
108 The International Arab Journal of Information Technology, Vol. 16, No. 1, January 2019

The Shuffle on Trajectories of Infinite Arrays

Devi Velayutham

Department of Mathematics, Hindustan College of Arts and Science, India

Abstract: In this paper authors study and investigate the shuffle on trajectories on infinite array languages. Like finite array

languages this approach is applicable to concurrency providing a method to define parallel composition of processes. It is also

applicable to parallel computation. The operations are introduced using a uniform method based on the notion of -

trajectory. Authors introduce an Array Grammar with Shuffle on Trajectories (AGST) and compare it with other array

grammars for generative poauthorsr. Authors prove closure properties for different classes of array languages with respect to

the shuffle on trajectories.

Keywords: Büchi two-dimensional online tessellation automaton, -trajectory, -recognizable array language, column

shuffle -recognizable array language.

Received April 16, 2015; accepted May 22, 2016

1. Introduction

Infinite arrays are digitized images of symbols

occupying a quadrant of a plane. They can be thought

of as extensions of infinite words to two dimensions.

The motivation for considering infinite arrays lies in the

fact that pictures of functions can be considered as

infinite digitized images. An early work in this direction

is done by Nakamura and Ono in [13]. Also authors

study -languages and automata in [15, 19] and authors

refer [1, 10, 14, 17, 18] for initiating this work. Infinite

arrays is an array with infinite number of columns and

rows.

Shuffle on trajectories is an interesting tool for the

generation of languages of finite words as authorsll as

infinite words. It is found in [4, 5, 6, 12]. Parallel

composition of words and languages appears as a

fundamental operation in parallel computation and in

the theory of concurrency. This operation is modeled by

shuffle operation or restrictions of this operation such as

literal shuffle and inserton. A trajectory is a segment of

a line in a plane starting in the origin of axes.

Continuing parallel with the axes OX and OY. The line

can change its direction only in points of non negative

integers. In [16] trajectory plays an important role. The

shuffle of two words has a natural geometrical

interpretation related to lattice points in the plane [11].

On the other hand theoretical models for generating two

dimensional arrays authorsre proposed in [9]. Shuffle

operation on finite arrays with trajectories has been

introduced in [8]. To develop the study on parallel

contextual array grammars [2]. Based on the study of

[3] authors consider the shuffle on trajectories as a tool

for obtaining various infinite array languages.

The paper is organized as follows. In section 2,

authors review necessary notions related to infinite

arrays, trajectories and shuffle on trajectories. In section

3 authors give the notion of shuffle operation to infinite

array languages and proved closure and associative

properties for -recognizable languages. In section 4

authors study the literal shuffle for infinite array

languages and obtain an interesting result.

2. Preliminaries

In this section authors recall some necessary notions

and definitions for infinite arrays languages. For finite

or infinite array considerd in this paper the bottom

most row is the first row and the left most column is

the first column.

 Definition 1. An infinite word is a mapping from N

to . The set of all finite (respectively infinite)

words on  is denoted by * (respectively ). A

-language L is a subset of .

 Definition 2. Let =a0 a1 a2 ..., where ai  , for all

i  0 be an -word over . A run of A on  is a

sequence of states s = s0 s1 s2 ..., such that s0 = q0

and (si, ai, si+1)  , for all i  0. The run is

successful if and only if inf(s)  F   (where

inf(s) is the set of all states which repeat infinitely

many times in s).  is accepted by A if and only if

there exists a successful run of A on .

The -language recognized by A is L(A)={   | 

is accepted by A}. An -language L is referred to as

-regular or Büchi recognizable if and only if there

exists a Büchi automaton A such that L(A)=L.

 Definition 3. An infinite array has an infinite

number of rows and an infinite number of columns.

The collection of all infinite arrays over  is

denoted by . If an array p   has entry aij in

the ith row and jth column, aij   then authors write

p=(aij), i=1, 2, ..., j=1, 2, For p  , p̂ is the

infinite array obtained by placing a row of

The Shuffle on Trajectories of Infinite Arrays 109

boundary symbol # below the first row of p and to

the left of the first column of p.

 Definition 4. A Büchi automaton is a quintuple A =

(, Q, q0, , F), where  is the input alphabet; Q is a

finite set of states; q0  Q is the initial state;  is the

transition relation,   Q××Q, and F  Q is the set

of final states.

 Definition 5. A non-deterministic Büchi Two-

Dimensional Online Tessellation Automaton

(2DBOTA) is A =(, Q, Q0, F, ) where  is an input

alphabet, Q is the finite set of states, Q0  Q is a set

of initial states,

F  Q is a set of final states and  : Q×Q×2Q is a

transition function.

