
The International Arab Journal of Information Technology, Vol. 16, No. 2, March 2019 163

Using Static and Dynamic Impact Analysis for

Effort Estimation

Nazri Kama, Sufyan Basri, Saiful Adli Ismail, and Roslina Ibrahim

Advanced Informatics School, Universiti Teknologi Malaysia, Malaysia

Abstract: Effort estimation undoubtedly happens in both software maintenance and software development phases.

Researchers have been inventing many techniques to estimate change effort prior to implementing the actual change and one

of the techniques is using impact analysis. A challenge of estimating a change effort during developing a software is the

management of inconsistent states of software artifacts i.e., partially completed and to be developed artifacts. Our paper

presents a novel model for estimating a change effort during the software development phase through integration between

static and dynamic impact analysis. Three case studies of software development projects have been selected to evaluate the

effectiveness of the model using the Mean Magnitude of Relative Error (MMRE) and Percentage of Prediction (PRED)

metrics. The results indicated that the model has 22% MMRE relative error on average and the accuracy of our prediction was

more than 75% across all case studies.

Keywords: Software development, change impact analysis, change effort estimation, impact analysis, effort estimation.

Received February 18, 2015; accepted September 26, 2016

1. Introduction

Changes happen across all stages in the software

development phase. Calculating effort for a particular

change request requires consideration on the status of

the software artifacts i.e., partially completed, to be

developed and completely developed. Many

researchers have developed their own ways on the

calculation strategies such as impact analysis strategy

[1], expert judgment strategy [12], analogy strategy

[20], function point analysis strategy [27], regression

analysis strategy [7], and model-based strategy [2].

For impact analysis strategy [23], there are two

types of techniques [14, 15] which are static and

dynamic analysis techniques. On one hand, the static

technique uses program static information (i.e.,

requirement, design, class and test artifacts) as an input

for generating a set of potential impacted classes. On

the other hand, the dynamic analysis technique uses

program dynamic information or source code to

develop a set of potential impacted classes.

In software development phase, estimating effort for

a particular software change requires consideration on

the inconsistency of software artifacts statuses. This is

important because different statuses require different

ways of estimation. In this paper, we propose a new

change effort estimation technique that combines

between static and dynamic analysis techniques [16].

The static analysis technique will be used to perform

estimation on partially developed artifacts. This

estimation is conducted on a set of potential impacted

classes generated from high level documentation such

as requirement document. For the dynamic analysis

technique, it will be used for the completely developed

artifacts. The estimation will be performed on a set of

potential impacted classes that is generated from

program runtime execution process.

This paper is laid out as follows: Section 2 presents

the related work whereas section 3 introduces the new

change effort estimation approach. Section 4 explains

our evaluation procedure and its results. Finally,

Section 5 describes the conclusion and future works.

2. Related Works

There are two main related keywords in this research

which are impact analysis and effort estimation.

2.1. Impact Analysis

As described earlier, there are two impact analysis

techniques[14, 15] which are the static analysis and the

dynamic analysis techniques. On one hand for static

analysis, there are two current static analysis

techniques to our study which are Use Case Maps

(UCM) technique [9] and the Class Interactions

Prediction with Impact Prediction Filters (CIP-IPF)

technique [17, 18].

 The UCM technique [9] has two limitations which are:

1. There is no traceability technique used from the

functional requirements and the high level design

artifacts to the actual source codes. This technique

only makes an assumption that the content of these

two artifacts that is represented using the UCM

model are reflected to the class artifacts.

2. There is no dynamic analysis or source code

analysis involved in this technique.

164 The International Arab Journal of Information Technology, Vol. 16, No. 2, March 2019

 Based on the precept that some of the effect of a

change from a class to other class(es) may only be

visible through dynamic or behavior analysis of the

changed class [5, 19], results from this technique tend

to miss some actual impacted classes. On the other

hand, the CIP-IPF technique [17, 18] uses a class

interactions prediction as a model for detecting

impacted classes. This technique has its strength

compared to the UCM technique. Comparing to the

UCM technique, this technique has traceability link

detection between the requirements artifacts and the

class artifacts feature. This feature is used to navigate

impact of changes at the requirement level to the class

artifacts.

