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Abstract: Information analysis needs suitable methods of curve extrapolation. Proposed method of Hurwitz-Radon Matrices 

(MHR) can be used in extrapolation and interpolation of curves in the plane. For example quotations from the Stock 

Exchange, the market prices or rate of a currency form a curve. This paper contains the way of data anticipation and 

extrapolation via MHR method and decision making: to buy or not, to sell or not. Proposed method is based on a family of 

Hurwitz-Radon (HR) matrices. The matrices are skew-symmetric and possess columns composed of orthogonal vectors. The 

operator of Hurwitz-Radon (OHR), built from these matrices, is described. Two-dimensional information is represented by the 

set of curve points. It is shown how to create the orthogonal and discrete OHR and how to use it in a process of data 

foreseeing and extrapolation. MHR method is interpolating and extrapolating the curve point by point without using any 

formula or function. 
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1. Introduction 

A significant problem of information analysis and 

artificial intelligence [1] is that of appropriate data 

representation and extrapolation. Two-dimensional 

information can be treated as points on the curve [23]. 

Classical polynomial interpolation or extrapolation 

(Lagrange, Newton, Hermite) is useless for data 

anticipation, because the stock quotations or the market 

prices represent discrete information and they do not 

preserve a shape of the polynomial. Also Richardson 

extrapolation has some weak sides concerning discrete 

data. This paper is dealing with the method of value 

foreseeing by using a family of Hurwitz-Radon 

matrices. The quotations, prices or rate of a currency, 

represented by curve points, consist of information 

which allows us to extrapolate the next value and then 

to make a decision [5]. If the probabilities of possible 

actions are known, then some criteria are to apply: 

Laplace, Bayes, Wald, Hurwicz, Savage, Hodge-

Lehmann [20] and others [24]. But author of this paper 

considers only two possibilities: to do something or not. 

For example to buy a share or not, to sell a currency or 

not. Proposed method of Hurwitz-Radon Matrices 

(MHR) is used in data extrapolation and then 

calculations for decision making are described. MHR 

method uses two-dimensional information for 

knowledge representation [14] and computational 

foundations [19]. Also medicine [18], industry and 

manufacturing are looking for the methods connected 

with geometry of the curves [21]. So suitable data 

representation and precise reconstruction or 

extrapolation [13] of the curve is a key factor in many 

applications of artificial intelligence [6, 12] and 

knowledge representation. 

2. Information Representation 

Information is represented by the set of curve points 

(xi,yi)R2 (interpolation nodes) as follows in novel 

MHR method: 

1. Nodes (characteristic points) are settled at local 

extrema (maximum or minimum) of one of 

coordinates and at least one point between two 

successive local extrema. 

2. Nodes (xi,yi) are monotonic in coordinates xi (xi<xi+1 

for all i) or yi (yi < yi+1). 

3. One curve is represented by at least five nodes. 

 Condition 1: is done for the most appropriate 

description of a curve. The quotations or prices are 

real coordinates of nodes.  

 Condition 2: according to a graph of function 

means that xi represent for example the time.  

 Condition 3: is adequate to interpolation, but in 

extrapolation minimal number of nodes is four. 
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Figure 1. Five nodes of data and the curve. 

Data points are treated as interpolation nodes. How can 

we extrapolate continues values at time x=5.5 for 

example or discrete data for next day x=6 (Figure 1)? 

The anticipation of values is possible using proposed 

MHR method. 

3. Data Reconstruction 

The following question is important in computer 

sciences and mathematics: is it possible to find a 

method of curve extrapolation in the plane without 

building the interpolation and extrapolation 

polynomials or other functions? This paper aims at 

giving the positive answer to this question. In 

comparison MHR method with Bézier curves, Hermite 

curves and B-curves (B-splines) or Non-Uniform 

Rational B-Spline (NURBS) one unpleasant feature of 

these curves must be mentioned: small change of one 

characteristic point can result in big change of whole 

reconstructed curve. Such a feature does not appear in 

MHR method. The methods of curve interpolation or 

extrapolation based on classical polynomial 

interpolations: Newton, Lagrange or Hermite 

polynomials and the spline curves which are piecewise 

polynomials [3]. Classical methods are useless to 

interpolate the function that fails to be differentiable at 

one point. Also when the graph of interpolated or 

extrapolated function differs from the shape of 

polynomials considerably, for example f(x)=1/x, 

interpolation and extrapolation is very hard because of 

existing local extrema of polynomial. Lagrange 

interpolation polynomial for function f(x) = 1/x and 

nodes (5; 0.2), (5/3; 0.6), (1;1), (5/7;1.4), (5/9;1.8) has 

one minimum and two roots. Lagrange interpolation 

polynomial differs extremely from the shape of function 

f(x)=1/x. 

