To address the limitations, irregular type is proposed.

However, the irregular type is more complex and time

consumed to be achieved [1]. The second approach

evaluates the original image over a specified Region Of

Interest (ROI) or window [3, 5, 11, 18]. This approach

is more suitable for processing image that is

composited of elongated regions. Window size has a

significant effect on the segmentation accuracy. Large

window size leads to more stable texture features but

tends to blur the edges, while small window size leads

to misclassify the textured boundaries. Thus, an

efficient windowing should be achieved. A good

window is the one that leads to discriminate among

variant texture primitives and to achieve a sufficient

texture representation within it.

In [3], the optimal window size for Gray Level Co-

Occurrence Matrix (GLCM) descriptors according to

the texture that is to be classified is determined by

using semivariogram method. 13×13 and 7×7 pixels

windows are determined to be optimal for the building

and vegetation sample images respectively. Ouma et

al. [9] investigate the use of an optimal window size

for wavelet based textured feature extractor to classify

urban tree texture.

The experiments presented in [10] shows that the

integration of multi-sized windows yields lower

classification errors than when optimal single-sized

windows are considered. A coarse-to-fine strategy is

used in [17] to generate an ideally step-like transition

closer to a dashed vertical line by adjusting the

window size adaptively from 27×27 to 9×9. The

adjustment is applied only in the target area of

transition boundary. While 3×3, 5×5, and 7×7

windows are applied to TerraSAR-X (TSX) images in

GLCM Based Parallel Texture Segmentation using A Multicore Processor 9

the work presented in [7], in order to define the most

suitable parameters discriminating between different

land cover types.

 The original 160×120 image is divided into multiple

windows of 80×60, 40×30, and 20×15 in the work

presented in [8]. The GLCM of different parameters is

applied to each of these windows and a set of features

are extracted together from these windows and the

textures are classified by their features using machine

learning approaches.

In the works presented above, it can be noticed that

different window sizes and image resolutions, are

employed. The whole segmentation algorithm is

applied to each window or image resolution. This add

more computational power and time overhead. Time

reduction becomes a crucial requirement especially for

fast processing of video sequence or large medical

image. Therefore, the goal of this paper is to achieve a

good segmentation in reduced computation time and

variant parameters. The paper proposes new techniques

to solve the aforementioned issues:

 Using of local operators: instead of using variant

sizes of windows, fixed size of window with variant

aperture can be used. Consequently, the same

algorithm can be used to process texture of variant

primitives and a extra modification of the algorithm

parameters is avoided and then more stable features

are extracted.

 To reduce the segmentation time, two metrics are

used to classify the texture pixel. The first one

(Euclidean) check if the adjacent GLCMs are close

enough, then redundant computation of GLCM

descriptors are avoided. Otherwise, Gaussian metric

is used to find distance between two vectors of

GLCM descriptors.

 Further refinement is achieved by using median

filtering of the image that is already segmented.

 Further reduction of segmentation time is achieved

by parallelizing the proposed algorithm among

multiple cores of the host processor.

2. Texture Description Using GLCM

The GLCM texture analysis method is investigated in

this paper. Haralick et al. [4], defined the GLCM as a

one of the best known texture analysis methods. The

selection of GLCM is based on some attractive features

that extracted from previous studies. GLCM has been

used in many applications, such as in content based

image retrieval, biomedical, etc. Furthermore, GLCMs

of an original image is approximately the same with

GLCMs of its rotation. That is based on using four

directions for each descriptor. The most common

statistic in medical field is co-occurrence texture

models, which demonstrates better classification

accuracy [16]. The co-occurrence matrix includes

second-order grey-level information, which is mostly

related to human perception and the discrimination of

textures. As presented in [13], it performs the best

among all texture models.

GLCM is a statistical texture analysis method

which deals with supervised texture segmentation in a

frame partition using level-set deformable model

implementation.

The GLCM is computed in a user defined moving

window rather than computing it for the entire image.