For the dynamic analysis techniques, we have

selected two most related works to our research which

are the Influence Mechanism technique [5] and the

Path Impact technique [19]. Basically, these techniques

predict the impact set (classes or methods) based on

method level analysis. First, the Influence Mechanism

technique [5] introduces the Influence Graph (IG) as a

model to identify impacted classes. This technique uses

the class artifacts as a source of analysis and assumes

that the class artifacts are completely developed. There

is a limitation for this technique which is there is no

formal mapping or traceability process from

requirements artifacts or design artifacts to class

artifacts. This process is important in impact analysis

process as changes not only come from class artifacts

but it also comes from design and/or requirements

artifacts. Since design and requirements artifacts do

interact among them vertically (between two different

artifacts of a same type) and horizontally (between

requirement and design artifacts), changes that happen

to them could contribute to different affected class

artifacts. In some circumstances, focusing on the

source code analysis may not able to detect those

affected classes.

Next, the Path Impact technique [19] uses the

Whole Path Directed Acyclic Graph (DAG) model as a

model to identify impacted classes. The concept of

implementation for this technique is almost similar to

the Influence Mechanism technique as this technique

uses the class artifacts as a source of analysis and

assumes that the class artifacts are completely

developed. Also, this technique performs a preliminary

analysis prior to performing a detail analysis. There are

two limitations of this technique. First, the

implementation is time consuming as the technique

opens to a huge number of data when the analysis goes

to a large application. Next, there is no formal mapping

process from requirements artifacts or design artifacts

to class artifacts. As described earlier, this process is

important in impact analysis process as changes not

only come from class artifacts but also from design

and/or requirements artifacts.

2.2. Effort Estimation

There are several categories of effort estimation which

are:

1. Expert Judgment [12].

2. Estimation by Analogy [20].

3. Function Point Analysis [27].

4. Regression Analysis [7].

5. Model Based [2].

Study by Jorgensen [12] shows that, expert judgment

in effort estimation is one of the most common

approaches today. Now more project managers prefer

to use this method instead of formal estimation models,

while the other techniques are simply more complex

and less flexible than expert judgment methods. There

is currently no method in effort estimation, which can

prove its result to be hundred percent accurate. So,

project managers just prefer to accept the risks of

estimation and perform the expert judgment method

for their effort estimation.

Effort estimation by analogy uses information from

the similar projects which has been developed

formerly, to estimate the effort needed for the new

project. The idea of analogy-based estimation is to

estimate the effort of a specific project as a function of

the known efforts from historical data on similar

projects. This technique could be combined with

machine learning approaches for automation and to

become more effective [20].

Traditionally, software size and effort are measured

using Lines Of Code (LOC). However, earlier studies

[27] showed that when the scale of the development

grew, estimating using LOC failed to achieve accurate

software effort estimation. Using different languages

could also lead to a problem; different languages could

create different values of LOC. The addressed

problems could be solved by using Function Point in

software measurement and estimation. Function Point

Analysis uses Function Point (FP) as its measure;

therefore, it is recommended for improving the

software measurement and estimation methods.

Another way to estimate software development

effort is to use regression analysis; also known as

algorithmic estimation. It uses variables for software

size such as LOC and FP as independent variables for

regression-based estimation and mathematical methods

for effort estimation [2, 7]. Some multiple regression

models also use other parameters such as development

programming language or operating system as extra

independent variables. The advantage of regression

models is their mathematical basis as well as accuracy

measurements.

3. The Approach

There are four steps in the approach which are:

Using Static and Dynamic Impact Analysis for Effort Estimation 165

1. Developing Class Interactions Prediction (CIP)

model.

