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1. Introduction 

Infinite arrays are digitized images of symbols 

occupying a quadrant of a plane. They can be thought 

of as extensions of infinite words to two dimensions. 

The motivation for considering infinite arrays lies in the 

fact that pictures of functions can be considered as 

infinite digitized images. An early work in this direction 

is done by Nakamura and Ono in [13]. Also authors 

study -languages and automata in [15, 19] and authors 

refer [1, 10, 14, 17, 18] for initiating this work. Infinite 

arrays is an array with infinite number of columns and 

rows. 

Shuffle on trajectories is an interesting tool for the 

generation of languages of finite words as authorsll as 

infinite words. It is found in [4, 5, 6, 12]. Parallel 

composition of words and languages appears as a 

fundamental operation in parallel computation and in 

the theory of concurrency. This operation is modeled by 

shuffle operation or restrictions of this operation such as 

literal shuffle and inserton. A trajectory is a segment of 

a line in a plane starting in the origin of axes. 

Continuing parallel with the axes OX and OY. The line 

can change its direction only in points of non negative 

integers. In [16] trajectory plays an important role. The 

shuffle of two words has a natural geometrical 

interpretation related to lattice points in the plane [11]. 

On the other hand theoretical models for generating two 

dimensional arrays authorsre proposed in [9]. Shuffle 

operation on finite arrays with trajectories has been 

introduced in [8]. To develop the study on parallel 

contextual array grammars [2]. Based on the study of 

[3] authors consider the shuffle on trajectories as a tool 

for obtaining various infinite array languages. 

The paper is organized as follows. In section 2, 

authors review necessary notions related to infinite 

arrays, trajectories and shuffle on trajectories. In section 

3 authors give the notion of shuffle operation to infinite 

array languages and proved closure and associative 

properties for -recognizable languages. In section 4 

authors study the literal shuffle for infinite array 

languages and obtain an interesting result. 

2. Preliminaries 

In this section authors recall some necessary notions 

and definitions for infinite arrays languages. For finite 

or infinite array considerd in this paper the bottom 

most row is the first row and the left most column is 

the first column. 

 Definition 1. An infinite word is a mapping from N 

to . The set of all finite (respectively infinite) 

words on  is denoted by * (respectively ). A 

-language L is a subset of . 

 Definition 2. Let =a0 a1 a2 ..., where ai  , for all 

i  0 be an -word over . A run of A on  is a 

sequence of states s = s0 s1 s2 ..., such that s0 = q0 

and (si, ai, si+1)  , for all i  0. The run is 

successful if and only if inf(s)  F   (where 

inf(s) is the set of all states which repeat infinitely 

many times in s).  is accepted by A if and only if 

there exists a successful run of A on . 

The -language recognized by A is L(A)={   |  

is accepted by A}. An -language L is referred to as 

-regular or Büchi recognizable if and only if there 

exists a Büchi automaton A such that L(A)=L. 

 Definition 3. An infinite array has an infinite 

number of rows and an infinite number of columns. 

The collection of all infinite arrays over  is 

denoted by . If an array p   has entry aij in 

the ith row and jth column, aij   then authors write 

p=(aij), i=1, 2, ..., j=1, 2, .... For p  , p̂  is the 

infinite array obtained by placing a row of 
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boundary symbol # below the first row of p and to 

the left of the first column of p. 

 Definition 4. A Büchi automaton is a quintuple A = 

(, Q, q0, , F), where  is the input alphabet; Q is a 

finite set of states; q0  Q is the initial state;  is the 

transition relation,   Q××Q, and F  Q is the set 

of final states. 

 Definition 5. A non-deterministic Büchi Two-

Dimensional Online Tessellation Automaton 

(2DBOTA) is A =(, Q, Q0, F, ) where  is an input 

alphabet, Q is the finite set of states, Q0  Q is a set 

of initial states,  

F  Q is a set of final states and  : Q×Q×2Q is a 

transition function. 

