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Abstract: In this fast changing and uncertain world, to meet the user’s requirements the computer applications based on real 

world data always try to give responses in the minimum possible time. Single Source Shortest Path (SSSP) calculation is a 

basic requirement of applications using graphs portraying real world data like social networks and road networks etc. to get 

useful information from them. Some of these real world data changes very frequently, so recalculation of the shortest path for 

all nodes of a graph depicting these real world data after small updates of graph structure is an expensive process. To 

minimize the cost of recalculation shortest path algorithms need to process only the affected part of a graph after any update, 

and to speed-up any process parallel implementation of algorithm is a frequently used technique. This paper proposes a new 

parallel batch dynamic SSSP calculation approach and shows its implementation on a CPU- Graphic Processing Unit (GPU) 

based hybrid machine. The proposed algorithm is defined for positive edge weighted graphs. It accepts multiple edge weight 

updates simultaneously. It uses parallel modified Bellman Ford algorithm for SSSP recalculation of all affected nodes. 

Nvidia’s Tesla C2075 GPU is used to run the parallel implementation of the algorithm. The proposed parallel algorithm 

shows up to a twenty-fold speed increase as compared to best serial algorithm available in literature.  

Keywords: Parallel algorithm, graph algorithm, dynamic shortest path algorithm, network algorithm. 

Received December 20, 2014; accepted October 30, 2016 
 

 

1. Introduction 

Graphs are the most common way to represent data in 

many scientific and engineering applications, such as 

routing in social networks [21], road network routing 

[11, 13], internet routing [18], robotics [1, 23] etc., 

Recently, researchers have also started developing 

software systems for graph algorithms to provide 

effective computational tools to support application 

prototyping, algorithm animation or further algorithmic 

research [29]. A directed graph with positive edge 

weights is defined as G = (V, E), where V = {v1, v2, 

v3…….} represents set of vertices or nodes and E = {e1, 

e2, e3 ……} represents set of edges. An edge e ∈ E of 

graph is represented by an ordered pair of nodes (v1, 

v2), where v1 is start node and v2 is end node of the 

edge. One of the most studied problems in graphs is 

the shortest path problem. On the basis of nodes that 

participate in shortest path calculation, it can be 

categorized as: the single-pair shortest path problem, 

the single-source shortest path problem and the all-pair 

shortest path problem. The Single Source Shortest Path 

(SSSP) problem searches for shortest paths from node 

s∈ V to all other nodes of the graph G. These problems 

can be further classified in terms of static graph 

problems and dynamic graph problems. Many static 

and dynamic SSSP algorithms are defined to solve 

these problems. In static SSSP algorithms, when a 

graph is updated, the shortest path is recomputed from  

scratch, which is clearly inefficient as they do not use 

available information, while dynamic Single Source 

Shortest Path (SSSP) algorithms update graphs from 

some intermediate point using previously computed 

information. Two types of updates are possible in any 

graph. The first is the edge weight increase and second 

is the edge weight decrease. Edge insertion and edge 

deletion are considered as special cases of weight 

decrease and weight increase respectively. Algorithms 

having a provision for both edge weight increase and 

decrease are called fully dynamic, while if they support 

only one type of update at a time they are called semi-

dynamic. The algorithm which supports both types of 

update simultaneously is called the batch dynamic 

algorithm. 

Rest of the paper is organized in following manner; 

section 2 summarizes some previous works related to 

our research. Section 3 describes graph structure used 

by proposed implementation of algorithm. Section 4 

formally introduces the problem and explains the 

proposed algorithm. Section 5 discusses about 

essentials of Graphic Processing Unit (GPU) 

programming using Compute Unified Device 

Architecture (CUDA). Section 6 shows parallel 

implementations of batch dynamic single source 

shortest path algorithm. The algorithms are tested on a 

range of standard datasets, their results and discussions 

are present in section 7. Concluding remarks are given 

in section 8. 
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2. Related Works 

There are various serial dynamic algorithms in 

literature, which perform dynamic update on shortest 

path and handle multiple edge updates simultaneously. 