2. Acquiring change request attributes.

3. Performing change impact analysis.

4. Estimating required change effort.

3.1. Step 1: Developing Class Interactions

Prediction Model

The CIP model is a model that shows traceability

relationships among all software artifacts

(requirements, designs and classes). This model will be

used as a static model in which the effort estimation

will be conducted based on this model. Further

explanation on the development of the model can be

referred to [14, 15].

3.2. Step 2: Acquiring Change Request

Attributes

This step acquires change request attributes which has

direct impact on the effort estimation results.

According to one of the previous works [22], one of

the important attribute is type of change.

3.3. Step 3: Performing Change Impact

Analysis

The Change Impact Analysis step consists of two

stages:

1. Static analysis.

2. Dynamic analysis.

In the first stage, static impact analysis is performed on

the established CIP model to identify the impacted

classes i.e., direct and indirect. Initially, the static

impact analysis identifies the first layer of the class

artifacts that are affected by the requirement or

software changes. These class artifacts are identified as

the direct impacted classes. In this stage, vertical

traceability relations are not considered first. Then the

static impact analysis continues with the second and

onward levels of the class artifacts from the CIP

model. These class artifacts, on the other hand, are

identified as the indirect impacted classes.

The static impact analysis process uses a Breadth

First Search (BFS) technique on the CIP model [28] to

identify the impacted class artifacts. The technique

defines the impacted class artifacts as the search

process objective and each software artifact as the node

of the search path.

The static impact analysis process continues by

conducting a further refinement on the static results, to

eliminate the incorrectly expected results due to

excessive prediction. The technique used for the

refinement is Impacted Class Purification (ICP). The

ICP process eliminates the incorrectly impacted class

artifacts using the traceability among classes

dependencies. This tracing process also known as

detection process is a common impact analysis process

that has been automated by several researchers [6, 11].

The tracing starts from the indirectly impacted class

artifacts to any of the direct impacted class artifacts.

The impacted class artifact is removed from the result

if no valid traceability exists. The traceability mapping

is conducted on the CIP model using the vertical and

horizontal software artifacts dependencies. The output

of the ICP process produces the final result of the static

impact analysis process as in Figure 1 that is

considered as the input for the next stage.

Figure 1. Sample of static impact analysis results.

In the next stage, the dynamic analysis starts with

code status detection and traceability update using

pattern detection. The code status detection is required

as part of the consideration of the existence of the not

developed, partially developed and fully developed

classes during software development phase. The fully

developed class detection is important for the next

step, Method Execution Path creation. Next, our

approach further enhances the current dynamic

analysis technique by intervening the traceability

pattern detection to further improve the impacted

classes information.

For the code status detection, three types of class

artifacts are identified:

1. Not developed.

2. Partially developed.

3. Fully developed.

The class is considered as not developed if a class

exists without any declaration or if there is no concrete

function implementation in the code files. To avoid

ambiguity, further marking technique is introduced

using a special tagging for each code file to maintain

the code status.

The construction of the marking technique for the

code status special tagging is described as: [special

tagging + “<status>” +code status+“</status>”], where

special tagging is subjected to the programming

166 The International Arab Journal of Information Technology, Vol. 16, No. 2, March 2019

language, and code status defines the possible status of

the codes:

1. Not Developed.

2. Partially Developed.

3. Fully Developed.

There are also other possible code statuses in a typical

software development implementation such as

“Stubbed” and “Faked”.

Stubbed procedure is a test function that is used to

link and verify other codes or classes. Faked procedure

is a bogus function that looks real and workable

function, but it returns a fixed response without

specific purpose. However, these code statuses are not

significant for our approach consideration and hence

are ignored.

Subsequently, the approach introduces traceability

patterns to handle the traceability issues especially in

the Agile methodology. The Traditional methodology

traceability approach has been restricted in the Agile

methodology as requirements are captured and

communicated through an informal approach. There is

limited evidence in the Agile methodology software

development that implement detailed design which

relate the requirement to class artifacts, thus constraint

the Traditional methodology traceability approach.