A computation by a 2DBOTA on an infinite array p 

with 











####

aa#

aa#
#

p̂

1211

2221  

Where aij   and #   is done as follows: 

At time t=0, an initial state q0  Q0 is associated with 

all the positions of p̂  holding #. At time t=1, a state 

from (q0, q0, a11) is associated with the position (1, 1) 

holding a11. At time t=2, states are associated 

simultaneously with the positions (1, 2) and (2, 1) 

respectively holding a12 and a21. If s11 is the state 

associated with the position (1, 1), then the state 

associated with the position (2, 1) is an element of (s11, 

q0, a21) and to the position (1, 2) is an element of (q0, 

s11, a12). Authors then proceed to the next diagonal. The 

states associated with each position (i, j) by the 

transition function  depends on the states already 

associated with the positions (i1, j), (i, j1) and the 

symbol aij. Let sij be the state associated with the 

position (i, j) where the entry is aij. A run (or a 

computation) of an infinite array is an element of Q. A 

run for an infinite array is a sequence of states s11 s12 s21 

s31 s22 s13 ... and it is denoted by r(p). 

If A is non-deterministic, a run for an infinite array is 

a set of sequences of states containing only one 

sequence of state, but in the deterministic case it is a 

singleton set. If p  , the set of runs of p is denoted 

by Run(p). 

The language of infinite arrays recognized by the 

non-deterministic Büchi online tessellation automaton A 

is L(A)={p   : inf(r(p))  F  , for some r(p)  

Run(p)}. 

A language of infinite arrays is called a -array 

language. A -array language K is called 

recognizable if there exists a Büchi online tessellation 

automaton A such that L(A)=K. 

 

2.1. Shuffling on Trajectories over Infinite Arrays 

In this section authors prove that the shuffling of two 

-recognizable languages is again -recognizable 

array language. 

 Definition 6. The column shuffle operation on an 

infinite array denoted by шc is defined recursively 

by 

P шc Q = ((A     X) шc (B     Y)) 

  = A     (X шc (B     Y))   

B      ((A     X) шc Y)  

Where P=A    X and Q=B    Y, where P, Q  , A is 

the first column of array P and B is the first column of 

array Q. If A is empty then X=P. Likewise if B is 

empty then Y=Q. Also P шc = шc P=P. 

 Definition 7. The row shuffle operation on an 

infinite array denoted by шr is defined recursively 

by 

P шr Q=((A     X) шr (B     Y)) 

  = A     (X шr (B     Y))   

B      ((A     X) шr Y) 

Where P=A    X and Q=B     Y, P, Q  , A is the 

first row of array P and B is the first row of array Q. 

Also P шr = шr P=P. 

Let V1={r, u} and V2={ℓ, d} be the set of versors in 

the plane. ℓ, r, u and d stand for the left, right, up and 

down directions respectively. A trajectory is an 

element .VVt ω

2

ω

1   

 Definition 8. Let  be a finite alphabet, v  {r, u}, t 

 {r, u} and P, Q  . The column shuffle of P 

with Q on the trajectory vt, denoted by P шvt
c Q is 

recursively defined as follows: 

If P=A     X and Q = B     Y where A, B, X, Y  , 

A and B are the first columns of P and Q respectively, 

then 

P шvt
c Q = (A    X) шvt

c (B    Y)  

         A      (X шvt
c (B     Y))    if v = r, 

   =  

                       B     ((A     X) шvt
c Y)    if v = u. 

       

                                                                        if v = r 

If P=,  шvt
c (B     Y) =      

           B     (шvt
c Y) if v = u 

 

                      A     (X шvt
c ) if v = r  

If Q=, (A     X) шvt
c   =     

                                  if v = u  

and  шvt
c  = 



 

otherwise
Λ tifΛ


 

The row shuffle of P with Q on the trajectory vt, v 

 {ℓ, d} and t  {ℓ, d} is defined in a similar way 

with r, u replaced by ℓ, d and the catenation     is 

replaced by      catenation. Also if |P|c  |t| or |P|c  |t|u 

then P шvt
c Q = . Similarly if |P|  |t| or |Q|  |t|d then 
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P шvt
r Q = . If T is a set of trajectories, then P шvt

c Q 

= 
Tt

P


 шvt
c Q and P шvt

r Q = 
Tt

P


 шvt
r Q. 