Using a moving window, neighborhoods of the pixel

are defined and texture features for each window in an

image is computed. The GLCM and its computation

along moving window can be represented in

mathematical notation as:

ij ij
P (a) p (I(r a)) r D  

where:

I : is the input image.

r: is a 2D position within the moving window.

D: is the moving window within the image.

a: is the displacement moving step.

pij: is the GLCM which defined as:

[Δx, Δy]: is specifying the offset between the pixel-of-

interest located at (x,y) and its neighbor. It takes four

options: [0, d], [-d, d], [-d, 0], [-d, -d].

nD: is the dimention of the moving window i,j ϵ

{0,1,2,……,L-1}, L: level of gray tone.

The number of possible intensity levels in the

image determines the size of GLCM. For an 8-bit

image (256 possible levels), GLCM will be of size

256×256. This is not a problem when working with

one matrix, but co-occurrence usually used in

sequences. In order to reduce computation load, an

approach used frequently is to quantize the intensities

to limited levels to keep the size of GLCM

manageable. For example, in the case of 256

intensities we can do this by letting the first 32

intensity levels equal to 1, the next 32 equal to 2, and

so on. This will result in a co-occurrence matrix of

size 8×8.

After the formulation of GLCM, a set of

descriptors useful for characterizing the content of

GLCM is to be computed. Some of these descriptors

that are used in this paper is defined as follows [4]:

Correlation:
1 1

()()k k
x y ij

x yi j

i m j m P

 
 

 


Contrast: 2

1 1

()

k k

ij

i j

i j P

 



Homogeneity:
1 1

1

k k
ij

i j

P

i j
 

 


Entropy:
1 1

 log

k k

ij ij

i j

P P

 




  


 D Dn

x

n

y

yx jyxIiyxI

otherwise

if

1 1

),(&),(

,0

,1

(1)

(2)

(3)

(4)

(5)

10 The International Arab Journal of Information Technology, Vol. 16, No. 1, January 2019

Energy: 2

1 1

k k

ij

i j

P

 



Where mx, my and σx, σy denote the mean and standard

deviations of the row and column sums of the matrix

Pij, respectively.

In order to capture all possible texture patterns in a

further step, different displacements (d=1, 2, 3, 4,….)

for four directions (θ =0°, 45°, 90°, 135°) are evaluated.

In this paper, five texture descriptors (Equations (2, 3,

4, 5, 6)) are computed for each directions. Therefore,

for each texture displacement, 20 descriptors (5

descriptors×4 direction) are computed. It is found that

the more the number of descriptors, the more

complicated textured primitive is specified, but at the

same time the generalization is reduced, particularly in

the transition regions. Therefore, a moderate number of

descriptors is selected.

3. The Proposed Technique

The main steps for image segmentation system is

presented in the following algorithm:

Algorithm 1: GLCM based texture segmentation algorithm

1. Subdivide the texture image into n-overlapping

slides, select the aperture size, pattern and slide

moving steps.

2. Reset GLCMi, Initialize Grayi, moving step i=0.

3. Start with new slide index: i.

4. Compute GLCMi.

5. If dist(GLCMi, GLCMi-1)<threshold, then assign

 each of the slide pixel to Grayi-1 and go to 9 else

 continue.

6. Feature extraction: calculate GLCM descriptors

vector (≤N descriptors).

7. Calculate distance between slide vector with a bank

of reference feature vectors (each of N descriptors).

8. Classification: assign each of the slide pixel to one

gray level (label of the closest reference vector).

9. If slide index < n, then go to 3 else continue.

10. Apply traditional median filter.

11. If the segmentation quality is poor, then change the

 aperture size and go to 2, else continue.

12. End.

 Here, the moving window is scanned over the image in

overlapped steps. To avoid using windows of different

sizes, a fixed window of variant aperture is used. This

can be achieved by multiplying the input window with

a matrix of local operators (W) of ones and zeros. Now,

Equation (1) can be rewritten as:

))(()(WarIpaP ijij 

The distribution of ones and zeros in W can define the

pattern of the window and its aperture. In Figure 1, one

can see that the moving window is not restricted of its

traditional first order pattern of neighbourhood (Figure

1-a). But it can take any other pattern (Figure 1-d). The

one's operators define the size of the aperture (Figure 1-

b, and 1-c).

 a) First order neighbourhood. b) Second order neighbourhood.

 c) Third order neighbourhood. d) Fourth order neighbourhood.