Reps and Ramalingam [32] have introduced the batch 

algorithm SWSF-FP that handles edge insertions and 

deletions iteratively. It uses the Dijkstra’s [12] 

algorithm for SSSP calculation and considers the end 

node of an updated edge as affected node. The most 

important operation used by this algorithm is Con(v) 

for node v, in which it relaxes all edges where affected 

node v is the end node of the edge. Initially it 

calculates SSSP for all nodes by using the Dijkstra’s 

algorithm then inserts the new weight of updated 

edges. Dynamic calculations of SSSP calculate the 

Con(v) value of all affected nodes and insert each 

affected node in queue if their weight gets changed. It 

removes the minimum weighted node from the queue 

and calculates the Con(v) for all end node v of the 

edges where the node removed from the queue is the 

start node of edge. If the node weight of v gets 

updated, put it in queue and repeat these last two 

operations until queue is not empty. 

Narva ́ez et al. [27] have proposed the Narva ́ez-

framework that allows implementing a variety of 

dynamic shortest path algorithms including the well-

known Dijkstra, Bellman-Ford, D’Esopo–Pape 

algorithms. Frigioni et al. [15] have proposed an 

iterative algorithm that uses more complex auxiliary 

data and accounting function. Ramalingam et al. [31] 

have explored a different way to analyses the 

complexity of dynamic algorithms which measures 

cost in terms of sum of changes in input and output. 

Buriol et al. [7] presented a technique to reduce heap 

sizes used by several dynamic shortest path algorithms. 

King and Thorup [20] have proposed a technique that 

reduces space and work performed during computation 

of shortest path by maintaining a special shortest path 

tree. Misra and Ommen [26] have presented a learning 

automata based solution for dynamic SSSP calculation. 

They have shown that after using the learning automata 

if any edge weight change occurs, their solution does 

not probe all the edges of the graph. 

 Bauer and Wagner [2] have presented faster tuned 

variants of existing SWSF-FP [32]. It performs 

different operations after removing any node from 

queue according to its new weight. After removing the 

minimum weighted node v from the queue, if node’s 

new weight is less than its old weight then for all end 

node w of the edges where v is the start node perform 

Con(w) and if any node weight is updated, it will be 

inserted in queue. If node’s new weight is greater than 

its old weight then for all end node w of the edges 

which are the part of shortest path sub-graph and v is 

the start node of edge performs Con(w) and if any 

node’s weight gets updated, it will be inserted in 

queue. It repeats these operations until queue is not 

empty. 

When a large graph with, say one million vertices, is 

updated with small changes, an enormous amount of 

arithmetic computation has to perform in serial on 

mentioned algorithms, which is really very time 

consuming and tedious. To speed up the SSSP 

calculation many researchers have proposed the 

various parallel implementations [4, 8, 9, 36] of it for 

different type of machines. With the help of Nvidia’s 

CUDA tool it is possible to explore the parallel and 

multithreaded environment of its today’s GPU for 

general purpose computing. Today’s GPU has 

provided a low cost and highly parallel platform for 

general purpose computing [6, 17, 33, 35], so many 

researchers have used GPUs for their parallel shortest 

path calculation. Harish and Narayanan [16] have 

presented first parallel implementations of SSSP on 

GPUs using CUDA. Their algorithm calculates the 

SSSP of a million vertices graph in 1-2 seconds. Katz 

and Kider [19] have presented an algorithm for the All 

Pair Shortest Path Problem on large graphs by using 

multiple GPUs. Martín et al. [24] have shown different 

parallel implementations for well-known Dijkstra’s 

algorithm [12] on GPU. Dashora and Khare [10] have 

also presented parallel SSSP and other graph 

algorithms on GPU. Singh and Khare [34] have 

proposed two different parallel implementations of 

modified Dijkstra’s algorithm [34] for GPU based 

machine. Many all pair shortest path [5, 25, 37] 

implementations also have been proposed for GPU 

based machines. In this paper first parallel batch 

dynamic SSSP algorithm have been proposed to 

enhance the performance and reducing the execution 

time of recalculation of affected nodes weight and its 

implementation is shown for GPU based machine. 