Ghazarian proposed a similar approach to our code

status detection approach, which is using special tag in

the class artifacts [8].

We have further improved the technique [8] to

specify the requirement-class interaction as follow:

[Special comments mark+“<requirement>”+

Requirement Traceability + “</requirement>”], where

special comments mark depends on the programming

language used, and the Requirement Traceability

identifies the requirement ID and description or

product backlog in the Agile methodology software

development. Although the evolution of source code

and requirement and constrained with the traceability

patterns in each iteration, however the source code and

requirement are traceable to each other. As a result, the

approach could produce a more accurate refined set of

the impacted classes.

Once the filtered set of impacted classes are

obtained, the method execution paths are created from

fully developed classes. The actual interaction between

the classes can be determined from the created method

executions paths. Afterwards, the CIP model is

updated with the actual class interactions. Finally, the

Method Dependency Filtration (MDF) process is

performed similar to ICP process on the impacted

classes to filter the overestimated impact analysis

results. Figure 2 shows the sample of dynamic impact

analysis results.

Figure 2. Sample of dynamic impact analysis results.

The improved filtered set of impacted classes using

this process is the final impact analysis result in the

method. This sequence of methods implies that by

having fully developed classes, an accurate impact

analysis can be performed, even with inaccurate CIP

model from the beginning, which is very crucial from

the software development perspectives. Finally, based

on the final filtered set of impacted classes, the

prediction of the potential change impact size of each

impacted class is calculated.

3.4. Step 4: Estimating Required Change Effort

The last step estimates the required change effort based

on the initial effort estimation and the combination of

static and dynamic impact analysis results. To estimate

the change effort based on COCOMO 2 effort

estimation [24], we introduce a mathematical equation

to calculate change effort CPM according to the original

estimated effort PM and updated effort estimation PM′

as Equation (1). CPM is the total effort need to

implement the change; it is equal to priority multiplier

multiplied by the deviation of estimated effort with new

software size PM′ and original estimated effort PM plus

the extra effort needed to change the developed code as

the follow:

    ' 'CPM PM PM abs PM PM DSF PR       

Where DSF is the development status factor based on

Equation (7), PM is the original estimated effort using

COCOMO II in man per month, PM′ is the updated

estimated effort after change using new software size

in man per month and it is calculated using Equation

(2) and PR is the priority multiplier which is

determined by the effect of the change request priority

and how much it will affect the change effort; this

value should be selected according to the development

methodology of the development group.

(1)

Using Static and Dynamic Impact Analysis for Effort Estimation 167

Equations (2), (3), and (4) below shows how PM′ is

calculated. This equation will be justified with the

assumption that the cost factors and the scale factors

[22] will not change with the change request.

Accordingly, the mathematical justification for

producing this Equation is as follow:

'
'

PM
PM PM

PM
 

 𝑃𝑀′ =
𝐴 × 𝐶𝑆𝑖𝑧𝑒𝐵 × (∏ 𝐸𝑀𝑖

𝑛
𝑖=1)

𝐴 × 𝑆𝑖𝑧𝑒𝐵 × (∏ 𝐸𝑀𝑖
𝑛
𝑖=1)

× 𝑃𝑀

'

B
CSize

PM PM
Size

 
  
 

Where PM is the original estimated effort using

COCOMO 2 in man per month, PM′ is the updated

estimated effort with new software size in man per

month, B is the exponent derived from the five Scale

Drivers using Equation (5), Size is the original

estimation of code size, CSize is the estimated code

size after implementing the change.

5

0 1

1

i

i

B B B SF


  

where B0 and B1 are constant variables, SF stands for

scale factor, which will be derived from the five scale

factors.