Figure 1. Neighbourhood pattern with central pixel.

Since the operators are only ones or zeros, no

multiplication operation is required for weighting the

input (I) in the region D (in hardware AND operation

can be used).For each window in local position a,

GLCM is computed. Then Features of each window

are extracted (the GLCM N-descriptors). To reduce

the computational overhead, different approaches are

used:

1. The intensity level of the input texture image is

quantized to 20 levels. Then instead of 256×256

elements of GLCM, 20×20 elements GLCM is

produced.

2. When computing texture descriptors by scanning

the window slide throughout an image, shifting the

window one step in an overlapping fashion does not

change many of the GLCM elements, particularly

inside the same texture class. Therefore, if the

distance between the current and the previous

GLCM is too low, the distance between their

descriptors is also expected to be too low. Then

there is no need to re-compute the GLCM

descriptors vector of the current window and the

previous gray level can be assigned to it.

3. The distance between the extracted feature with the

reference features which obtained in a supervised

fashion is computed. Each reference vector that is

stored in the feature vectors bank should have an

adequate number of elements (descriptors). The

moving window may be described with a smaller

number of descriptor (< N: select good descriptors

from each vector) to decrease the time of

computations.

The distance measure is crucial factor for good

segmentation quality for both inter and intra class

regions. For more discussion about the similarity

metrics, dealing with the transition regions and

refinements, the following subsections are presented.

3.1. Similarity Measure

In this paper two distance metrics are used: the

Euclidean distance and Gaussian curve. To find the

(7)

(6)

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

 
 
 
 
 
 
 
 
 










 

1 











0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 










 

1 











0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 










 

1 











0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 1 1 0 0 0 0 0

0 0 0 0 1 1 1 1 1 0 0 0 0

0 0 0 1 1 1 1 1 1 1 0 0 0

0 0 1 1 1 1 1 1 1 1 1 0 0

0 1 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 0

0 0 1 1 1 1 1 1 1 1 1 0 0

0 0 0 1 1 1 1 1 1 1 0 0 0

0 0 0 0 1 1 1 1 1 0 0 0 0

0 0 0 0 0 1 1 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 










 

1 











GLCM Based Parallel Texture Segmentation using A Multicore Processor 11

distance between two GLCMs, and since that all

elements of the GLCM are homogeneous (totally

integer values, or totally real values in a normalized

GLCM), the Euclidean metric can be used. On the other

hand, we find that the most popular Euclidean or

Manhattan metrics may not be suitable to find the

closest reference vector with the descriptors vector of

the slide under the test. This is due to the distribution

heterogeneity of each of the GLCM descriptor. Thus, a

Gaussian curve is employed to find similarity measure

between two vectors. The mathematical representation

is defined as:
2

2

()

2()
c

f e



 



Where  is a descriptor value. The c and σ are the

centre and width of Gaussian curve, respectively. For

each GLCM descriptor, Note that the similarity ranges

is from 0 to 1. It equals to 0 for two completely

dissimilar descriptors, and 1 for descriptors with

matching central. An input vector is mapped to all the

reference vectors. Each feature of this vector is mapped

to all specified features of reference vectors. Then the

sum of all Gaussian outputs among reference vectors

and input one are calculated. Finally, the input vector is

assigned to the reference vector where the summation

of Gaussian outputs is the maximum. The former

metric is considered good if the values it assigns to

similar pairs of GLCM are consistently lower than the

values it assigns to dissimilar GLCM. In contrast, the

later metric is considered good if the values it assigns to

similar pairs of GLCM descriptors are consistently

higher than the values it assigns to dissimilar GLCM

descriptors. For both metrics, a threshold (or an

interval) is assigned beforehand, such that metric values

above the threshold (interval) indicate similarity and

below the threshold (interval) indicate dissimilarity.