3. Graph Representations 

A graph G=(V, E) can be represented by adjacency list, 

adjacency matrix, hash tables and unordered edge 

sequences etc. Out of which hash tables are efficient on 

CPU, but GPU memory layout is optimised for 

rendering graphics and cannot support user-defined 

data structures efficiently [30]. In GPU computing 

most common graph representations are adjacency list 

with memory requirement of O(│V│+│E│) as there is 

no wasted information, but more expensive lookup 

time. The adjacency matrix having more memory 

usage O(│V│2) but has an advantage of O(1) lookup 

time. The unordered edge sequence requires 

O(│E│+│E│) memory with O(│E│) navigation time. 

 Proposed algorithm and its implementations use 

two different graph representations. The first graph 

representation is adjacency list similar to the 

representation proposed by Harish and Narayanan [16]. 

This adjacency list data structure consists of three 

arrays, array of node (V) of size |V| + 1, array of edge 

(E) of size |E| and array of edge weight (W) of size |E|. 
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Each index of array V represents a node number of 

graph and array E stores the end node number of all the 

edges in graph. The array E stores the end nodes 

number of the all outgoing edges of a node in 

sequential order. Array W stores the edge weight of all 

edges in the graph. Weight of an edge (i, j) is stored at 

the same index, where node j is stored in array E.  

The second graph representation is unordered edge 

sequence; it uses three arrays; array Edge Start Node 

(ESN) which stores the start node of each edge, array 

Edge End Node (EEN) which stores the end node of 

each edge and array Edge Weight (EW), which stores 

the weight of each edge, all of size |E|. 

4. Proposed Parallel Dynamic SSSP 

Algorithm 

Let G= (V, E) be a directed graph having |V| nodes and 

|E| edges. A positive weight function assigns a weight 

to each edge of the graph. Given source node s∈ V, for 

a node v∈ V, NW[v] represents its distance from the 

source node in SSSP calculation. For any edge (u, v) ∈ 

E, edge relaxation operation updates the NW[v] out of 

minimum of NW[v] or NW[u] + W (u, v). For a node 

v∈ V, edge (u, v) ∈ E is responsible edge, if NW[v] = 

NW[u] + W (u, v) after SSSP calculation. Responsible 

edge of a node v∈ V is denoted by Resp[v](u, v) ∈ 

E. After SSSP calculation in a graph from given source 

node s, Shortest Path sub Tree (SPT) is a subset of 

graph having all the nodes reachable from s and their 

responsible edges. Node v is called an affected node if 

after the update of edge (u, v) weight NW[v] is also 

updated. 

Dynamic single source shortest path algorithm re-

computes the shortest path for all affected nodes in 

updated graph. When G is undergoing through batch 

update U= {U1, U2, U3, …., Uk}, where each Ui∈ U is in 

the form of triplet (u, v, Wnew) consisting edge start 

node u, edge end node v and new edge weight Wnew. A 

node v∈ V is possible affected node if (u, v) ∈ U. After 

the edge weight update in any graph possible affected 

nodes are defined as shown in Lemma. 

 Lemma: All nodes of sub-graph reachable form the 

affected node are possible victim of graph update. 

 Proof: After the calculation of the SSSP in the 

graph, sub-graph whose nodes are reachable from 

the affected will have two parts: 

1.  Nodes which are parts of the SPT with root node as 

affected node. 

2. Nodes which are not parts of the SPT with root node 

as affected node. 

Suppose i is an affected node and there are two edges 

(i, j) and (j, k) in SPT 

if  NW[j] = NW[i] + W[i, j]  and 

NW[k] = NW[j] + W[j, k] 

then NW[k] = NW[i] + W[i, j]  + W[j, k] 

From Equations (1) and (2) it is clear that the weight of 

node j and k depends on node weight of node i, so node 

j and k are also affected nodes. With the help of 

affected nodes j and k other affected nodes will be 

discovered in SPT with root as node i.  

 Let an edge (x, y) ∈ E and y be not the part of SPT 

and suppose after the recalculation of the node weight 

of the affected node x, if NW[y] > NW[x] + W[x, y], 

the new weight of y should be NW[y] = NW[x] + W[x, 

y], so y is also an affected node. 