A computation by a 2DBOTA on an infinite array p

with











####

aa#

aa#
#

p̂

1211

2221

Where aij   and #   is done as follows:

At time t=0, an initial state q0  Q0 is associated with

all the positions of p̂ holding #. At time t=1, a state

from (q0, q0, a11) is associated with the position (1, 1)

holding a11. At time t=2, states are associated

simultaneously with the positions (1, 2) and (2, 1)

respectively holding a12 and a21. If s11 is the state

associated with the position (1, 1), then the state

associated with the position (2, 1) is an element of (s11,

q0, a21) and to the position (1, 2) is an element of (q0,

s11, a12). Authors then proceed to the next diagonal. The

states associated with each position (i, j) by the

transition function  depends on the states already

associated with the positions (i1, j), (i, j1) and the

symbol aij. Let sij be the state associated with the

position (i, j) where the entry is aij. A run (or a

computation) of an infinite array is an element of Q. A

run for an infinite array is a sequence of states s11 s12 s21

s31 s22 s13 ... and it is denoted by r(p).

If A is non-deterministic, a run for an infinite array is

a set of sequences of states containing only one

sequence of state, but in the deterministic case it is a

singleton set. If p  , the set of runs of p is denoted

by Run(p).

The language of infinite arrays recognized by the

non-deterministic Büchi online tessellation automaton A

is L(A)={p   : inf(r(p))  F  , for some r(p) 

Run(p)}.

A language of infinite arrays is called a -array

language. A -array language K is called

recognizable if there exists a Büchi online tessellation

automaton A such that L(A)=K.

2.1. Shuffling on Trajectories over Infinite Arrays

In this section authors prove that the shuffling of two

-recognizable languages is again -recognizable

array language.

 Definition 6. The column shuffle operation on an

infinite array denoted by шc is defined recursively

by

P шc Q = ((A X) шc (B Y))

 = A (X шc (B Y)) 

B ((A X) шc Y)

Where P=A X and Q=B Y, where P, Q  , A is

the first column of array P and B is the first column of

array Q. If A is empty then X=P. Likewise if B is

empty then Y=Q. Also P шc = шc P=P.

 Definition 7. The row shuffle operation on an

infinite array denoted by шr is defined recursively

by

P шr Q=((A X) шr (B Y))

 = A (X шr (B Y)) 

B ((A X) шr Y)

Where P=A X and Q=B Y, P, Q  , A is the

first row of array P and B is the first row of array Q.

Also P шr = шr P=P.

Let V1={r, u} and V2={ℓ, d} be the set of versors in

the plane. ℓ, r, u and d stand for the left, right, up and

down directions respectively. A trajectory is an

element .VVt ω

2

ω

1 

 Definition 8. Let  be a finite alphabet, v  {r, u}, t

 {r, u} and P, Q  . The column shuffle of P

with Q on the trajectory vt, denoted by P шvt
c Q is

recursively defined as follows:

If P=A X and Q = B Y where A, B, X, Y  ,

A and B are the first columns of P and Q respectively,

then

P шvt
c Q = (A X) шvt

c (B Y)

 A (X шvt
c (B Y)) if v = r,

 =

 B ((A X) шvt
c Y) if v = u.

  if v = r

If P=,  шvt
c (B Y) =

 B (шvt
c Y) if v = u

 A (X шvt
c ) if v = r

If Q=, (A X) шvt
c  =

  if v = u

and  шvt
c  =



 

otherwise
Λ tifΛ



The row shuffle of P with Q on the trajectory vt, v

 {ℓ, d} and t  {ℓ, d} is defined in a similar way

with r, u replaced by ℓ, d and the catenation is

replaced by catenation. Also if |P|c  |t| or |P|c  |t|u

then P шvt
c Q = . Similarly if |P|  |t| or |Q|  |t|d then

110 The International Arab Journal of Information Technology, Vol. 16, No. 1, January 2019

P шvt
r Q = . If T is a set of trajectories, then P шvt

c Q

= 
Tt

P


 шvt
c Q and P шvt

r Q = 
Tt

P


 шvt
r Q.

 Example 1. Let













bbaaa
bbaaa

bbaaa
bbbbb
bbbbb

P













bbaaa
bbaaa

bbaaa
bbbaa
bbaaa

Q and













aaaaa
aaaaa

aaaaa
bbbbb
bbbbb

R

be three infinite arrays in . In P, the entries in the (i,

j)th positions 1  i  n, 1  j  m are “a” whereas in

other places the entries are “b”. In Q the (i, j)th positions

i  1, 1  j  m are “a” whereas in other places the

entries are “b”. In R, the entries in the (i, j)th positions j

 1, 1  i  n are “a” whereas in other places the entries

are “b”. Now for t = (ru),

P шvt
c R =











abaaaaaa
abaaaaaa

aaaaaaaa
bbbbbbbb
bbbbbbbb ,

Similarly t = (ℓd), P шvt
r Q =















bbaaa
bbaaa
bbaaa
bbaaa

bbaaa
bbaaa
bbabb
bbaaa
bbbbb
bbaaa

 .

Now, authors give a result concerning the shuffle of two

-recognizable array languages. If L1, L2  , then

L1 ш L2 = {P шc Q, P шc Q | P  L1, Q  L2} and L1

шT
 L2 = {P шt

c Q, P шt
r Q | P  L1, Q  L2, t  T}

 Theorem 1. If L1 and L2 are -recognizable array

languages then L1 ш L2 is a -recognizable array

language.