3.2. Transition Region and the Refinement

 The transition between two or more completely

different classes of texture is known as a transition

region. Two techniques deal with transition region. The

first technique depends on using new shapes of the

moving window in the feature extraction stage. To

explain our approach let's begin with the standard

texture image downloaded from Brodatz dataset [1].

The images are digitized at a resolution of 256×256

pixels and at 8-bit grey scale level. This image contains

five different textures joined with sharp transition

regions. First, according to the algorithm presented in

Algorithm 1, clear reference sub-images are extracted

from the original image (Figure 2-a).

 In Figure 2-a, one can see that a rectangular pattern

is used to extract each reference or extracted sub-

image. Each of sub-image depends on the weights of

the window. If instance, a 13×13 slice is used, then the

weights shown in Figure 1-a represents the extraction

without any mask. Now, if the first sub-image from

the original image (which contains two textures) is

extracted, its feature vector cannot be clustered in any

of the five referenced feature vectors correctly,

because it is assumed to be as a new class. The size of

the window should be small enough to reduce this

effect.

a) Broadatz texture image and its extracted and reference sub-images.

b) Processing of undefined sub-images using local operators.

c) Segmentation of the processed sub-images.

Figure 2. Segmentation process.

But this may lead to increase the misclassification

rate in regions other than the transition edges. We use

local operators to avoid using windows of different

sizes. These operators are adapted to function the

behavior of window with a variant aperture.

(8)

















































0000000000000

0000000000000

0000000000000

0001111111000

0001111111000

0001111111000

0001111111000

0001111111000

0001111111000

0001111111000

0000000000000

0000000000000

0000000000000



















































0000000000000

0000000000000

0000000000000

0001111111000

0001111111000

0001111111000

0001111111000

0001111111000

0001111111000

0001111111000

0000000000000

0000000000000

0000000000000



















































0000000000000

0000000000000

0000000000000

0001111111000

0001111111000

0001111111000

0001111111000

0001111111000

0001111111000

0001111111000

0000000000000

0000000000000

0000000000000

















































0000000000000

0000000000000

0000000000000

0001111111000

0001111111000

0001111111000

0001111111000

0001111111000

0001111111000

0001111111000

0000000000000

0000000000000

0000000000000

Undefined

sub-image

Local operators

Processed

sub-image

Reference sub-images

Original

Image

Undefined

sub-images

?

?
A

Reference sub-images

Original

Image

12 The International Arab Journal of Information Technology, Vol. 16, No. 1, January 2019

Now, if the window's aperture becomes smaller

enough (Figure 1-b and 1-c), keeping in mind that the

window size is constant, then, the Haralick descriptors

can match the descriptors of the first reference sub-

image, and then the pixel can exactly classified to the

first class. Processing and segmentation of undefined

windows with local operators are shown in Figure 2-b

and Figure 2-c respectively.

The window aperture can take different shapes with

different aperture sizes as shown in Figure 1-d and 1-e.

The influence of using such shape is to sharpening the

transition regions of rotated angles (45o, 135o). Note

that there is no time overhead imposed by using the

above technique.

The second technique is illustrated in algorithm 1,

where a traditional median filtering is applied to the

already segmented image. Afterword, the transition

regions and misclassified spots within the truly

segmented region are refined. The above algorithm well

works with window of smaller size.

4. Parallel Implementation of The Proposed

Algorithm

Over the past decade, computing architectures have

started on a clear trend towards increased parallelism

and heterogeneity, with most mainstream

microprocessors now including General Purpose Multi-

Cores (GPMCs), and system architectures commonly

integrating accelerators such as Graphics-Processing

Units (GPUs) and Field Programmable Gate Arrays

(FPGAs) over PCI and even on the same chip.

Numerous studies have shown that such architectures

can accelerate applications by orders of magnitude

compared to sequential software [2].

 Although, using a specific hardware on FPGA is

expected to give best performance in term of speed and

real time applications, and using FPGA is the most

flexible hardware choice according to the feature of re-

programmability, however, the software based

implementations are more flexible and their

development time are much less than the FPGA.