Assuming that the initial effort estimation was done

before the change request, the only unknown variable

in Equation (4) is CSize. Exponent B, PM, and Size are

the known variables which can be easily obtained from

the initial effort estimation. CSize is equal to the

original estimated size plus additional size from

impacted classes. The size of fully developed impacted

classes can be calculated in dynamic change impact

analysis process, but the size of other impacted classes

should be provided according to the initial effort

estimation. CSize is calculated by the following

Equation (6):

 IC ICIC
CSize Size Size ISF  

where Size is equal to initial estimation of software

size, IC stands for impacted class, SizeIC is the size of

the impacted class IC, ISFIC is the impact size factor

for the impacted class IC which is presented in our

previous paper in the static impact analysis steps [4].

DSF in Equation (1) is the development status

factor. This value indicates how much extra effort is

needed to change the impacted developed classes. This

value will specify that, if the impacted class is a fully

developed class, more effort will be needed to change

it than a partly developed class, and moreover

changing a partly developed class needs more effort

than a not developed class. By using DSF in our

calculation we are generalizing the fact that the change

effort will intensively increase as more classes are

being fully developed, and implement changes in early

stages of development is less costly [24]. DSF will be

calculated using the following Equation (7):

     ND NND PD NPD FD NFD NIC
DSF

NIC

      
  
 

where DSF stands for Development Status Factor

(DSF ≥ 0), ND is equal to affected multiplier for not

developed classes, NND is the number of not

developed impacted classes, PD is equal to affected

multiplier for partly developed classes, NPD is the

number of partly developed impacted classes, FD is

equal to affected multiplier for fully developed classes,

NFD is the number of fully developed impacted

classes, NIC is the total number of impacted classes.

The ND, PD and FD multipliers should be selected

according to the phase distribution of the software

development methodology used for the project. They

can have different values for each project or

development team. Moreover, there has been a

research on the phase distribution of the development

effort[26] which could be used to estimate multiplier

values as described in our previous paper [4].

In this research, our approach is developed for Early

Design sub-model of COCOMO 2 [25] which uses

SLOC as the software size metric. Therefore, we use

logical SLOC as the code size; however, this model

can easily be adapted for other COCOMO 2 sub-

models [25] and can also use Function Points as

software size metric.

4. Evaluation

This section describes the evaluation of our approach.

4.1. Case Study

To measure the accuracy of the approach, we have

implemented the approach in three case studies of

software projects which implemented different type of

software development process (see Table 1).

Table 1. Case studies.

Case

study
Project Name

Software Development

Process

CS1 Centralized Access Control Agile Unified Process (AUP)

CS2
User Management and

Verification System
Scrum

CS3 Password Management System Extreme Programming (XP)

4.2. Data Collection

From three Case Studies (CS) with different software

development process and the change types, 73 change

requests have been recorded, and the distribution of the

change requests is presented in Table 2.

Table 2. Change Requests per Case Study.

Case study Number of ChangeRequests

CS1 27

CS2 25

CS3 21

(2)

(3)

(4)

(5)

(6)

(7)

168 The International Arab Journal of Information Technology, Vol. 16, No. 2, March 2019

4.3. Evaluation Metrics

For evaluating the accuracy of the approach, three

effort estimation metrics have been used which are

Magnitude of Relative Error (MRE) [13], Mean

Magnitude of Relative Error (MMRE) [21], and

Percentage of Prediction, PRED (.25) [10].

MRE: a metric for the absolute estimation accuracy

only[13]. This metric calculates a rate of the relative

errors in both cases of over-estimation or under-

estimation as shown in Equation (8).

Re Re

Re

Actual sults Estimated sults
MRE abs

Actual sults

 
  

 

MMRE: Mean Magnitude of Relative Error is the

percentage of average of the MREs over an entire data

set [21]. It is used for calculating the accuracy of an

estimation technique using T number of tests as it is

shown in Equation (9).