 Example 1. Let 













bbaaa
bbaaa

bbaaa
bbbbb
bbbbb

P   













bbaaa
bbaaa

bbaaa
bbbaa
bbaaa

Q   and 













aaaaa
aaaaa

aaaaa
bbbbb
bbbbb

R  

be three infinite arrays in . In P, the entries in the (i, 

j)th positions 1  i  n, 1  j  m are “a” whereas in 

other places the entries are “b”. In Q the (i, j)th positions 

i  1, 1  j  m are “a” whereas in other places the 

entries are “b”. In R, the entries in the (i, j)th positions j 

 1, 1  i  n are “a” whereas in other places the entries 

are “b”. Now for t = (ru), 

P шvt
c R = 











abaaaaaa
abaaaaaa

aaaaaaaa
bbbbbbbb
bbbbbbbb  , 

Similarly t = (ℓd), P шvt
r Q = 















bbaaa
bbaaa
bbaaa
bbaaa

bbaaa
bbaaa
bbabb
bbaaa
bbbbb
bbaaa

 . 

Now, authors give a result concerning the shuffle of two 

-recognizable array languages. If L1, L2  , then 

L1 ш L2 = {P шc Q, P шc Q | P  L1, Q  L2} and L1 

шT
 L2 = {P шt

c Q, P шt
r Q | P  L1, Q  L2, t  T} 

 Theorem 1. If L1 and L2 are -recognizable array 

languages then L1 ш L2 is a -recognizable array 

language. 

 Proof. Let L1 and L2 be two -recognizable array 

languages over the same alphabet . Let A i = (, Qi, 
i

0Q , Fi, i) be a Büchi online tessellation automaton 

such that L(A i) = Li, i = 1, 2. Authors define a Büchi 

online tessellation automaton A = (, Q, Q0, , F) 

such that L(A) = L1 ш L2 as follows: Q = Q1×Q2 × 

{0, 1, 2}. Elements in Q are denoted as k),q,(q 2

1

1

1  

where 1

1q   Q1, 
2

1q   Q2 and 0  k  2. The initial 

state is ,0)q,(qq 2

0

1

00   and the set of final states is F 

=Q1×Q2×{2}. The transition function  is defined 

in such a way that it simulates non-

deterministically on the first component, the 

automaton A1 or on the second component, the 

automaton A2. The third component of a state is 

used to record an occurrence of a final state from F1 

if the value 1 is stored. The value 2 is stored if at 

some stage later a final state from F2 does occur. 

The value 0 is stored in the third component 

whenever the first two components are not the final 

states. 

Formally,  is defined as follows: 

,0),qa),),q,((q{(δa)),0,q,(q),q,δ((q 2

1

1

2

1

11

2

2

1

2

2

1

1

1   

1

1

2

1

11

2

2

2

12

1

1 Fa),q,(qδifa),0)}),q,((qδ,(q   

,1),qa),),q,((q{(δa)),0,q,(q),q,δ((q 2

1

1

2

1

11

2

2

1

2

2

1

1

1   

1

1

2

1

11

2

2

2

12

1

1 Fa),q,(qδifa),0)}),q,((qδ,(q   

,1),qa),),q,((q{(δa)),1,q,(q),q,δ((q 2

1

1

2

1

11

2

2

1

2

2

1

1

1   

2

1

2

1

12

2

2

2

12

1

1 Fa),q,(qδifa),1)}),q,((qδ,(q   

,1),qa),),q,((q{(δa)),1,q,(q),q,δ((q 2

1

1

2

1

11

2

2

1

2

2

1

1

1   

2

1

2

1

12

2

2

2

12

1

1 Fa),q,(qδifa),2)}),q,((qδ,(q   

,0),qa),),q,((q{(δa)),2,q,(q),q,δ((q 2

1

1

2

1

11

2

2

1

2

2

1

1

1   

1

1

2

1

11

2

2

2

12

1

1 Fa),q,(qδifa),0)}),q,((qδ,(q   

,1),qa),),q,((q{(δa)),2,q,(q),q,δ((q 2

1

1

2

1

11

2

2

1

2

2

1

1

1   

1

1

2

1

11

2

2

2

12

1

1 Fa),q,(qδifa),0)}),q,((qδ,(q   

Clearly L(A) = L1 ш L2. 