Therefore, implementing the mentioned algorithms on a

multi core parallel architecture such as GPMC or GPU

is an excellent alternative to provide moderate

performance. It is important to emphasise that GPU is

not accessible for all researchers. Therefore, GPMC can

be selected as an initial platform toward more powerful

implementation (GPU or FPGA).

Starting from 2004, GPMCs are replacing traditional

Central Processing Units (CPUs) in both personal

computers and servers. Generically called “multi-

cores”, they are already offered by most of the big

players-Intel, Sun, Advanced Micro Devices (AMD),

and IBM. GPMCs are homogeneous platforms with

complex cores, based on traditional processor

architectures; they are typically shared-memory

architectures, with multiple layers of caches, and they

are used as stand-alone processors [6]. The purpose of

using multi cache levels is to reduce cores access to

the global shared memory as much as possible.

 The main drawback of GLCM is that the

computation of the GLCMs and texture features are

computationally intensive and time-consuming. In this

paper we focus our implementation on using GPMCs

as a type of multi-cores programmable parallel

machines.

 MATLAB is one of the most commonly popular

languages used in technical computing. It is prefer to

develop an algorithm in Matlab first. Then, it can be

converted the code into C or FORmula TRA Nslation

(FORTRAN) for real life demands. The MATLAB

Distributed Computing Server (MDCS) offered by the

Math WorksInc along with Parallel Computing

Toolbox (PCT) provides tools and routines for

parallelizing sequential tasks. The PCT provides

functionality to run MATLAB code on multicore

systems and clusters. Such as parallel for-loop

execution, or creation/manipulation of distributed

arrays as well as message passing functions for

implementing fine grained parallel algorithms. Parallel

Matlab environment is used to write a parallel

program for GLCM computation using the mentioned

multi-core processor.

 A parallel MATLAB program is written by using

either parfor loops statement or spmd. The parfor

approach is a limited but it is a simple way to

distribute the work over the available cores where the

MDCS automatically distribute the load balance

among the available cores. The spmd statement is

powerful, but requires rethinking the program and

data, then the user can manually distribute the load

balance for a each specific core (see Figure 3).

Figure 3. Parallel distribution of image partitions if four cores are

available.

Also, a standard parallel programming library based

on the fork-join parallel paradigm: OpenMP is used.

The C language with the fork-join model of OpenMP

is a suitable choice for multi-threading the data shown

in Figure 3.

5. Results and Discussions

The proposed system is implemented on General

Purpose Multi-Cores (GPMCs) platform. A laptop

core 0

core 1

core 2

core 3

Image blocks

assignments for spmd

statement
User

core 0

core 1

core 2

core 3

MDCS

Image blocks

assignments for parfor

statement

GLCM Based Parallel Texture Segmentation using A Multicore Processor 13

provided with a processor type of Intel® Core™ i5

2.4GHz is used for segmentation using GLCM.. This

parallel platform is programmed by using either

MATLAB parallel paradigm or C-language supported

by OpenMP shared memory parallel paradigm.

The segmentation result of the texture image shown

in Figure 2 is presented in Figures 4 and 5. In every

part of Figure 4, the segmentation results before and

after using of median filter are shown. The

misclassified pixels and the percentage of error (E%)

over the best segmented image achieved in this paper

are also presented. It can be noticed that in all parts of

the Figure 6, using median filter reduces the

misclassified pixel and E%. In Figure 4-a (top), a

degraded result and large misclassified pixel and

segmentation error is clearly shown when smaller

window size is used (local operators are all 1's). The

same can be seen in Figure 4-a (middle) with window

of medium size, but some improvements inside the

texture classes are achieved. Although that larger size

of window will improve the inter classes segmentation

quality, but this leads to degrade the intra classes

quality (the transition regions or borders).