Algorithm 1 shows the proposed parallel batch 

dynamic SSSP algorithm for a given graph G(V, E). 

Suppose SSSP has been calculated and node weight are 

stored in NW[v] for all nodes v∈ V. Responsible edge 

for each node in SPT are calculated and store in array 

Resp[v] for all nodes v∈ V. Define a Flag arrays of size 

|V| initialise it’s all elements with zero. It used to 

maintain updated node list. 

 Step 1: for all edges (u, v) ∈ E, in parallel compare 

the W(u, v) with Wnew(u, v), if for any edge (u, v) ∈ 

E the new edge weight is greater than the old edge 

weight and (u, v) ∈ SPT then add the node v to 

discover node list and make the NW[v] to infinity. If 

for any edge the new edge weight is less than the 

old edge weight then relax this edge. After the edge 

relaxation if its end node weight is updated then add 

this node to updated node list. 

Algorithm 1: Dynamic SSSP Algorithm (G, U, NW, Source 

node)  

Input 

G (V, E, W): A graph with │V│ vertices │E│edges and edge 

length W. 

U (u, v, Wnew): A set of updates in edge (u, v) with Wnew. 

NW[v]: Permanent shortest distance from source to node v. 

Rep[v]: Edge responsible for node v weight 

Boolean variables: Loop and Loop1 initialised with 1and 

Flag array of size |V|, initialised with zero. 

begin 

Step 1: for all (u, v) ∈ U do in parallel  

      

     if W(u, v) < Wnew (u, v) && Rep[v]= = E(u, v) then 

     NW[v]=∞ 

     Flag[v] = 1 

     end if 

     if W(u, v) > Wnew (u, v) then 

     if  NW[v] < NW[u] +  Wnew (u, v) then 

     NW[v] = NW[u] +  Wnew (u, v)) 

     Flag[v] =1 

     end if 

     end if 

     end for 

Step 2: while Loop > 0 do 

     for all (u, v) ∈ E do in parallel 

     Loop=0 

     if NW[u]= = ∞ && Rep[v]= = E(u, v) then 

     NW[v] = ∞ 

     Flag[v] = 1 

     Loop = 1 

     end if 
(1) 

(2) 
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     end for 

     end while 

Step 3: for all (u, v) ∈ E do in parallel 

     if NW[v]= = ∞ then 

     if NW[v] > NW[u] +  Wnew (u, v) then 

     NW[v] = NW[u] +  Wnew (u, v) 

     end if 

     end if 

     end for 

Step 4: while Loop1> 0 do 

     for all v ∈ V do in parallel 

     Loop1=0 

     if Flag[v]=1 then      

     for all (v, u) ∈ E  do 

     if NW[u] < NW[v] +  Wnew (v, u) then 

     NW[u] = NW[v] +  Wnew (v, u) 

     Flag[u] =1 

     Loop1 = 1 

     end if 

     end for 

     end if 

     end for 

     end while  

end 

 Step 2: parallel traverse the SPT for all those nodes 

whose node weight is infinity and make the all 

discovered node v, node weight infinity.For any 

edge (u, v) ∈ E, if NW[u] = infinity and Resp[v] is 

the edge number for edge (u, v) ∈ E.  

 Step 3: parallel relax all the edges whose end weight 

are infinity and if due to the edge relaxation end 

node weight is updated then add it to the updated 

node list. 

 Step 4: parallel check all the nodes, if any node is 

part of the updated node list, then relax all the 

outgoing edges of the node and remove this node 

from the updated node list. If after the edge 

relaxation end node weight is updated then add end 

node to the updated node list. Algorithm 1 repeats 

the step 4 until updated node list is not empty. 

4.1. Complexity Analysis 

The proposed parallel dynamic SSSP algorithm is a 

batch dynamic algorithm, but here the complexity 

analysis of this algorithm is defined for two different 

cases; first when the single edge weight is increased 

and second when the single edge weight is decreased. 

Complexity is defined in terms of how much time the 

algorithm takes to update the node weight of all 

affected nodes after any edge weight update. 