 Proof. Let L1 and L2 be two -recognizable array

languages over the same alphabet . Let A i = (, Qi,
i

0Q , Fi, i) be a Büchi online tessellation automaton

such that L(A i) = Li, i = 1, 2. Authors define a Büchi

online tessellation automaton A = (, Q, Q0, , F)

such that L(A) = L1 ш L2 as follows: Q = Q1×Q2 ×

{0, 1, 2}. Elements in Q are denoted as k),q,(q 2

1

1

1

where 1

1q  Q1,
2

1q  Q2 and 0  k  2. The initial

state is ,0)q,(qq 2

0

1

00  and the set of final states is F

=Q1×Q2×{2}. The transition function  is defined

in such a way that it simulates non-

deterministically on the first component, the

automaton A1 or on the second component, the

automaton A2. The third component of a state is

used to record an occurrence of a final state from F1

if the value 1 is stored. The value 2 is stored if at

some stage later a final state from F2 does occur.

The value 0 is stored in the third component

whenever the first two components are not the final

states.

Formally,  is defined as follows:

,0),qa),),q,((q{(δa)),0,q,(q),q,δ((q 2

1

1

2

1

11

2

2

1

2

2

1

1

1 

1

1

2

1

11

2

2

2

12

1

1 Fa),q,(qδifa),0)}),q,((qδ,(q 

,1),qa),),q,((q{(δa)),0,q,(q),q,δ((q 2

1

1

2

1

11

2

2

1

2

2

1

1

1 

1

1

2

1

11

2

2

2

12

1

1 Fa),q,(qδifa),0)}),q,((qδ,(q 

,1),qa),),q,((q{(δa)),1,q,(q),q,δ((q 2

1

1

2

1

11

2

2

1

2

2

1

1

1 

2

1

2

1

12

2

2

2

12

1

1 Fa),q,(qδifa),1)}),q,((qδ,(q 

,1),qa),),q,((q{(δa)),1,q,(q),q,δ((q 2

1

1

2

1

11

2

2

1

2

2

1

1

1 

2

1

2

1

12

2

2

2

12

1

1 Fa),q,(qδifa),2)}),q,((qδ,(q 

,0),qa),),q,((q{(δa)),2,q,(q),q,δ((q 2

1

1

2

1

11

2

2

1

2

2

1

1

1 

1

1

2

1

11

2

2

2

12

1

1 Fa),q,(qδifa),0)}),q,((qδ,(q 

,1),qa),),q,((q{(δa)),2,q,(q),q,δ((q 2

1

1

2

1

11

2

2

1

2

2

1

1

1 

1

1

2

1

11

2

2

2

12

1

1 Fa),q,(qδifa),0)}),q,((qδ,(q 

Clearly L(A) = L1 ш L2.

 Definition 9. A column shuffle -array language

over  is the set


































  1mk,r,,Σu

u

u

u

C kr

i

m

2

1

|


 and

row shuffle array language over  is the set R={[u1

u2 ... um] | ui  k×c, c, k, m  1}.

 Definition 10. An array grammar with shuffle on

trajectories (AGST) is a construct G = (, B, C, R,

TC, TR) where  is an alphabet, B is a finite subset

of  called the base of G, C and R are called

column and row shuffle array languages over 

respectively. TC  ω

1V and TR  ω

2V are sets of

trajectories over the column and row shuffle array

of C and R respectively.

The direct derivation with respect to G is a binary

relation  шT
 where X, Y   if and only if Y = X

ш ω

TC
U with UC or Y=X ш ω

TR
U with U  R.  шT

*

is the reflexive transitive closure of  шT
.

The language generated by G, denoted as L(G) is

defined as follows

L(G)={Y | XB such that X  шT
* Y}.

The family of all languages generated by AGST is

denoted by AGST. AGSTREG, AGSTCF, AGSTCS

The Shuffle on Trajectories of Infinite Arrays 111

denote the family of all languages generated by AGST

grammars with regular, context free and context

sensitive languages of trajectories respectively.

Authors now give some examples from the family

AGSTREG.

 Example 2. Consider the infinite array in 












bbaaa
bbaaa
bbaaa
bbbbb
bbbbb

bbbbb

P

In P, the entries in the (i, j)th positions 1  i  3, 1  j 

3 are a whereas in other places the entries are b. P is

generated by the following AGST of AGSTREG. G = (,

B, C, R, TC, TR) where B = ,
aaa
aaa
aaa















R = {(b)n / n  3}, C = {(b)n / n  4}

TR = {nd / n  3}, TC = {r4u / n  4}

A sample derivation is shown below:

aaa
aaa
aaa

ш

RT

 ℓ3d
aaa
aaa
aaa
bbb

ш

CT

 r4u
baaa
baaa
baaa
bbbb

ш
RT

 ℓ4d
baaa
baaa
baaa
bbbb
bbbb

ш

CT

 r5u
bbaaa
bbaaa
bbaaa
bbbbb
bbbbb

Repeatedly applying row shuffle and column shuffle

operations authors get the infinite array language.

 Theorem 2. The AGSTREG intersects (R:R)AG.