In Figure 4-a (bottom), our proposed algorithm is

used but with the Euclidean similarity metric for

descriptors assignment. A segmentation deformation

can be noticed even with the filtered version. The

effectiveness of the proposed algorithm when the

Gaussian metric is used is shown in Figure 4-b. Note

that a big improvement of the segmentation quality is

achieved. The best results is achieved with aperture of

size of 9×9 pixels (Figure 4-b (middle)) in comparison

with either too big (Figure 4-b (top)) and too small

(Figure 4-b (bottom)) aperture sizes. The output image

in this case is chosen as a reference to test the other

cases, since that it is hard to achieve a segmented image

that is totally free of misclassified pixels. Thus, E% is

approximated to zero. As it can be noticed, a relatively

small size of window and aperture is used to reduce the

transition region effect. At the same time using median

filter refines the image and reduce the effect of

choosing these small sizes inside the texture classes.

The results when using both similarity metrics are

shown in Figure 5-a. As we mentioned earlier, the goal

is to reduce the computation time and to preserve the

segmentation quality as possible. Segmented images

with low misclassified pixel and low E% are achieved

when different threshold values are employed. Better

transition region refinement are achieved in comparison

to some works [11, 19] (Figure 5-b) that used the same

testing image. Depending on the application, the

threshold can be chosen as a trade-off between the time

and the required quality. The segmentation time is

reduced to about half when the error reaches to 4.86

(Figure 6-a).

The segmentation time based on calculating GLCM

with 256×256 Broadatz texture image in Matlab and

OpenMP C-program is shown in Figure 6-b. By

examining the chart of six cores, it can be noticed that

the best performance is achieved when three or four

cores are employed. When employing five or six

cores, the execution time cannot be reduced but even

increased due to the memory access overhead issue.

This is why the chart goes up after more cores are

employed. A longer segmentation time is consumed

when using parfor statement in comparison to the time

consumed when using spmd. The core assignment

overhead is released when explicit assignment is

performed in spmd rather than the automatic
assignment that performed when using perfor

statement.
The proposed method gives almost a 3×

performance gain as a speedup. The overall speedup

can be computed from the time results as a ratio

between sequential execution time and parallel

execution time. The speedup is achieved due to the

reduction of computations by decreasing the required

descriptors, and by distributing computations over the

multiple processor cores. Based on the results of the

technique of time reduction proposed in this paper and

presented in Figure 6-a, the above speedup can be

duplicated. A considerable reduction of segmentation

time is achieved in comparison with works mentioned

in the literature.

6. Conclusions and Future Works

New techniques are employed to build an efficient

GLCM based texture segmentation system using a

fixed window of variant apertures. A matrix of local

operators are multiplied with the window slide. Then

the most accurate class of the texture region that is to

be classified is determined especially in transition

regions. A well segmentation quality is achieved

either within-texture class variance or between-texture

class variance. A reasonable reduction in segmentation

time is accomplished when Euclidean distance metric

is used to determine whether the current GLCM is

similar to the previous one. If it is attained, then

redundant calculations of GLCM descriptors are

avoided. Using Gaussian similarity metric to find

distance between two vectors of GLCM descriptors,

gives a good classification accuracy. A considerable

refinement of the segmentation quality is achieved

when median filter is applied to the image that is

already segmented. The resulted speedup can be

duplicated according to a threshold value that should

be selected depending on the application. A relatively

small size of sliding window can be used with the

above technique and gives acceptable results. Also,

extra modification of algorithm parameters are

avoided due to use of fixed size of moving window.

These two features are very desirable if the

algorithm proposed is implemented in hardware for

higher performance as it may be used with video

image. The latter is left for future work.

14 The International Arab Journal of Information Technology, Vol. 16, No. 1, January 2019

a) The proposed algorithm is partially applied.

b) The proposed algorithm is wholly applied using Gaussian similarity metric.