100 t

ii
MMRE MRE

t
 

The MRE metric will be calculated for each predicted

impacted class from the change request experience to

measure the accuracy of the change effort estimation in

our approach. But the MMRE will be calculated for the

whole case study, which contains 73 change requests.

The results of our approach are more accurate when

the MMRE values are smaller.

Percentage of prediction, PRED (.25) is the

percentage of estimates that falls within 25 percent of

the actual value [10]. Percentage of prediction

definition is shown in Equation (10), where K is the

number of estimations where MRE value is less or

equal to x and n is the total number of estimations.

𝑃𝑅𝐸𝐷(𝑥) =
𝐾

𝑛

4.4. Evaluation Procedure

There are three main steps in the evaluation which are:

1. Estimating change effort results using the new

approach.

2. Gathering the actual change implementation effort

from the project reports.

3. Comparing results between the estimated change

effort with the actual change effort.

5. Result and Discussion

To recap, the evaluation will be focusing on comparing

results between the estimated change effort with the

actual change effort. We have used the MMRE and

Percentage of Prediction, PRED (.25) as the

comparison metric.

According to [3] most effort estimation techniques

having difficulty to produce accurate effort estimation

results as they produced more than 30% MMRE value

compared to the actual results. In other study [10],

proposed that an acceptable MMRE value (or error

rate) for software effort estimation is 25%. This value

shows that on average, the accuracy of the estimation

is more than 75%. For our evaluation, we have used

this guideline to assess the accuracy of our proposed

approach by targeting the MMRE value (or acceptable

error rate) should be less than 25%. We also used

PRED (.25) as the second evaluation metric to support

the result produced by MMRE.

Since our model is a change effort estimation model

and not general effort estimation model, we assume

that the change effort is slightly smaller than the

overall effort needed for developing a software

package. Therefore, a small miscalculation or an error

will cause a large relative error in the estimations, so it

has been expected to have moderate accuracy in the

proposed change effort estimation model. Table 3

shows the MRE, MMRE and PRED (.25) of change

requests in each case study.

Table 3. MMRE, Overall MMRE and PRED (.25) based on Change

Requests (CT) across Case Study (CS).

Case study MMRE (%) Overall MMRE (%) PRED (.25)

CS1 22%

22%

77%

CS2 24%

CS3 20%

A quick look on the average MMRE value revealed

that:

 Our model has 22% relative error on average which

is better than our expectation.

 All MMRE values for the case studies is less than

25%.

 The percentage of prediction, PRED (.25) revealed

that the accuracy of our approach is more than 75%

for all case studies.

This preliminary analysis indicated that the proposed

approach of change effort estimation model is

acceptably accurate. However, the accuracy results

need to be further investigated and analyzed.

6. Conclusions

We have developed a new approach that estimates

change effort for a particular change request during

software development phase. The novelty of this paper

resides in the estimation of a change effort during

software development phase through integration

between static and dynamic impact analysis. Three

case studies have been selected to evaluate the

effectiveness of the model using the (MMRE) and

Percentage of Prediction (PRED) metrics. The results

indicated that the model has 22% MMRE relative error

on average and the accuracy of our prediction is more

than 75% across all case studies.

(8)

(9)

(10)

Using Static and Dynamic Impact Analysis for Effort Estimation 169

References

[1] Asl M. and Kama N., “A Change Impact Size

Estimation Approach During the Software

Development,” in Proceedings of 22nd Australian

Software Engineering Conference, Melbourne,

pp. 68-77, 2013.

[2] Attarzadeh I., Mehranzadeh A., and Barati A.,

“Proposing an Enhanced Artificial Neural

Network Prediction Model to Improve the

Accuracy in Software Effort Estimation,” in

Proceedings of 4th International Conference on

Computational Intelligence, Communication

Systems and Networks, Phuket, pp. 167-172,

2012.
[3] Basha S. and Ponnurangam D., “Analysis of

Empirical Software Effort Estimation Models,”

Software Engineering, vol. 7, no. 3, 2010.
[4] Basri S., Kama N., Adli S., and Haneem F.,

“Using Static and Dynamic Impact Analysis for

Effort Estimation,” IET Software, vol. 10, no. 4,

pp. 89-95, 2016.