 Proof. The L-token of all sizes of a fixed proportion

is generated by (R : R)AG. In fact G = (V, I, P, S)

where V = V1  V2, V1 = {S}, V2 = {A, B}, I ={a,

b} and P= P1  P2 generates L-tokens of all sizes, the

ratio betauthorsen the two arrays of L is 1.

Here P1  {S  (S A) B},

R = {(b)n / n  3}, C = {(b)n / n  4} and P2=

.
aaa
aaa
aaa

S














A sample derivation is shown below.

bbaaa
bbaaa
bbaaa
bbbbb
bbbbb

baaa
baaa
baaa
bbbb

aaa
aaa
aaa

S 

Repeatedly applying row and column shuffle operations

authors get the infinite array language. This language is

also generated by a AGST of AGSTREG.

Now authors have a result with respect to two -array

languages L1 and L2 and a regular language T.

 Theorem 3. Let T  {r, u}  {ℓ, d} be a set of

trajectories. For all recognizable -array

languages L1 and L2, the array language L1 шT L2 is

-recognizable.

 Proof. Let T be a regular language. L1, L2 are two

recognizable -array languages over the same

alphabet . Let Ai = (, Qi, i,
i

0q , Fi) be a

deterministic two direction Buchi online

tessellation automaton such that L(Ai) = Li for i=1,

2. Also AT =({r, u, ℓ, d}, QT, T, T

0q , FT) be a

deterministic finite state automaton such that L(AT)

=T.

Authors define a Buchi online tessellation automaton

A=(, Q, , Q0, F) such that L(A)=L1 шT
 L2.

Formally A on an input p   simulates non

deterministically A1 or A2 or from A2 to A1. Each

change determines a transition in AT as follows: a

change from A1 to A2 is interpreted as u or d and a

change from A2 to A1 is interpreted as r or ℓ

respectively.

The input p is accepted by A if and only if each of

A1, A2 and AT accepts L1, L2 and T respectively.

Formally Q=Q1×QT×Q2×{0, 1, 2}. Elements of Q

are denoted as k),q,q,(q 2

1T

1

1 where 1

1q  Q1,
2

1q  Q2

and 0  k  2, q0  ,0)q,q,(q 2

0T

1

0 and the set of final

states is F = (Q1,×QT×Q2×{2}). The transition

function  is defined as follows:  : Q×Q×  2Q.

The transition function is defined in such a way that it

simulates non-deterministically in the first component,

the automaton A1 or on the second component the

automaton A2. The third component of a state is

record an occurrence of a final state from F1 if the

value 1 is stored. The value 2 is stored if at some stage

later a final state from F2 does occur. The value 0 is

stored in the third component whenever the first two

components are not the final states. Now for t = (ru)w

where t  T.  is defined as follows.

,0),qr),,(qδa),),q,(q{(δa)),0,q,q,(q),q,q,δ((q 2

1TT

1

2

1

11

2

2T

1

2

2

1T

1

1 

1

1

2T

1

11

2

2

2

12TT

1

1 Fa),q,q,(qδifa),0)}),q,((qδu),,(qδ,(q 

,1),qr),,(qδa),),q,(q{(δa)),0,q,q,(q),q,q,δ((q 2

1TT

1

2

1

11

2

2T

1

2

2

1T

1

1 

1

1

2T

1

11

2

2

2

12TT

1

1 Fa),q,q,(qδifa),0)}),q,((qδu),,(qδ,(q 

,1),qr),,(qδa),),q,(q{(δa)),1,q,q,(q),q,q,δ((q 2

1TT

1

2

1

11

2

2T

1

2

2

1T

1

1 

2

2

2T

2

12

2

2

2

12TT

1

1 Fa),q,q,(qδifa),1)}),q,((qδu),,(qδ,(q 

,1),qr),,(qδa),),q,(q{(δa)),1,q,q,(q),q,q,δ((q 2

1TT

1

2

1

11

2

2T

1

2

2

1T

1

1 

2

2

2T

2

12

2

2

2

12TT

1

1 Fa),q,q,(qδifa),2)}),q,((qδu),,(qδ,(q 

,0),qr),,(qδa),),q,(q{(δa)),2,q,q,(q),q,q,δ((q 2

1TT

1

2

1

11

2

2T

1

2

2

1T

1

1 

1

1

2T

1

11

2

2

2

12TT

1

1 Fa),q,q,(qδifa),0)}),q,((qδu),,(qδ,(q 

,1),qr),,(qδa),),q,(q{(δa)),2,q,q,(q),q,q,δ((q 2

1TT

1

2

1

11

2

2T

1

2

2

1T

1

1 

1

1

2T

1

11

2

2

2

12TT

1

1 Fa),q,q,(qδifa),0)}),q,((qδu),,(qδ,(q 

 L(A) = L1 шT
 L2.

112 The International Arab Journal of Information Technology, Vol. 16, No. 1, January 2019

Similarly for t = (ℓd) authors can prove the above

result.

 L1 шT
 L2 is -recognizable.