No filter is used

Median filter is used

w
in

d
o
w

 s
iz

e=
7
x
7
,

ap
er

tu
re

 s
iz

e=
7
x
7

M
is

cl
as

si
fi

ed
 p

ix
el

s

E% 40.6544 35.8330

w
in

d
o

w
 s

iz
e=

1
3

x
1

3
,

ap
er

tu
re

 s
iz

e=
1
3
x
1
3

M
is

cl
as

si
fi

ed
 p

ix
el

s

E% 22.1477 17.3585

w
in

d
o

w
 s

iz
e=

1
3

x
1

3
,

ap
er

tu
re

 s
iz

e=
1

1
x

1
1

,
E

u
cl

id
ea

n

d
is

ta
n

ce

M
is

cl
as

si
fi

ed
 p

ix
el

s

E% 12.0358 7.0975

 No filter is used Median filter is used

w
in

d
o
w

 s
iz

e=
1
3
x
1
3
,

ap
er

tu
re

 s
iz

e=
1
1
x
1
1

M
is

cl
as

si
fi

ed
 p

ix
el

s

E% 5.6529 3.0246

w
in

d
o

w
 s

iz
e=

1
3

x
1

3
,

ap
er

tu
re

 s
iz

e=
9
x
9

M
is

cl
as

si
fi

ed
 p

ix
el

s
p

ix
el

s

E% 6.5573 ≈0

w
in

d
o

w
 s

iz
e=

1
3

x
1

3
,

ap
er

tu
re

 s
iz

e=
7

x
7

M
is

cl
as

si
fi

ed
 p

ix
el

s

E% 12.3491 6.2169

Figure 4. Segmentation results with variant parameters and classification criteria’s.

GLCM Based Parallel Texture Segmentation using A Multicore Processor 15

a) Classification error and time reduction variation with different threshold values.

b) Parallelizing GLCM segmentation of 256×256 Broadatz texture image in Matlab and

C-program using parfor statement, spmd statement and C-language with OpenMP.

Figure 6. The segmentation processing time.

References

[1] Brodatz P., A photographic Album for Artists

and Designers, Dover New York, 1996.

[2] Fowers J., Brown G., Cooke P., and Stitt G., “A

Performance and Energy Comparison Of Fpgas,

Gpus, and Multicores for Sliding-Window

Applications,” in Proceedings of the

ACM/SIGDA International Symposium on Field

Programmable Gate Arrays, Monterey, pp. 47-

56, 2012.

[3] Giannini M., Merola P., and Allegrini A.,

“Texture Analysis for Urban Areas

Classification in High Resolution Satellite

Imagery,” Applied Remote Sensing Journal, vol.

2, no. 2, pp. 65-71, 2012.

[4] Haralick M., Shanmugam K., and Dinstein I.,

“Textural Features for Image Classification,”

IEEE Transactions on Systems, Man, and

Cybernetics, SMC-vol. 3, no. 6, pp. 610-621,

1973.

[5] Huang X., Zhang L., and Li P., “A Multiscale

Feature Fusion Approach for Classification of

Very High Resolution Satellite Imagery Based

on Wavelet Transform,” International Journal of

Remote Sensing, vol. 29, no. 20, pp. 5923-5941,

2008.

[6] Kanter D., “Inside Nehalem: Intel´s future

processor and system,”

 Threshold : 0 180 200 220

m
is

cl
as

si
fi

ed
 p

ix
el

s

 E% : ≈ 0 0.0305 0.2642 1.2718

a) Segmentation results when the proposed algorithm is wholly applied using both similarity metrics (window size=13×13, aperture size=9×9) for

different threshold values with median filtering.

 E%≈ 0 4.53 5.41

b) Comparison of the proposed algorithm (left) with [11] (middle) and [19] (right).

0

100

200

300

core

ti
m

e
(s

ec
)

parfor 207 128 110 110 121 125

spmd 207 110 80 78 98 112

OpenMp 64 35 25 22 18 18

1 2 3 4 5 6

0

20

40

60

threshold value

E% 0 0.031 0.264 1.272 4.688

time

reduction%

0 7 17 33 47

th 1 th 2 th 3 th 4 th 5

Figure 5. Segmentation results with comparison to previous works.

16 The International Arab Journal of Information Technology, Vol. 16, No. 1, January 2019

http://www.realworldtech.com/ page.cfm?

