
34 The International Arab Journal of Information Technology, Vol. 5, No. 1, January 2008

Towards Ontology Extraction from Data-Intensive

Web Sites: An HTML Forms-Based Reverse

Engineering Approach

Sidi Benslimane
1
, Mimoun Malki

1
, Mustapha Rahmouni

2
, and Adellatif Rahmoun

3

1
Evolutionary Engineering and Distributed Information Systems Laboratory, Computer Science

Department, University of Sidi Bel Abbes, Algeria
2
Computer Science Department, University of Es-senia Oran, Algeria

3
King Faisal University, CCS&IT, Hasa, KSA

Abstract: The advance of the Web has significantly and rapidly changed the way of information organization, sharing and

distribution. However, most of the information that is available has to be interpreted by humans; machine support is rather

limited. The next generation of the web, the semantic web, seeks to make information more usable by machines by introducing

a more rigorous structure based on ontology. In this context we try to propose a novel and integrated approach for migrating

data-intensive web into ontology-based semantic web and thus, make the web content machine-understandable. Our approach

is based on the idea that semantics can be extracted from the structures and the instances of HTML forms which are the most

convenient interface to communicate with relational databases on the current Web. This semantics is exploited to help build

ontology.

Keywords: information search and retrieval, online information services, applications and expert systems, semantic web, data-

intensive web, reverse engineering.

Received August 4, 2006; Accepted November 20, 2006

1. Introduction

The Semantic Web is an extension of the current Web,

where information and knowledge is formally well

defined. Its goal is to enable machines and people to

work in cooperation to achieve higher information

processing power, and machines will become much

better at processing and “understanding” the data that

they merely display currently. The actual web has been

moving away from static, fixed web pages to

dynamically-generated at the time of user request. This

kind of web site is called data-intensive web site [1],

and usually realized using relational databases (i.e., e-

commerce application). Data-intensive web pages are

characterized by an automated update of the web

content and a simplified -maintenance of the web

design [2]. Nevertheless they suffer from two

limitations. First, they form a hidden web since its

content is not easily accessible to any automatic web

content processing tools including the search engine

indexing robots. Second the content of the database-

driven web pages presented by using HyperText

Markup Language (HTML) is not machine-

understandable. The simplicity and proliferation of the

World Wide Web has taken the availability of

information to an unprecedented level. The next

generation of the web, the semantic web, seeks to

make information more usable by machines by

introducing a more rigorous structure based on

ontologies, and thus resolve the second problem of

data-intensive web pages. Ontology is one of the most

important concepts in knowledge representation. It can

be generally defined as shared formal

conceptualization of particular domain between

members of a community of interest, which help them

exchange information [3]. Lately, ontologies have

become the focus for research in several other areas,

including knowledge engineering and management,

information retrieval and integration, agent systems,

the semantic web, and e-commerce. The availability of

formal ontologies is crucial for the success of the

semantic web. Nevertheless building ontologies is so

costly that it hampers the progress of the semantic web

activity. Manual construction of ontologies [4, 5] is a

difficult, time-consuming and error-prone task and

easily causes a knowledge acquisition bottleneck. Fully

automated tools are still at the very early stage to be

implemented. Therefore, the use of a semi-automatic

ontologies extraction is seen as the practical short

terms solution. Reverse engineering technique appears

as an interesting solution to reach this objective. It’s

defined as a process of analyzing a “legacy” system to

identify all the system’s components and the

relationships between them [6].

Towards ontology Extraction from Data-Intensive Web sites: An HTML … 35

We propose in this paper a novel approach to

reverse engineering data-intensive web application into

ontology-based semantic web.

This paper is organized as follows. In section 2, we

discuss some of the related works in reverse

engineering relational databases into ontologies.

Section 3 explains the overall reverse-engineering

architecture and section 4 details our proposed

approach. Section 5 presents a portal prototype

implementation of the ontology construction approach.

Finally, section 6 contains concluding remarks and

suggests some future works.

2. Related Work

Several researches have been done on relational

databases reverse engineering, suggesting methods and

rules for extracting entity-relationship and object

models from relational databases [6, 7, 8]. Recently,

some approaches that consider ontologies as the target

for reverse engineering have been proposed. These

approaches fall roughly into one of the five categories:

• Approaches based on an analysis of user queries:

E.g. Kashyap’s approach [9] builds an ontology

based on an analysis of relational schema; the

ontology is then refined by user queries. However,

this approach does not create axioms, which are part

of the ontology.

• Approaches based on an analysis of relational

schema: e.g., Stojanovic et al’s approach [2]

provides a set of rules for mapping constructs in the

relational database to semantically equivalent

constructs in the ontology. These rules are based on

an analysis of relations, keys and inclusion

dependencies.

• Approaches based on an analysis of tuples: e.g.,

Astrova’s approach [10] builds an ontology based on

an analysis of relational schema. Since the relational

schema often has little explicit semantics [11], this

approach also analyzes tuples in the relational

database to discover additional “hidden” semantics

(e.g., inheritance). However, this approach is very

time consuming with regard to the number of tuples

in a relational database.