 We cannot forget about the Runge’s phenomenon: 

when the interpolation nodes are equidistance then 

high-order polynomial oscillates toward the end of the 

interval, for example close to-1 and 1 with function f(x) 

=1/(1+25x2) and extrapolation is impossible [15]. MHR, 

described in this paper, is free of these bad examples. 

The curve or function in MHR method is parameterized 

[11] for real number   [0; 1] in the range of two 

successive interpolation nodes. MHR in 2D point 

extrapolation is possible with  < 0 or  > 1. 

3.1. The Operator of Hurwitz-Radon 

Adolf Hurwitz (1859-1919) and Johann Radon (1887-

1956) published the papers about specific class of 

matrices in 1923, working on the problem of quadratic 

forms. Matrices Ai, i = 1, 2…m satisfying 

 

AjAk+AkAj = 0, Aj
2 = -I for j ≠ k; j, k = 1, 2...m 

 

are called a family of Hurwitz-Radon matrices. A 

family of Hurwitz-Radon (HR) matrices has important 

features [4]: HR matrices are skew-symmetric (Ai
T = - 

Ai) and reverse matrices are easy to find (Ai
-1 = - Ai). 

Only for dimension N=2, 4 or 8 the family of HR 

matrices consists of N-1 matrices [12]. For N=2 there 

is one matrix: 
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For N = 8 we have seven HR matrices with elements 

0, ±1. So far HR matrices are applied in electronics 

[2]: in Space-Time Block Coding (STBC) and 

orthogonal design [22], also in signal processing [15, 

17] and Hamiltonian Neural Nets [16]. 

 If one curve is described by a set of data points 

{(xi, yi), i = 1, 2, …, n} monotonic in coordinates xi 

(time for example), then HR matrices combined with 

the identity matrix IN are used to build the orthogonal 

and discrete Hurwitz-Radon Operator (OHR). For 

nodes (x1, y1) and (x2, y2), x1 < x2 OHR M of dimension 

N = 2 is constructed: 
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For nodes (x1, y1), (x2,y2), (x3,y3) and (x4,y4), monotonic 

in xi, OHR of dimension N = 4 is constructed: 
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where 

443322110 yxyxyxyxu  , 

344312211 yxyxyxyxu  , 

241342312 yxyxyxyxu  , 

142332413 yxyxyxyxu  . 

For nodes (x1, y1), (x2,y2), …, (x8,y8), monotonic in xi, 

OHR of dimension N = 8 is built [6] similarly:  

 (5) 

 (4) 

 (1) 

 (2) 

 (3) 
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The components of the vector u = (u0, u1,…, u7)T, 

appearing in the matrix M (3), are defined by (7) in the 

similar way but in terms of the coordinates of the above 

8 nodes. Note that OHR operators M (4-6) satisfy the 

condition of interpolation 

Mx = y 

for x = (x1,x2…,xN)T  RN, x  0, y = (y1,y2…,yN)TRN, 

N = 2, 4 or 8. If one curve is described by a set of nodes 

{(xi,yi), i = 1, 2, …, n} monotonic in coordinates yi, then 

HR matrices combined with the identity matrix IN are 

used to build the orthogonal and discrete reverse 

Hurwitz-Radon Operator (reverse OHR) 

M-1. If matrix M is described as: 
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where matrix D consists of elements 0 (diagonal) and 

u1, …, uN-1, then reverse OHR M-1 is given by: 
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Note that reverse OHR operator (9) satisfies the 

condition of interpolation 

M-1y = x 

for x = (x1,x2…,xN)T  RN, y = (y1,y2…,yN)T  RN, y  0, 

N = 2, 4 or 8. 