 Definition 9. A column shuffle -array language 

over  is the set 


































  1mk,r,,Σu

u

u

u

C kr

i

m

2

1

|


 and 

row shuffle array language over  is the set R={[u1 

u2 ... um] | ui  k×c, c, k, m  1}. 

 Definition 10. An array grammar with shuffle on 

trajectories (AGST) is a construct G = (, B, C, R, 

TC, TR) where  is an alphabet, B is a finite subset 

of  called the base of G, C and R are called 

column and row shuffle array languages over  

respectively. TC  ω

1V  and TR  ω

2V  are sets of 

trajectories over the column and row shuffle array 

of C and R respectively. 

The direct derivation with respect to G is a binary 

relation  шT
 where X, Y   if and only if Y = X 

ш ω

TC
U with UC or Y=X ш ω

TR
U with U  R.  шT

* 

is the reflexive transitive closure of  шT
. 

The language generated by G, denoted as L(G) is 

defined as follows  

L(G)={Y | XB such that X  шT
* Y}. 

The family of all languages generated by AGST is 

denoted by AGST. AGSTREG, AGSTCF, AGSTCS 
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denote the family of all languages generated by AGST 

grammars with regular, context free and context 

sensitive languages of trajectories respectively. 

Authors now give some examples from the family 

AGSTREG. 

 Example 2. Consider the infinite array in  












bbaaa
bbaaa
bbaaa
bbbbb
bbbbb

bbbbb

P

 

In P, the entries in the (i, j)th positions 1  i  3, 1  j  

3 are a whereas in other places the entries are b. P is 

generated by the following AGST of AGSTREG. G = (, 

B, C, R, TC, TR) where B = ,
aaa
aaa
aaa














 

R = {(b)n / n  3}, C = {(b)n / n  4} 

TR = {nd / n  3}, TC = {r4u / n  4} 

A sample derivation is shown below: 

aaa
aaa
aaa

 
ш

RT  

 ℓ3d 
aaa
aaa
aaa
bbb

 
ш

CT  

 r4u 
baaa
baaa
baaa
bbbb

 

 

ш
RT  

 ℓ4d 
baaa
baaa
baaa
bbbb
bbbb

 
ш

CT  

 r5u 
bbaaa
bbaaa
bbaaa
bbbbb
bbbbb

 

Repeatedly applying row shuffle and column shuffle 

operations authors get the infinite array language. 

 Theorem 2. The AGSTREG intersects (R:R)AG. 

 Proof. The L-token of all sizes of a fixed proportion 

is generated by (R : R)AG. In fact G = (V, I, P, S) 

where V = V1  V2, V1 = {S}, V2 = {A, B}, I ={a, 

b} and P= P1  P2 generates L-tokens of all sizes, the 

ratio betauthorsen the two arrays of L is 1. 

Here P1  {S  (S A) B}, 

R = {(b)n / n  3}, C = {(b)n / n  4} and P2= 

.
aaa
aaa
aaa

S












  

A sample derivation is shown below. 

bbaaa
bbaaa
bbaaa
bbbbb
bbbbb

baaa
baaa
baaa
bbbb

aaa
aaa
aaa

S   

Repeatedly applying row and column shuffle operations 

authors get the infinite array language. This language is 

also generated by a AGST of AGSTREG. 

Now authors have a result with respect to two -array 

languages L1 and L2 and a regular language T. 

 Theorem 3. Let T  {r, u}  {ℓ, d} be a set of 

trajectories. For all recognizable -array 

languages L1 and L2, the array language L1 шT L2 is 

-recognizable.  

 Proof. Let T be a regular language. L1, L2 are two 

recognizable -array languages over the same 

alphabet . Let Ai = (, Qi, i, 
i

0q , Fi) be a 

deterministic two direction Buchi online 

tessellation automaton such that L(Ai) = Li for i=1, 

2. Also AT =({r, u, ℓ, d}, QT, T, T

0q , FT) be a 

deterministic finite state automaton such that L(AT) 

=T. 

Authors define a Buchi online tessellation automaton 

A=(, Q, , Q0, F) such that L(A)=L1 шT
 L2. 

Formally A on an input p   simulates non 

deterministically A1 or A2 or from A2 to A1. Each 

change determines a transition in AT as follows: a 

change from A1 to A2 is interpreted as u or d and a 

change from A2 to A1 is interpreted as r or ℓ 

respectively. 