 Example 3. Let

#########
bbaaa#

bbaaa#
bbbbb#
bbbbb#

#
#

L1












where L1={Pn,m / n, m  1}. In Pn,m the entries in the (i,

j)th positions 1  i  n, 1  j  m are a and the remaining

entries are b. L1 is recognizable [5] and L(A1)=L1 where

A1=(1, Q1, 1,
1

0q , F1) with Q1= }q,q,{q 1

2

1

1

1

0 and

F1= }.{q1

2 The transition function 1 : Q1 ×Q2×  2Q is

defined as follows:

1

1

1

0

1

01 qa),q,(qδ 

1

1

1

1

1

01 qa),q,(qδ 

1

1

1

0

1

11 qa),q,(qδ 

1

1

1

1

1

11 qa),q,(qδ 

1

2

1

1

1

01 qb),q,(qδ 

1

2

1

0

1

11 qb),q,(qδ 

1

2

1

2

1

11 qb),q,(qδ 

1

2

1

1

1

21 qb),q,(qδ 

1

2

1

2

1

21 qb),q,(qδ 

1

2

1

2

1

01 qb),q,(qδ 

.qb),q,(qδ 1

2

1

0

1

21 

Consider another infinite array language L2.












######
aaaaa#
aaaaa#

bbbbb#
bbbbb#

#

L2

where L2 = {Rn / n  1}

In Rn the entries in the (i, j)th positions j  1, 1  i  n

are a, other entries are b. L2 is recognizable in [5]. Since

L2=L(A2) where A2=(2, Q2, 2,
2

0q , F2), 2={a,

b},Q2= }q,q,{q 2

2

2

1

2

0 and F2= }.{q2

2

The transition function 2 is given as follows:

2

1

2

0

2

02 qa),q,(qδ 

2

1

2

0

2

12 qa),q,(qδ 

2

1

2

1

2

02 qa),q,(qδ 

2

1

2

1

2

12 qa),q,(qδ 

2

2

2

0

2

12 qb),q,(qδ 

2

2

2

2

2

12 qb),q,(qδ 

2

2

2

0

2

22 qb),q,(qδ 

2

2

2

1

2

22 qb),q,(qδ 

.qb),q,(qδ 2

2

2

2

2

22 

Let T=TC={(ru)} be the trajectory. Clearly L(AT)=T

where AT=(T, QT, T, T

0q , FT) is a finite deterministic

automaton such that T={r, u}, QT=)q,q,(q T

u

T

r

T

0 and FT

= }.{qT

u The transition function T is defined as
T

r

T

0T qr),(qδ  , T

u

T

rT qu),(qδ  , T

r

T

uT qr),(qδ  ,

T

u

T

uT q)b,(qδ  , .q)b,(qδ T

r

T

rT 

Now

L(A)=L(A1) шT
 L(A2)=P шt

C R













abaaaaaa
abaaaaaa

abaaaaaa
bbbbbbbb
bbbbbbbb

Clearly L(A1) шT
 L(A2)=L(A) where A=(, Q, , q0,

F) with Q=Q1×QT×Q2, Q0=)},q,q,{(q 2

0

T

0

1

0 F=F1×FT×F2

and  : Q×Q× 2Q.

The transition function  is given as follows:

a)),q,q,(q),q,q,δ((q 2

0

T

0

1

0

2

0

T

0

1

0

)}qr),,(qδa),,q,(q{(δ 2

0

T

0T

1

0

1

01

)}q,q,{(q 2

0

T

r

1

1

a)),q,q,(q),q,q,δ((q 2

0

T

0

1

0

2

0

T

r

1

1

a)},q,(qδu),,(qδ,{(q 2

0

2

02

T

rT

1

1

)}q,q,{(q 2

1

T

u

1

1

a)),q,q,(q),q,q,δ((q 2

0

T

r

1

1

2

0

T

0

1

0

)}q),b,(qδa),,q,(q{(δ 2

0

T

uT

1

1

1

01 

)}q,q,{(q 2

0

T

u

1

1

a)),q,q,(q),q,q,δ((q 2

0

T

0

1

0

2

1

T

u

1

1

)}qr),,(qδa),,q,(q{(δ 2

1

T

uT

1

0

1

11

)}q,q,{(q 2

1

T

r

1

1

a)),q,q,(q),q,q,δ((q 2

1

T

u

1

1

2

0

T

u

1

1

a)},q,(qδ),b,(qδ,{(q 2

1

2

02

T

rT

1

1 

)}q,q,{(q 2

1

T

r

1

1

b)),q,q,(q),q,q,δ((q 2

0

T

r

1

1

2

0

T

0

1

0

)}q),b,(qδb),,q,(q{(δ 2

0

T

rT

1

1

1

01 

)}q,q,{(q 2

0

T

r

1

2

b)),q,q,(q),q,q,δ((q 2

0

T

0

1

0

2

1

T

u

1

1

)}qr),,(qδb),,q,(q{(δ 2

1

T

uT

1

0

1

11

)}q,q,{(q 2

1

T

r

1

2

(3)

(2)

(1)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

 (23)

(24)

(25)

(26)

(27)