3.2. Point Extrapolation and MHR Method 

Key question looks as follows: how can we compute 

coordinates of points settled between the interpolation 

nodes [7] or beyond the nodes? The answer is 

connected with proposed MHR method for 

interpolation [8] and extrapolation. On a segment of a 

line every number “c” situated between “a” and “b” is 

described by a linear (convex) combination c =   a + 

(1 - )  b for 

ab

cb




  [0; 1] 

If c < a then  >1: possible extrapolation of points 

situated left of nodes. If c > b then  < 0 and possible 

extrapolation of points situated right of nodes. When 

the nodes are monotonic in coordinates xi, the average 

OHR operator M2 of dimension N=2, 4 or 8 is 

constructed as follows: 

102 )1( MMM    

with the operator M0 built (1)-(3) by “odd” nodes 

(x1=a,y1), (x3,y3), …, (x2N-1,y2N-1) and M1 built by 

“even” nodes (x2=b,y2), (x4,y4), …, (x2N,y2N). Having 

the operator M2 for coordinates xi < xi+1 it is possible 

to reconstruct the second coordinates of points (x,y) in 

terms of the vector C defined with 

ci = x2i-1+ (1-)x2i, i= 1, 2,…, N  

as C = [c1, c2,…, cN]T. The required formula is similar 

to (8): 

CMCY  2)(  

in which components of vector Y(C) give the second 

coordinate of the points (x,y) corresponding to the first 

coordinate, given in terms of components of the vector 

C. On the other hand, having the operator M2
-1 for 

coordinates yi < yi+1 it is possible to reconstruct the 

first coordinates of points (x,y):  

1

1

1
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1
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

 MMM  , ci = y2i-1+ (1-)y2i, 
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1
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Calculation of unknown coordinates for curve 

points using (11)-(15) is called by author the method 

of Hurwitz-Radon Matrices (MHR) [9]. Here are 

Figure 2 the applications of MHR method for 

functions f(x)=1/(1+25x2) with five nodes equidistance 

in first coordinate: xi = -1, -0.5, 0, 0.5, 1. 

 

Figure 2. Twenty six interpolated points of functions 

f(x)=1/(1+25x2) using MHR method with 5 nodes. 

MHR interpolation of function f(x)=1/(1+25x2) 

gives better result than Lagrange interpolation. The 

 (10) 

 (12) 

 (13) 

 (14) 

 (15) 

 (16) 

 (8) 

 (6) 

 (7) 

 (11) 

 (9) 
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same can be said for function f(x)=1/x[10]. MHR 

extrapolation is valid for  < 0 or  > 1. In the case of 

continues information, parameter  is a real number. 

For example there are four nodes: (1; 2), (1.3;5), (2;3), 

(2.5;6). MHR extrapolation with =-0.01 gives the 

point (2.505; 6.034) and with 

=-0.1: (2.55; 6.348). But the rate of a currency or the 

quotations are discrete data. If we assume that the rate 

of a currency is represented by equidistance nodes (day 

by day -fixed step of time h=1 for coordinate x), next 

point or the rate on next day is extrapolated 

(anticipated) with  = -1. 

3.3. Complexity of MHR Calculations 

MHR interpolation of curve consists of L points: if we 

have n interpolation nodes, then there is K = L–n points 

to find using MHR method. Now we consider the 

complexity of MHR calculations.  

 Lemma 1. Let n=5, 9 or 17 is the number of 

interpolation nodes, let MHR method is done for 

reconstruction of the curve consists of L points. Then 

MHR method is connected with the computational 

cost of rank O(L). 

 Proof. Using MHR method we have to reconstruct 

K= L–n points of unknown curve. Counting the 

number of multiplications and divisions D here are 

the results: 

1. D = 4L+7     for n = 5   and L = 2i + 5; 

2. D = 6L+21   for n = 9   and L = 4i + 9; 

3. D = 10L+73 for n = 17 and L = 8i + 17;   i=2,3,4... 

The lowest computational cost appears in MHR method 

with five nodes and OHR operators of dimension N = 2. 

4. Information Analysis 

 Example: MHR calculations are done for true rates 

of euro at National Bank of Poland (NBP) from 

January 24th to February 14th, 2011. If last four rates 

are considered: (1; 3.8993), (2; 3.9248), (3; 3.9370) 

and (4; 3.9337), MHR extrapolation with matrices of 

dimension N=2 gives the result (5; 3.9158). So 

anticipated rate of euro on the day February 15th is 

3.9158 (Figure 3). 

 

Figure 3. Extrapolated rate for day 5 (February 15th) using MHR 

method with 4 nodes. 