[5] Breech B., Tegtmeyer M., and Pollock L.,

“Integrating Influence Mechanisms into Impact

Analysis for Increased Precision,” in Proceedings

of 22nd IEEE International Conference on

Software Maintenance, Philadelphia, pp. 55-65,

2006.

[6] Fasolino A. and Visaggio G., “Improving

Software Comprehension Through An

Automated Dependency Tracer,” in Proceedings

17th International Workshop on Program

Comprehension, Pittsburgh, pp. 58-65, 1999.
[7] Garcia L., Augusto C., and Hirata C.,

“Integrating Functional Metrics, COCOMO II

and Earned Value Analysis for Software Projects

Using PMBoK,” in Proceedings of the ACM

Symposium on Applied Computing, Fortaleza, pp.

820-825, 2008.
[8] Ghazarian A., “Traceability Patterns: An

Approach to Requirement-Component

Traceability in Agile Software Development,” in

Proceedings of the 8th Conference on Applied

Computer scince World Scientific and

Engineering Academy and Society, Venice, pp.

236-241, 2008.

[9] Hassine J., Rilling J., Hewitt J., and Dssouli R.,

“Change Impact Analysis for Requirement

Evolution Using use Case Maps,” in Proceedings

of 8th International Workshop on Principles of

Software Evolution, Lisbon, pp. 81-90, 2005.
[10] Huang S., Chiu N., and Chen L., “Integration of

the Grey Relational Analysis with Genetic

Algorithm for Software Effort Estimation,”

European Journal of Operational Research, vol.

188, no. 3, pp. 898-909, 2008.
[11] Ibrahim S., Idris N., Munro M., and Deraman A.,

“Integrating Software Traceability for Change

Impact Analysis,” The Arab International

Journal of International Technology, vol. 2, no.

4, pp. 301-308, 2005.
[12] Jorgensen M., “Practical Guidelines for Expert-

Judgment-Based Software Effort Estimation,”

IEEE Software, vol. 22, no. 3, pp. 57-63, 2005.
[13] Jorgensen M. and Molokken-Ostvold K.,

“Reasons for Software Effort Estimation Error:

Impact of Respondent Role, Information

Collection Approach, and Data Analysis

Method,” IEEE Transactions on Software

Engineering, vol. 30, no. 12, pp. 993-1007, 2004.

[14] Kama N., “Change Impact Analysis for the

Software Development Phase: State-of-the-Art,”

International Journal of Software Engineering

and Its Applications, vol. 7, no. 2, pp. 235-244,

2013.
[15] Kama N., “Integrated Change Impact Analysis

Approach for the Software Development Phase,”

International Journal of Software Engineering

and its Applications, vol. 7, no. 2, pp. 293-304,

2013.

[16] Kama N., French T., and Reynolds M., “Impact

Analysis using Class Interaction Prediction

Approach,” in Proceedings of Conference on

New Trends in Software Methodologies, Tools

and Techniques: Proceedings of the 9th

SoMeT_10, Amsterdam, pp. 96-111, 2010.

[17] Kama N., French T., and Reynolds M.,

“Predicting Class Interactions from Requirement

Interactions: Evaluating a New Filtration

Approach,” in Proceedings of Software

Engineering, Innsbruck, 2010.

[18] Kama N. and Ridzab F., “Requirement Level

Impact Analysis with Impact Prediction Filter,”

in Proceedings of International Conference on

Software Technology and Engineering, Phuket,

2012.

[19] Law J. and Rothermel G., “Whole Program Path-

Based Dynamic Impact Analysis,” in

Proceedings of 25th International Conference on

Software Engineering, Portland, pp. 308-3018,

2003.
[20] Li J., Ruhe G., Al-Emran A., and Richter M., “A

Flexible Method for Software Effort Estimation

by Analogy,” Empirical Software Engineering,

vol. 12, no. 1, pp. 65-106, 2007.