The Shuffle on Trajectories of Infinite Arrays 113

a)),q,q,(q),q,q,δ((q 2

0

T

0

1

0

2

1

T

r

1

2

a)},q,(qδu),,(qδ,{(q 2

0

2

12

T

rT

1

2

)}q,q,{(q 2

1

T

u

1

2

b)),q,q,(q),q,q,δ((q 2

1

T

r

1

2

2

1

T

u

1

1

)}qr),,(qδb),,q,(q{(δ 2

1

T

uT

1

2

1

11

)}q,q,{(q 2

1

T

r

1

2

b)),q,q,(q),q,q,δ((q 2

1

T

u

1

1

2

0

T

r

1

2

b)},q,(qδ),b,(qδ,{(q 2

1

2

02

T

rT

1

2 

)}q,q,{(q 2

2

T

r

1

2

b)),q,q,(q),q,q,δ((q 2

2

T

r

1

2

2

0

1

r

1

2

b)},q,(qδ),b,(qδ,{(q 2

2

2

02

T

rT

1

2 

)}q,q,{(q 2

1

T

r

1

2

a)),q,q,(q),q,q,δ((q 2

1

T

u

1

2

2

1

T

r

1

2

a)},q,(qδ),b,(qδ,{(q 2

1

2

12

T

rT

1

2 

)}q,q,{(q 2

1

T

r

1

2

 Theorem 4. Let T  {r, u}  {ℓ, d} be a set of -

trajectories. If T is a context free -language and

L1, L2 are all Regular Languages (RL), then L1 шT


L2 is a context free -language.

Authors construct a pushdown automaton A=(, 1, 2,

Q, , 1, S, F, F, z0, $) such that L(A)=L1 шT
 L2,

where Q is the set of states Q= Q  Q1  ... Proof. Let

T, the set of -trajectories be a context free language.

Consider two regular -array languages L1, L2 over

the same alphabet. Let Ai=(, i, Qi, i,
1

iδ , Si, Fi,
1

iF , $)

be a finite state automata such that L(Ai) =Li, for i=1, 2.

Let Ap=({r, u, ℓ, d}, T, QT, T

0q , T

0z , T, T) be a

pushdown automaton such that L(Ap)=T, where QT is

the set of states. T is the stack alphabet, T

0q  QT is the

initial state, T

0z T is the initial stack symbol, T  QT

is the set of states and T is the transition mapping

defined as T : QT×({(ru), (ℓd)}  {}) ×T .2 TT ΓQ 

 Qk, Qi  Qj =  if i  j. Each Qi has an initial state

qi and a final state fi. ,}{fF

k

1i

i

1 


 ,}{qS

k

1i

i


 Q has an

initial state q0. F  Q is the set of final states, 1 is the

finite set of storage symbols. |1|=k and each member of

1 corresponds to one and only one Qi. 2 is the set of

second storage symbols. z0  2 is the initial symbol of

the second storage. $   is the end marker.

Informally A on an input p simulates non

deterministically A1 or A2 and from time to time

changes the simulation from A1 to A2 or from A2 to A1.

Each change determines a transition in AT as follows: A

change from A1 to A2 is interpreted as u or d and a

change from A2 to A1 is interpreted as r or ℓ

respectively. The input p is accepted by A if and only

if each of A1, A2 and Ap accepts L1, L2 and T

respectively.

Formally Q=Q1×QT×Q2,)},q,q,{(qQ 2

0T

1

0 F=F1×

FT×F2 and F= }.FQ{k}kQ{F 1

2T1i2iT

1

1  The

transition function  is defined as  : Q×{  {}} 

{$}×1 .2 21 ΓΓQ  The transition function  is given as
a)a,),q,q,(q),q,q,δ((q 2

2T

1

2

2

1T

1

1

 β}ε,),q),α,(qδa),),q,(q{(δ 2

11TT

1

2

1

11

 β}ε),a),),q,((qδ),α,(qδ,{(q 2

2

2

122TT

1

1 and

a)),$,q,q,(q),q,q,δ((q 2

2T

1

2

2

1T

1

1

 β}s,),q),α,(qδ),$),q,(q{(δ 2

11TT

1

2

1

11

 β}s),),$),q,((qδ),α,(qδ,{(q 2

2

2

122TT

1

1

Where 1

1q  Q1,
2

1q  Q2, qT  QT, 1  {r, ℓ}, 2 

{u, d}, a    {}, X,   .Γ*ω

1 1 is the mapping

from Q × (1  {1}) × 2 into finite subsets of Q ×

.Γ*ω

2 Clearly L1 шT
 L2 is a context free language. □

 Example 4. Consider the two recognizable infinite

array languages L1 and L2 as in Example 3. The

transition function for L1 is 1 : Q1×Q2×2Q is

defined as follows.

1

11

2

01

1

011 qa),q,(qδ 

1

11

1

01

1

011 qa),q,(qδ 

1

11

1

01

1

111 qa),q,(qδ 

1

11

1

11

1

111 qa),q,(qδ 

1

21

1

11

1

011 qb),q,(qδ 

1

21

1

01

1

111 qb),q,(qδ 

1

21

1

21

1

111 qb),q,(qδ 

1

21

1

11

1

211 qb),q,(qδ 

1

21

1

21

1

211 qb),q,(qδ 

1

21

1

21

1

011 qb),q,(qδ 

1

21

1

01

1

211 qb),q,(qδ 

Similarly the transition function for L2 is 2 given as

follows.