If last eight rates are considered: (1;3.9173), 

(2;3.9075), (3;3.8684), (4;3.8742), (5;3.8993), 

(6;3.9248), (7;3.9370) and (8;3.9337), MHR 

extrapolation with matrices of dimension N=4 gives 

the result (9;4.0767). Anticipated rate of euro on the 

day February 15th is 4.0767 (Figure 4). 

 

Figure 4. Extrapolated rate for day 9 (February 15th) using MHR 

method with 8 nodes. 

There are two extrapolated values for next day. 

This example gives us two anticipated rates for 

tomorrow: 3.9158 and 4.0767, which differs 

considerably. How these extrapolated values can be 

used in the process of decision making: to buy euro or 

not, to sell euro or not? The proposal final anticipated 

rate of euro for the day February 15th (Figure 5) based 

on weighted mean value: 

9694.3
3

0767.49158.32


  

Because the rate 3.9158 is calculated for N=2, whereas 

4.0767 is extrapolated for N=4. Formula (13) takes 

one fact into account: dimension N=4 is two times 

bigger than dimension N=2 and the result 3.9158 has 

to be strengthen multiplying by two. 

 

Figure 5. Extrapolated rate for day 9 (February 15th) using MHR 

method with 8 nodes and weighted mean value (13). 

If last sixteen rates are considered, MHR 

extrapolation with matrices of dimension N=8 has to 

be used. Here are the rates: (1;3.8765), (2;3.8777), 

(3;3.8777), (4;3.9009), (5;3.9111), (6;3.9345), 

(7;3.9129), (8;3.9019), (9;3.9173), (10;3.9075), 

(11;3.8684), (12;3.8742), (13;3.8993), (14;3.9248), 

(15;3.9370) and (16;3.9337). Average OHR operator 

M2 and MHR calculations look as follows: 

 (17) 
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MHR extrapolation gives the result (17; 3.9882). 

Anticipated rate of euro for the day February 15th is 

3.9882 (Figure 6). 

 

Figure 6. Extrapolated rate for day 17 (February 15th) using MHR 

method with 16 nodes. 

MHR extrapolation has been done for three times (N 

= 2, 4 or 8) and anticipated values are 3.9158, 4.0767 

and 3.9882 respectively. The proposal final anticipated 

rate of euro for the day February 15th (Figure7) based 

on weighted mean value: 

9721.3
7

9882.30767.429158.34


  

because the rate 3.9158 is calculated with last four data 

points, 4.0767 is extrapolated for last eight information 

points and 3.9882 is computed for last sixteen data 

points. Formula (18) takes one fact into account: 

number of sixteen points is four times bigger than four 

and two times bigger than eigth. The result 3.9158 has 

to be strengthen multiplying by four and the rate 4.0767 

has to be strengthen multiplying by two. 

 

Figure 7. Extrapolated rate for day 17 (February 15th) using MHR 

method with 16 nodes and weighted mean value (14). 

The true rate of euro for the day February 15th is 

3.9398 (Figure 8). 

 

Figure 8. The true rate of euro for day 17 (February 15th). 

In author’s opinion, values extrapolated for next 

day 3.9694 (13) and 3.9721 (14) are good enough to 

be one of the factors for making a decision of buying 

or selling the currency. 

5. Conclusions 

The method of Hurwitz-Radon Matrices leads to curve 

interpolation and value extrapolation depending on the 

number and location of information points. No 

characteristic features of curve are important in MHR 

method: failing to be differentiable at any point, the 

Runge’s phenomenon or differences from the shape of 

polynomials. These features are very significant for 

classical polynomial interpolations and extrapolations. 

MHR method gives the possibility of reconstruction a 

curve and anticipation the data points. The only 

condition is to have a set of nodes according to 

assumptions in MHR method. Information 

representation and curve extrapolation by MHR 

method is connected with possibility of changing the 

nodes coordinates and reconstruction of new data or 

curve for new set of nodes. The same MHR 

interpolation and extrapolation is valid for discrete and 

continues information. Main features of MHR method 

are: accuracy of data reconstruction depending on 

number of nodes; interpolation or extrapolation of a 

curve consists of L points is connected with the 

computational cost of rank O(L); MHR method is 

dealing with local operators: average OHR operators 

are built by successive 4, 8 or 16 points, what is 

connected with smaller computational costs then using 

all nodes; MHR is not an affine interpolation. Future 

works are connected with: possibility to apply MHR 

method to three-dimensional curves (3D data), 

computing the extrapolation error, object recognition 

and MHR version for equidistance nodes.  
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