Suppose for a graph G (V, E), |V| is the number of 

nodes, |E| is the number of edges where |E| > |V| and d 

is the average degree of G. After the initial SSSP 

calculation, the SPT also has degree d. We have |E| 

processors and total numbers of affected nodes are 

represented as |affected|. Now, let us analyse the 

algorithm step by step to reveal its complexity. 

 

 

4.1.1. Edge Weight Increase 

After the single edge weight increase in Algorithm 1 

step 1 takes a constant time to process with |E| 

processors. Each iteration of step 2 takes a constant 

time to process with |E| processors and it can iterate 

O(logd |Affected|) times. Step 3 takes a constant time to 

relax all edges having end node weight infinity with |E| 

processors. Each iteration of step 4 can work O(d) jobs 

and it can also iterate O(logd|Affected|) times. So the 

complexity of the algorithm in the case of edge weight 

increase is O(d* logd |Affected|). 

4.1.2. Edge Weight Decrease 

After the single edge weight decrease in Algorithm 1 

Steps1, 2, and 3 take a constant time to process with |E| 

processors. Each iteration of step 4 can work O(d) jobs 

and it can also iterate O(logd |Affected|) times. So the 

complexity of the algorithm in case of an edge weight 

decrease is O(d* logd |Affected|). 

5. CUDA Programming Model 

Compute Unified Device Architecture (CUDA) is a 

general purpose parallel programming interface which 

was introduced by Nvidia [30] for its GPU and it 

comes with a software environment which uses C as a 

high level programming language [28]. Using CUDA, 

the Nvidia’s GPUs are available for general purpose 

parallel computations. The approach of solving 

general-purpose (i.e., not exclusively graphics) 

problems on GPUs is known as General Purpose 

Graphics Processing Unit (GPGPU). As can be seen 

from Figure 1-a GPU is collection of one or more 

Symmetric Multiprocessors (SM) and each SM has a 

set of processors, shared memory and instruction unit. 

Each processor of SM can access the shared memory. 

Each processor has its private register memory and can 

access the device memory implemented in external 

DRAM. This device memory has three parts: global, 

constant and texture memory. Constant and texture 

memories are read-only memory but the global 

memory can be used for both read and write purposes. 

CUDA programming involves running code on two 

different platforms: a host system with one or more 

CPU cores and one or more CUDA-enabled NVIDIA 

GPUs. The CUDA program defines kernel, a set of 

instructions that will be executed in parallel on 

different data items. The data is copied from host 

memory to device memory, then the kernel is executed 

and data is copied back to the host memory. For the 

kernel execution CUDA program creates multiple 

threads execute the kernel function parallel on different 

data items. 

A thread grid is assigned to the GPU for processing. 

The grid is a collection of thread blocks, which can be 

arranged in a one, two or three-dimensional way inside 

the grid. Blocks are a collection of threads, which can 
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be arranged in a one, two or three-dimensional way 

inside the block. Each thread in a block and each block 

in a grid is assigned a unique index for each dimension 

of its logical arrangement. These unique indexes are 

used to generate the reference for the data items on 

which a thread has to work. 

 Figure1. Device understanding of CUDA. 

 Each block of a grid is assigned to a unique SM, 

and multiple blocks can be assigned to a SM. The SM 

divides the set of threads of its assigned blocks into a 

set of 32 threads called a warp. The threads present in 

any warp are executed concurrently and the threads of 

all blocks assigned to an SM are executed 

concurrently. Out of all warps present in an SM, warp 

scheduler randomly selects a warp for execution that 

has threads ready to execute its next instruction. The 

instruction unit presents inside the SM issues one 

instruction at a time which is executed by all the 

threads of the selected warp in parallel.  

6. Parallel Implementation of Proposed 

Algorithm 

This section explains the parallel implementation of 

the proposed algorithm for a GPU-based machine 

using CUDA. It uses an efficient and consistent variant 

of a GPU-based parallel SSSP algorithm proposed by 

Harish and Narayanan [16] for the initial node weight 

calculation for each node of the graph from a given 

source node. After the initial SSSP calculation it 

calculates the responsible edge for each node’s 

minimum weight in the SPT. 