2

11

2

01

2

012 qa),q,(qδ 

2

11

2

01

2

112 qa),q,(qδ 

2

11

2

11

2

012 qa),q,(qδ 

2

11

2

11

2

112 qa),q,(qδ 

2

21

2

01

2

112 qb),q,(qδ 

2

21

2

21

2

112 qb),q,(qδ 

2

21

2

01

2

212 qb),q,(qδ 

(33)

(34)

(35)

(36)

(37)

(38)

 (39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(28)

(29)

(30)

(31)

(32)

114 The International Arab Journal of Information Technology, Vol. 16, No. 1, January 2019

2

21

2

11

2

212 qb),q,(qδ 

2

21

2

21

2

212 qb),q,(qδ 

Authors take T=TC={rmum / m  1} a context free

language. Corresponding to T is Ap =({r, u}, T, QT,
T

0q , T

0z , FT, T). That is L(Ap)=T. The transition

function is defined as

)rz,(q)zr,,(qδ T

0

T

1

T

0

T

0T 

)z,(q)z,b,(qδ T

0

T

2

T

0

T

2T 

r),(qr),b,(qδ T

1

T

1T 

r),(qr),b,(qδ T

2

T

2T 

rr),(qr)r,,(qδ T

1

T

1T 

λ),(qr)u,,(qδ T

2

T

1T 

λ),(qr)u,,(qδ T

2

T

2T 

T

1

T

2T qu),b,(qδ 

FT = }{qT

2 .

Let L = L1 шT L2













abaaaaa
abaaaaa

abaaaaa
bbbbbbb
bbbbbbb

The automaton that recognizes L is the pushdown

automaton A such that L(A) = L, where A = (, 1, 2,

Q, , , S, F, F, z0, $), Q = Q  Q1  ...  Qk, Qi  Qj

=  if i  j. The transition function \delta is defined as

follows.

)za,),q,q,(q),q,q,δ((q 0

2

01

T

0

1

01

2

01

T

0

1

01

ε)},az),zr,,(qδa),,q,(q{(δ 0

T

0

T

0T

1

01

1

011

ε)},az),q,q,{((q 0

2

01

T

11

1

11

a)a,),q,q,(q),q,q,δ((q 2

01

T

1

1

11

2

01

T

1

1

11

ε)}a,a),,q,(qδr),u,,(qδ,{(q 2

01

2

012

T

1T

1

11

ε)}a,),q,q,{((q 2

11

T

2

1

11

a)a,),q,q,(q),q,q,δ((q 2

11

T

1

1

01

2

01

T

1

1

11

ε)}aa,,qu),,b,(qδa),,q,(q{(δ 2

11

T

2T

1

01

1

111 

ε)}aa,),q,q,{((q 2

11

T

1

1

11

b))a,),q,q,(q),q,q,((q 2

01

T

1

1

11

2

01

T

1

1

11

ε)}b,a),,q,(qδr),u,,(qδ,{(q 2

01

2

012

T

1T

1

11

ε)}b,),q,q,{((q 2

11

T

2

1

11

b)a,),q,q,(q),q,q,δ((q 2

11

T

1

1

01

2

01

T

1

1

11

ε)}ab,,qu),,b,(qδa),,q,(q{(δ 2

11

T

2T

1

01

1

111 

ε)}ab,),q,q,{((q 2

11

T

1

1

11

 a)b,),q,q,(q),q,q,δ((q 2

11

T

1

1

01

2

01

T

1

1

11

ε}ba,,qu),,b,(qδb),,q,(q{δ 2

11

T

2T

1

01

1

111 

ε}ab,),q,q,{(q 2

11

T

1

1

21

b)b,),q,q,(q),q,q,δ((q 2

11

T

1

1

01

2

01

T

1

1

11

ε}bb,),qu),,b,(qδb),,q,(q{(δ 2

11

T

2T

1

01

1

111 

ε}bb,),q,q,{(q 2

11

T

2

1

21

3. Applications

Shuffle on trajectories provides a useful tool to the

study of a variety of problems in the area of parallel

computation and in the theory of concurrency. there

are many new problems of both theoretical and

practical interest. An important problem seems to be

the problem of parallelization of languages. Shuffle on

trajectories offers a suitable theoretical framework to

investigate this problem. Also the problem can be

investigated with the turing complexity classes (time

and space). Finding good parallelizations of problems

can produce significant improvements with respect to

the time used by a (one processor) computer to solve

the problem. In this case the problem can be solved

faster on a parallel computer.

Other aspects from the theory of concurrency and

parallel computation such as priorities, the existence

of critical sections, communication, the use of re-

entrant routines are studied using semantic constraints

on the shuffle operation. Of the special interest is to

extend these operations for more complex objects

such as graphs, networks or different types of

automata.