The input p is accepted by A if and only if each of 

A1, A2 and AT accepts L1, L2 and T respectively. 

Formally Q=Q1×QT×Q2×{0, 1, 2}. Elements of Q 

are denoted as k),q,q,(q 2

1T

1

1  where 1

1q   Q1, 
2

1q   Q2 

and 0  k  2, q0  ,0)q,q,(q 2

0T

1

0  and the set of final 

states is F = (Q1,×QT×Q2×{2}). The transition 

function  is defined as follows:  : Q×Q×  2Q. 

The transition function is defined in such a way that it 

simulates non-deterministically in the first component, 

the automaton A1 or on the second component the 

automaton A2. The third component of a state is 

record an occurrence of a final state from F1 if the 

value 1 is stored. The value 2 is stored if at some stage 

later a final state from F2 does occur. The value 0 is 

stored in the third component whenever the first two 

components are not the final states. Now for t = (ru)w 

where t  T.  is defined as follows. 
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 L(A) = L1 шT
 L2. 
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Similarly for t = (ℓd) authors can prove the above 

result. 

 L1 шT
 L2 is -recognizable. 

 Example 3. Let 
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where L1={Pn,m / n, m  1}. In Pn,m the entries in the (i, 

j)th positions 1  i  n, 1  j  m are a and the remaining 

entries are b. L1 is recognizable [5] and L(A1)=L1 where 

A1=(1, Q1, 1, 
1

0q , F1) with Q1= }q,q,{q 1

2

1

1

1

0  and 

F1= }.{q1

2  The transition function 1 : Q1 ×Q2×  2Q is 

defined as follows:  
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Consider another infinite array language L2. 
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where L2 = {Rn / n  1} 

In Rn the entries in the (i, j)th positions j  1, 1  i  n 

are a, other entries are b. L2 is recognizable in [5]. Since 

L2=L(A2) where A2=(2, Q2, 2, 
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0q , F2), 2={a, 

b},Q2= }q,q,{q 2
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The transition function 2 is given as follows:  
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Let T=TC={(ru)} be the trajectory. Clearly L(AT)=T 

where AT=(T, QT, T, T

0q , FT) is a finite deterministic 

automaton such that T={r, u}, QT= )q,q,(q T

u

T

r

T

0  and FT 

= }.{qT

u The transition function T is defined as 
T
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Now 

L(A)=L(A1) шT
 L(A2)=P шt

C R 
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Clearly L(A1) шT
 L(A2)=L(A) where A=(, Q, , q0, 

F) with Q=Q1×QT×Q2, Q0= )},q,q,{(q 2

0

T

0

1

0  F=F1×FT×F2 

and  : Q×Q× 2Q. 

The transition function  is given as follows: 
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 Theorem 4. Let T  {r, u}  {ℓ, d} be a set of -

trajectories. If T is a context free -language and 

L1, L2 are all Regular Languages (RL), then L1 шT
 

L2 is a context free -language. 

Authors construct a pushdown automaton A=(, 1, 2, 

Q, , 1, S, F, F, z0, $) such that L(A)=L1 шT
 L2, 

where Q is the set of states Q= Q   Q1  ... Proof. Let 

T, the set of -trajectories be a context free language. 

Consider two regular -array languages L1, L2 over 

the same alphabet. Let Ai=(, i, Qi, i, 
1

iδ , Si, Fi, 
1

iF , $) 

be a finite state automata such that L(Ai) =Li, for i=1, 2. 

Let Ap=({r, u, ℓ, d}, T, QT, T

0q , T

0z , T, T) be a 

pushdown automaton such that L(Ap)=T, where QT is 

the set of states. T is the stack alphabet, T

0q   QT is the 

initial state, T

0z T is the initial stack symbol, T  QT 

is the set of states and T is the transition mapping 

defined as T : QT×({(ru), (ℓd)}  {}) ×T .2 TT ΓQ   

 Qk, Qi  Qj =  if i  j. Each Qi has an initial state 

qi and a final state fi. ,}{fF

k

1i

i

1 


  ,}{qS

k

1i

i


  Q  has an 

initial state q0. F  Q  is the set of final states, 1 is the 

finite set of storage symbols. |1|=k and each member of 

1 corresponds to one and only one Qi. 2 is the set of 

second storage symbols. z0  2 is the initial symbol of 

the second storage. $   is the end marker. 