Let a set of changes U, in the graph edge weight be 

applied. After these changes, to recalculate the SSSP 

the parallel batch dynamic algorithm is given in 

Algorithm 2. It uses an array NEW to store the updated 

edge weights and previous weights for unaffected 

edges. It uses four kernel functions for dynamic SSSP 

calculations, defined as EFFE_NODE, FIND_NODE, 

EDGE_RELAX and RELAX for CUDA 

implementation. 

Algorithm 2: Dynamic SSSP (G, NW, Resp, U) 

Create an affected node array, Aff and new edge weight array, 

NEW of size |V| 

NEW contains the copy of EW.  

U (u, v, lennew): A set of updates in edge (u, v) with lennew  

Create an array Flag of size |V|, two Boolean variables Loop 

and Lock and a variable INFI contains very big number. 

begin  

[1] Update the new edge weight of affected edges in 

array NEW 

[2] FFE_NODE( Flag, Resp, NW, Aff, INFI, EW, NEW, 

EEN, ESN) for each vertex e  E in parallel 

[3] while Loop > 0 do 

[4] Loop=0 

[5] FIND_NODE(NW, ESN, EEN, Resp, Aff, Flag, INFI, 

Loop) for each edge e  E in parallel 

[6] end while 

[7] EDGE_RELAX( Aff, NW, ESN, EEN, EW) for each 

edge e  E in parallel 

[8] Lock=1 

[9] while Lock > 0 do 

[10] Lock=0 

[11] RELAX(N, ENN, NW, NEW, Flag, Lock) for each 

vertex v  V in parallel 

[12] end while 

end 

After storing the updated edge weights in array NEW, 

Algorithm 2 calls the Kernel 1 EFFE_NODE kernel to 

find the nodes which are affected by this change in the 

graph. It creates |E| threads, one for each edge of the 

graph to call this kernel. Each thread of this kernel 

checks if its assigned edge’s new weight is greater than 

its old weight and if the edge is the responsible edge of 

its end node. Then the edge end node weight is set to 

infinity, node is marked affected and its flag value is 

set. If the new weight is less than the old weight then 

this edge is relaxed and if the edge end node weight is 

updated after the relax operation then the flag value 

corresponding to this node is set. 

Kernel 1: EFFE_NODE (Flag, Resp, NW, Aff, INFI, EW, NEW, 

EEN, ESN) 

begin 

[1] id = getThreadID 

[2] if EW[id]!= NEW[id] then  

[3] if EW[id] < NEW[id] then 

[4] if Resp[EEN[id]] = = id then 

[5] NW [EEN [id]] =INFI 

[6] Aff[EEN[id]] =1 

[7] Flag [EEN [id]] =1 

[8] Else 

[9] if(NW[EEN[id]] > (NW[ESN[id]]+ EW[id])) 

then 

[10]   begin ATOMIC 

[11]   NW[EEN[id]]=(NW[ESN[id]]+ NEW[id])) 

[12]   end ATOMIC 

[13]   Flag[EEN[id]] =1 

[14]   end if 

[15]   end if 

[16]   end if 

end 
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After finding the initial affected nodes, Algorithm 2 

calls the Kernel 2 FIND_NODE to discover all 

possible affected nodes. It creates |E| threads to call the 

Kernel 2 one thread corresponding to each edge of the 

graph. Each thread checks that its assigned edge start 

node weight is infinity and it is the responsible edge 

for its end node and the edge end node is marked as not 

affected, then it sets the end node weight to infinity 

and marks it as affected and sets its flag value. 

Algorithm 2 will call Kernel 2 again, if it will find an 

affected node in kernel’s current iteration. 

 After discovering all nodes possibly affected due to 

edge weight increase, Algorithm 2 calls the Kernel 3 

EDGE_RELAX to calculate the temporary weights of 

the affected nodes. It creates |E| threads, one 

corresponding to each edge of the graph. Each thread 

relaxes its assigned edge if the edge end node is 

marked as affected. This edge relaxation operation is 

an atomic operation as multiple threads can try to 

update the weight of the same node. 