[21] Nguyen V., Steece B., and Boehm B., “A

Constrained Regression Technique For Cocomo

Calibration,” in Proceedings of the 2nd ACM-

IEEE International Symposium on Empirical

Software Engineering and Measurement,

Kaiserslautern, pp. 213-222, 2008.
[22] Nurmuliani N., Zowghi D., and Williams S.,

“Requirements Volatility and its Impact on

Change Effort: Evidence-Based Research in

Software Development Projects,” in Proceedings

170 The International Arab Journal of Information Technology, Vol. 16, No. 2, March 2019

of the 11th Australian Workshop on Requirements

Engineering, Adelaide, 2006.

[23] Pfleeger S. and Bohner S., “A Framework for

Software Maintenance Metrics,” in Proceedings

of Conference on Software Maintenance, San

Diego, pp. 320-327, 1990.
[24] Sharif B., Khan S., and Bhatti M., “Measuring

the Impact of Changing Requirements on

Software Project Cost: An Empirical

Investigation,” International Journal of

Computer Science Issues, vol. 9, no. 3, pp. 170-

174, 2012.
[25] Yang D., Wan Y., Tang Z., Wu S., He M., and Li

M., “COCOMO-U: An Extension of COCOMO

II for Cost Estimation with Uncertainty,” in

Proceedings of Software Process Change,

Shanghai, pp. 132-141, 2006.
[26] Yang Y., He M., Li M., Wang Q., and Boehm B.,

“Phase Distribution of Software Development

Effort,” in Proceedings of the 2nd ACM-IEEE

International Symposium on Empirical Software

Engineering and Measurement, Kaiserslautern,

pp. 61-69, 2008.
[27] Zheng Y., Wang B., Zheng Y., and Shi Li.,

“Estimation of Software Projects Effort based on

Function Point,” in Proceedings of 4th

International Conference on Computer Science

and Education, Nanning, pp. 941-943, 2009.
[28] Zhou R. and Hansen E., “Breadth-First Heuristic

Search,” Artificial Intelligence, vol. 170, no. 4-5,

p. 385-408, 2006.

Nazri Kama obtained his first

degree at Universiti Teknologi

Malaysia (UTM) in Management

Information System in 2000, second

degree in Real Time Software

Engineering at the same university

in 2002 and his PhD at The

University of Western Australia (UWA) in Software

Engineering in 2010. He has a considerable experience

in a wide range on Software Engineering area. His

major involvement is in software development.

Sufyan Basri obtained his first

degree at Universiti Teknologi

Malaysia (UTM) in Electrical

Engineering (Mechatronic) in 2001,

master degree in Real Time Software

Engineering in 2003 and PhD in

Software Engineering in 2016 at the

same university. His research interest includes

Software Engineering, Change Management and Effort

Estimation. He has more than 10 years of experiences

for various software development projects and

implementations.

Saiful Adli Ismail obtained his first

degree at Universiti Teknologi

Malaysia (UTM) in Industrial

Computing in 1997, second degree

in Real Time Software Engineering

at the same university in 2000 and

currently continues his PhD at

Universiti Teknologi Malaysia.

Roslina Ibrahim is currently

attached to Advanced Informatics

School (AIS) at Universiti Teknologi

Malaysia, Kuala Lumpur. She holds

a PhD in information science from

Universiti Kebangsaan Malaysia and

master degree in computer science.

Her research interests are user acceptance of

information systems, design and developments of

educational games and usability evaluation. She has 15

years experiences in teaching several IT related

courses both for undergraduate and postgraduate

students, including IT and multimedia, Web

development, audio and video in multimedia,

instructional multimedia design, IT Project

Management, User Experience and Interaction Design

and Research methodology.