ArticleID=RWT040208182719, Last Visited,

2008.

[7] Mahmoud A., Elbialy S., Pradhan B., and

Buchroithner M., “Field-Based Land Cover

Classification Using Terra SAR-X Texture

Analysis,” Advances in Space Research, vol. 48,

no. 5, pp. 799-805, 2011.

[8] Mohamed A. and Lu J., “Analysis of GLCM

Parameters for Textures Classification on UMD

Database Images,” in Proceedings of The 5th

International Conference on Advanced

Communications and Computation, Brussels, pp.

111-116, 2015.

[9] Ouma Y., Ngigi T., and Tateishi R., “On the

Optimization and Selection of Wavelet Texture

for Feature Extraction from High-Resolution

Satellite Imagery with Application Towards

Urban-Tree Delineation,” International Journal of

Remote Sensing, vol. 27, no. 1, pp. 73-104, 2006.

[10] Puig D. and García M., “Pixel-Based Texture

Classification by Integration of Multiple Texture

Feature Evaluation Windows,” in Proceedings of

Iberian Conference on Pattern Recognition and

Image Analysis, Puerto de Andratx, pp. 793-801,

2003.

[11] Rampun A., Strange H., and Zwiggelaar R.,

“Texture Segmentation Using Different

Orientations of GLCM Features,” in Proceedings

of 6th International Conference on Computer

Vision/Computer Graphics Collaboration

Techniques and Applications, Berlin, 2013.

[12] Schroeter P. and Bigun J., “Hierarchical Image

Segmentation by Multi-Dimensional Clustering

and Orientation Adaptive Boundary Refinement,”

Pattern Recognition, vol. 28, no. 5, pp. 695-709,

1995.

[13] Sharma M. and Singh S., “Evaluation of Texture

Methods for Image Analysis,” in Proceedings of

the 7th Australian and New Zealand Intelligent

Information Systems Conference, Perth, pp. 117-

121, 2001.

[14] Siqueira F., Schwartz W., and Pedrini H., “Multi-

Scale Level Co-Occurrence Matrices for Texture

Description,” Neurocomputing, vol. 120, pp. 336-

345, 2013.

[15] Stojmenovic M., Montero A., and Nayak A.,

“Colour and Texture Based Pyramidal Image,”

International Conference on Audio Language and

Image Processing, Shanghai, pp. 778-786, 2010.

[16] Susomboon R., Raicu D., Furst J., and Johnson

T., “A Co-Occurrence Texture Semi-Invariance to

Direction, Distance and Patient Size,” in

Proceedings of SPIE-The International Society

for Optical Engineering, San Diego, 2008.

[17] Tsai Y., “Texture Image Segmentation Using

Adaptive Gray Level Co-Occurrence

Probabilities,” in Proceedings of the International

Conference on Image Processing, Computer

Vision, and Pattern Recognition, Las Vegas

Nevada, 2008.

[18] Wang H., Feng Y., Sa Y., Lu J., Ding J., Zhang

J., and Hu X., “Pattern Recognition and

Classification of Two Cancer Cell Lines by

Diffraction Imaging at Multiple Pixel

Distances,” Pattern Recognition, vol. 61, pp.

234-244, 2017.

[19] Zheng Y. and Chen K., “A Hierarchical

Algorithm for Multiphase Texture Image

Segmentation,” ISRN Signal Processing, vol.

2012, pp. 1-11, 2012.

Shefa Dawwd was born in Mosul-

Iraq in 1970. He received the B.Sc

degree in electronic and

communication Engineering, the

M.Sc and the Ph.D degree in

computer Engineering in 1991,

2000, and 2006, respectively. He is

presently a faculty member (Associate Professor) in

the computer engineering department/University of

Mosul. His main research interests include image &

signal processing and their hardware models, parallel

computer architecture, hardware implementation and

GPU based systems. He has authored more than 30

research papers and book chapters. He has been an

editorial member of several national and international

journals.

http://www.researchgate.net/researcher/70306228_Yao-Hong_Tsai/