Kernel 2: FIND_NODE (NW, ESN, EEN, Resp, Aff, Flag, INFI, 

Loop) 

begin 

[1] id = getThreadID 

[2] if NW[ESN[id]]= =INFI  AND Resp[EEN[id]] 

= =id then  

[3] if Affected [EEN[id]] = = 0 then 

[4] NW [EEN [id]] = INFI 

[5] Aff [EEN [id]] = 1 

[6] Flag [EEN [id]] =1 

[7] Loop=1 

[8] end if 

[9] end if 

end 

 

Kernel 3: EDGE_RELAX ( Aff, NW, ESN, EEN, EW) 

begin 

[1] id = getThreadID 

[2] if Aff[EEN[id]] = = 1 then  

[3] begin ATOMIC 

[4] if(NW[EEN[id]]>(NW[ESN[id]] + NEW[id])) 

then 

[5] NW[EEN[id]]=(NW[ESN[id]] + NEW[id])) 

[6] end ATOMIC 

[7] end if 

end 

Lastly, Algorithm 2 calls Kernel 4 RELAX to find the 

final node weight of all affected nodes. It creates |V| 

threads to call the Kernel 4 one corresponding to each 

node of the graph. Each thread checks its assigned 

node’s Flag value, and if it is set then all the outgoing 

edges of this node are relaxed. After any edge 

relaxation, if its end node weight is updated then the 

Flag value corresponding to the node is set. Algorithm 

2 calls the Kernel 4 again, if there is any weight change 

in kernel’s current iteration. 

Kernel 4: RELAX (N, ENN, NW, NEW, Flag, Lock) 

begin 

[1] id = getThreadID 

[2] if Flag [id] = =1 then 

[3] Flag [id] = 0 

[4] for all neighbours nid of id do 

[5]  if  NW[nid] > NW[id]+NEW[nid] then 

[6]  begin ATOMIC 

[7]  NW[nid]=(NW[id] + NEW[id] 

[8]  end ATOMIC 

[9]  Lock = 1 

[10]  Flag [EEN[nid]] = 1 

[11]  end if 

[12]  end for 

[13]  end if 

end  

7. Results and Analysis 

This section discusses the experimental setup used for 

result evaluation, type of test graph and finally shows 

the results of the proposed parallel batch dynamic 

algorithm, its comparison with the best serial algorithm 

and analysis of results. 

7.1. Experimental Setup 

Results are evaluated on a system with following 

configurations: 

CPU: Intel(R) Xeon(R) E5-2650 @ 2.00 GHz 

RAM: 24 GB 

OS: Windows 7 professional 

GPU: Tesla C2075 (448 cores), compute capability 2.0 

Language: CUDA 5 

Programming Interface: Visual studios 2010 

7.2. Test Graphs 

To test the performance of proposed implementation 

different real world graphs available on the Stanford 

graph dataset [22] are used. The real world graphs that 

have been used are: Internet graphs in which nodes 

represent computers and edges represent 

communication; Web graphs in which nodes represent 

web pages and edges are hyperlinks; Social network 

graphs are online social networks where edges 

represent interconnections between people; and road 

network graph nodes represent the interconnections of 

roads and edges represent the roads connecting the 

interconnection. These graph instances have sizes up to 

5.5 million edges, directed and are assigned positive 

edge weights ranging from 1 to 10.   

7.3. Results 

In this section, a comparison of the proposed parallel 

implementations of the dynamic SSSP algorithm with 

the serial dynamic SSSP algorithm is presented. The 

serial batch dynamic SSSP algorithm [2] shows best 

serial results is implemented in C language. 

Performance of proposed implementations are 

evaluated for three different cases: first, when the 

weight increase for those edges which are affecting 

approximately 10 % nodes weight in given graph; 
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second is when weight increase for those edges which 

are affecting approximately 5000 nodes weight in 

given graph; and last is when weight decrease for fifty 

random edges in any graph.  

 To find how many nodes have a minimum weight 

dependent on any edge in the graph, proposed 

algorithm first calculates the responsible edge and 

node for each node in SPT and then travers the SPT by 

using any node as a root node. Nodes present in the 

sub-tree after considering any node as a root node are 

affected nodes after increasing the weight of root 

node’s responsible edge. 