Informally A on an input p simulates non 

deterministically A1 or A2 and from time to time 

changes the simulation from A1 to A2 or from A2 to A1. 

Each change determines a transition in AT as follows: A 

change from A1 to A2 is interpreted as u or d and a 

change from A2 to A1 is interpreted as r or ℓ 

respectively. The input p is accepted by A if and only 

if each of A1, A2 and Ap accepts L1, L2 and T 

respectively. 

Formally Q=Q1×QT×Q2, )},q,q,{(qQ 2
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0  F=F1× 

FT×F2 and F= }.FQ{k}kQ{F 1

2T1i2iT

1

1  The 

transition function  is defined as  : Q×{  {}}  

{$}×1 .2 21 ΓΓQ  The transition function  is given as 
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Where 1

1q   Q1, 
2

1q   Q2, qT  QT, 1  {r, ℓ}, 2  

{u, d}, a    {}, X,   .Γ*ω

1  1 is the mapping 

from Q  × (1  {1}) × 2 into finite subsets of Q × 

.Γ*ω

2  Clearly L1 шT
 L2 is a context free language. □ 

 Example 4. Consider the two recognizable infinite 

array languages L1 and L2 as in Example 3. The 

transition function for L1 is 1 : Q1×Q2×2Q is 

defined as follows. 
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Similarly the transition function for L2 is 2 given as 

follows. 
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Authors take T=TC={rmum / m  1} a context free 

language. Corresponding to T is Ap =({r, u}, T, QT, 
T

0q , T

0z , FT, T). That is L(Ap)=T. The transition 

function is defined as 
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The automaton that recognizes L is the pushdown 

automaton A such that L(A) = L, where A = (, 1, 2, 

Q, , , S, F, F, z0, $), Q = Q   Q1  ...  Qk, Qi  Qj 

=  if i  j. The transition function \delta is defined as 

follows. 
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3. Applications 

Shuffle on trajectories provides a useful tool to the 

study of a variety of problems in the area of parallel 

computation and in the theory of concurrency. there 

are many new problems of both theoretical and 

practical interest. An important problem seems to be 

the problem of parallelization of languages. Shuffle on 

trajectories offers a suitable theoretical framework to 

investigate this problem. Also the problem can be 

investigated with the turing complexity classes (time 

and space). Finding good parallelizations of problems 

can produce significant improvements with respect to 

the time used by a (one processor) computer to solve 

the problem. In this case the problem can be solved 

faster on a parallel computer. 

Other aspects from the theory of concurrency and 

parallel computation such as priorities, the existence 

of critical sections, communication, the use of re-

entrant routines are studied using semantic constraints 

on the shuffle operation. Of the special interest is to 

extend these operations for more complex objects 

such as graphs, networks or different types of 

automata. 

4. Future Work 

Shuffle on trajectories offers a suitable theoretical 

framework to investigate the problem of 

parallelization of languages. The Examples 3 and 4 

deal with regular and context free languages 

respectively. For instance one can consider other 

intermediate classes of languages locally testable 

languages, linear languages, context sensitive 

languages, matrix languages, etc. Also the authors will 

study the literal shuffle on infinite arrays in future and 

fairness of shuffle on infinite trajectories in future. 

5. Conclusions 

Shuffle on infinite array languages provides a useful 

tool for the study of parallel computation and the 

theory of concurrency. The use of shuffle operation in 

the theory of concurrency and parallel composition is 

well known. This operation is used to yield formal 

languages. The shuffle on finite and infinite words 

have been investigated extensively but the study of 

shuffle operation on infinite arrays is in the initial 

stage. So in this paper the authors have made a 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 
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attempt to study in depth the use of shuffle operation in 

different languages of infinite arrays to provide new 

classes of language of arrays and images. Authors have 

defined an array grammar with shuffle on trajectories 

over infinite arrays and obtained interesting results. 

Based on the studies [7, 11] authors have made an 

attempt to examine the effect of shuffle operation on 

-recognizable languages and extended the shuffle 

operation to -array languages.  
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