4. Future Work

Shuffle on trajectories offers a suitable theoretical

framework to investigate the problem of

parallelization of languages. The Examples 3 and 4

deal with regular and context free languages

respectively. For instance one can consider other

intermediate classes of languages locally testable

languages, linear languages, context sensitive

languages, matrix languages, etc. Also the authors will

study the literal shuffle on infinite arrays in future and

fairness of shuffle on infinite trajectories in future.

5. Conclusions

Shuffle on infinite array languages provides a useful

tool for the study of parallel computation and the

theory of concurrency. The use of shuffle operation in

the theory of concurrency and parallel composition is

well known. This operation is used to yield formal

languages. The shuffle on finite and infinite words

have been investigated extensively but the study of

shuffle operation on infinite arrays is in the initial

stage. So in this paper the authors have made a

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

The Shuffle on Trajectories of Infinite Arrays 115

attempt to study in depth the use of shuffle operation in

different languages of infinite arrays to provide new

classes of language of arrays and images. Authors have

defined an array grammar with shuffle on trajectories

over infinite arrays and obtained interesting results.

Based on the studies [7, 11] authors have made an

attempt to examine the effect of shuffle operation on

-recognizable languages and extended the shuffle

operation to -array languages.

References

[1] Arulprakasam R., Dare V., Gnanasekaran S., and

Radhakrishnan M., “Local -Partial Languages,”

in Proceedings of National Seminar on Algebra

and Analysis Gateway to Modern Technology,
Kodambakkam, pp. 69-73, 2013.

[2] Chandra P., Martin-Vide C., Subramanian K., Van

D., and Wang P., Handbook of Pattern

Recognition and Computer Vision, World

Scientific, 2004.

[3] Chandra P., Subramanian K., and Thomas D.,

“Parallel Contextual Array Grammars and

Languages,” Electronic Notes in Discrete

Mathematics, vol. 12, pp.106-117, 2000.

[4] Christy D., Masilamani V., Thomas D., Atulya K.,

Nagar A., and Thamburaj R., “Shuffle on Array

Languages Generated by Array Grammars,” Math

Application, vol. 3, pp. 17-31, 2014.

[5] Dare V., Annadurai S., Kalyani T., and Thomas

D., “Partial Trajectories” in Proceedings on

National Conference of Mathematical and

Computational Models, Narosa Publications, pp.

418-426, 2007.

[6] Dare V., Annadurai S., Kalyani T., and Thomas

D., “Trajectories P Systems,” Progress in Natural

Sciences, vol. 18, no. 5, pp. 611-616, 2008.

[7] Dare V., Subramanian K., Thomas D., and

Siromoney R., “Infinite Arrays and

Recognisability,” International Journal of Pattern

Recognition and Artificial Intelligence, vol. 14,

no. 4, pp. 525-536, 2000.

[8] Geetha H., Thomas D., Kalyani T., and

Venkatesan A., “Shuffle on Trajectories Over

Finite Array Languages,” in Proceedings of

International Workshop on Combinatorial Image

Analysis, Madrid, pp. 261-274, 2011.

[9] Giammaresi D. and Restivo A., Handbook of

Formal Languages, Springer-Verlag, 1997.

[10] Jansirani N. and Dare V., “A Study on

Diminishing Cells Infinite Array,” in Proceedings

of 6th International Conference on Bio-Inspired

Computing: Theories and Applications, Penang,

pp. 329-332, 2011.

[11] Kadrie A., Dare V., Thomas D., and Subramanian

K., “Algebraic Properties of The Shuffle Over

Omega Trajectories,” Information Processing

Letters, vol. 80, no. 3, pp. 139-144, 2001.

[12] Matescu A., Rozenberg G., and Salomaa A.,

“Shuffle on Trajectories Systactic Constraints,”

Theoretical Computer Science, vol. 197, no. 1-2,

pp. 1-56, 1998.

[13] Nakamura A. and Ono H., “Pictures of

Functions and their Acceptability by Automata,”

Theoretical Computer Science, vol. 23, no. 1,

pp. 37-48, 1988.

[14] Park D., “Concurrency and Automata on Infinite

Sequences,” in Proceedings of Theoretical

Computer Science, Karlsruhe, pp. 167-183,

1981.

[15] Perrin D. and Pin J., “Mots Infinis,” Report

LITP, Institut Blaise Pascal, 1993.

[16] Samira C. and Selma B., “Unmanned Vehicle

Trajectory Tracking By Neural Networks,” The

International Arab Journal of Information

Technology, vol. 13, no. 3, pp. 272-275, 2016.

[17] Siromoney R., Dare V., and Subramanian K.,

“Infinite Arrays and Infinite Computations,”

Theoretical Computer Science, vol. 24, no. 2,

pp. 195-205, 1983.

[18] Siromoney R., Subramanian K., and Dare V.,

“On Infinite Arrays Obtained By Deterministic

Controlled Table L-Array Systems,” Theoretical

Computer Science, vol. 33, pp. 3-11, 1984.

[19] Thomas W., Handbook of Theoretical Computer

Science, MIT Press, 1990.

Devi Velayutham, M.Sc., M.Phil.,

B.Ed., Research Scholar,

Sathyabama University, Chennai,
India. She has 15 years of teaching

experience in engineering colleges.

Her research interest is automata

theory and theory of computations.