 
Figure 2. Results for 10% affected nodes.  

Figure 2 shows the results of the proposed parallel 

dynamic SSSP algorithm (PDSSSP), the parallel SSSP 

algorithm [16] (PSSSP) and the serial dynamic SSSP 

algorithm [2] (SDSSSP) calculations after increasing 

the edge weight of those edges which affect the 

approximately 10% nodes weight in the SSSP of the 

corresponding graph. The proposed PDSSSP algorithm 

gives double the speed increase of the PSSSP 

algorithm and up to a 20-fold increase as compared to 

the SDSSS algorithm. The main reason of speedup is 

parallel recalculation of all affected node’s weight 

using constrain based Bellman Ford algorithm [16]. 

This algorithm has added two conditions simple 

Bellman Ford algorithm [3, 14]; first condition relaxes 

only those edges in any iteration whose start node 

weight was modified in the last iteration, and second 

condition relaxes the edges until there is a weight 

change for at least one node in the last iteration. 

Figure 3 shows the results for the PDSSSP and 

SDSSSP algorithm calculations after the edge weight 

increase of the edges which affect approximately 5000 

nodes weight in the corresponding graph. The serial 

dynamic SSSP algorithm takes a similar time for re-

computing the node weight of 5000 nodes in any 

graph, as it has to do approximately equal amount of 

work for all graphs. But the proposed parallel dynamic 

SSSP algorithm takes a different amount of time for 

different graphs to re-compute the node weights of 

5000 nodes. This re-computing time depends on the 

number of nodes present in the graph because the 

number of threads created for any graph in the final 

computation depends on the number of nodes in the 

graph. If the number of threads is greater but they have 

to process the same number of nodes as fewer threads, 

then he former case will require more processing time 

because the system will take the same number of 

iterations but in each iteration it will take more time to 

manage the large number of threads. 

 
Figure 3. Results for 5000 affected nodes. 

Table 1. Results edge weight decrease. 

Graph Size 

No. of edges 

Time in milliseconds % of node 

weight affected PDSSSP SDSSSP 

.94M 8.4 160 19% 

1.4M 6.3 123 6% 

2.3M 17.2 117 11% 

3.2M 12.3 87 17% 

4.8M 24.6 93 21% 

5.1M 18.7 234 7% 

Table 1 shows the results for the proposed parallel 

dynamic SSSP and serial dynamic SSSP algorithms 

after randomly reducing the edge weight of fifty edges 

of any graph. It also shows how many nodes weights 

are affected after this edge weight minimization. In the 

case of edge weight decrease it may be possible that 

dynamic SSSP processing time for small graphs will be 

greater than for any large graph because we have no 

idea how many nodes will be affected due to these 

edge weight decreases in any graph before re-

calculating the SSSP. 

 Basically, speed-up depends on the structure and 

out-degree of a graph. As the number of vertices 

increases and the degree per vertex declines, then the 

level of a graph increases. As algorithms are 

dynamically updating an edge, when the level of a 

graph increases, more edges have to be updated, with 

the results that, for sequential implementation, more 

work has to be done while, for parallel implementation, 

all work is performed in a parallel manner. Hence, a 

greater speed increase can be achieved with parallel 

implementation. 

8. Conclusions and Future Work 

This paper has proposed first parallel batch dynamic 

SSSP algorithm for GPU based machine and shown its 

implementation using CUDA. Time Complexity 

analysis of proposed algorithm has shown with respect 



224                                                         The International Arab Journal of Information Technology, Vol. 16, No. 2, March 2019 

to possible affected nodes with |E| processors in 

parallel environment. Experimental results are shown 

for NVIDIA’S Telsa C2075 GPU and analysed for 

three different cases. Proposed algorithm has given up 

to 20 times speed up as compare to serial algorithm 

when the approximately 10% nodes weight are 

affected. When the fixed number of nodes has affected 

in different graph the parallel solution has taken time 

according to the size of the graph, so in future to solve 

this problem an implementation can be proposed to 

create the number of threads equal to the number of 

affected nodes in the graph. 
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