• Approaches based on an analysis of HTML-table:

e.g., Tijerino’s approach [12] based on conceptual

modeling extraction technique attempts to

understand a table’s structure and conceptual

content, discover the constraints that hold between

concepts extracted from the table, match the

recognized concepts with ones from a more general

specification of related concepts, and merge the

resulting structure with other similar knowledge

representations. However, this approach requires

auxiliary information including dictionaries and

lexical data (WordNet, natural language parsers, and

data frames library).

• Approaches based on an analysis of HTML-forms:

e.g., Astrova’s approach [13] constructs an ontology

based on an analysis of HTML-forms by analyzing

the HTML-forms to extract a form model schema,

transforming the form model schema into ontology

and creating ontological instances from data

contained in the pages. The drawback of this

approach is that this approach does not offer any

way to the identification of inheritance relationship

which is a significant aspect in the ontology

construction.

3. Our Approach

To overcome the drawbacks of the approaches

described above, we propose a novel approach for

reverse engineering data-intensive web sites into

ontology-based semantic web. Our approach is based

on the idea that semantics of the relational database can

be extracted by analyzing the related HTML pages.

This semantics are augmented with those captured in

the relational schema to build ontology. Unlike [14]

that uses frame logic as an ontology description

language; this paper adopts the latest standard

recommended by World Web Consortium (W3C),

namely Ontology Web Language (OWL).

3.1. Motivations

The uses of information extracted from both HTML

forms used for sending user queries and HTML-tables
1

returned as the query results can be supported by the

following arguments:

• HTML-forms are often the most popular and

convenient interfaces for entering, changing and

viewing data in the actual data-intensive web pages.

• Studying and analyzing an HTML-forms and their

relationship can reveal many data dependencies and

mapping.

• HTML-forms are structured collections of fields

formatted to communicate with the relational

database. Therefore, data contained in the forms is

usually structured, while the structure of the relation

databases is often unknown in advance [15].

• Field names in HTML-forms are usually more

explicit and meaningful than the names of

corresponding attributes in the relational databases.

• Often HTML-forms are accompanied with

instructions, which provide additional information

about organisation’s data and their behaviour parts.

3.2. Proposed Architecture

This section describes the ontology building

framework. It gives a description of the architecture

1 In what follows, HTML-forms nominates both HTML-forms and

HTML-tables

36 The International Arab Journal of Information Technology, Vol. 5, No. 1, January 2008

components, as shown in Figure 1.

•••• The Extraction Engine consists of three sets of

extraction rules. The first set of rules analyses the

HTML pages to identify constructs in the form

model schema. The second set of rules permits the

extraction of a form XML schema from the

constructs of the form model schema, whereas the

third set of rules derives the domain semantics by

extracting the relational sub-schemas of forms and

their dependencies.

•••• The Transformation Engine consists of two sets of

transformation rules. The first set of rules transforms

the relational sub-schemas of forms into conceptual

schema based on UML model. The second set of

rules translates the modelling language constructs

into OWL ontological concepts.

•••• The Migration Engine consists of a set of data

migration rules responsible of the creation of

ontolological instances from the relational tuples.

TRANSFORMATION ENGINE

Web site

HTML PagesForms

Model

Forms

Model

Filtering

IDENTIFICATION Identification Rules

GENERATION Generation Rules

Forms model
schema

Forms model
schema

MAPPING

Extraction Rules

Conceptual

Schema (UML)

Conceptual

Schema (UML)

XML schema

Model

XML schema

Model

OWL

Model

OWL

Model

EXTRACTION ENGINE

Physical

Schema

Physical

Schema XML Schema of
Forms

XML Schema of
Forms

UML

Model

UML

Model

EXTRACTION

Form relational
schema

Form relational
schema

TRANSLATION Translation Rules

Mapping Rules

MIGRATION ENGINE

Migration RulesMIGRATING

Database

Instances

Database

Instances

Ontology

structure

Ontology

instances

TRANSFORMATION ENGINE

Web site

HTML PagesForms

Model

Forms

Model

Filtering

IDENTIFICATION Identification Rules

GENERATION Generation Rules

Forms model
schema

Forms model
schema

MAPPING

Extraction Rules

Conceptual

Schema (UML)

Conceptual

Schema (UML)

XML schema

Model

XML schema

Model

OWL

Model

OWL

Model

EXTRACTION ENGINE

Physical

Schema

Physical

Schema XML Schema of
Forms

XML Schema of
Forms

UML

Model

UML

Model

EXTRACTION

Form relational
schema

Form relational
schema

TRANSLATION Translation Rules

Mapping Rules

MIGRATION ENGINE

Migration RulesMIGRATING

Database

Instances

Database

Instances

Ontology

structure

Ontology

instances

Figure1. Data-intensive web site reverse engineering architecture.

4. Reverse Engineering Process

For illustration purposes, we use the Algerian Airline

web site http://www.airalgerie.dz. Two HTML pages

among several are shown in Figure 2: “Booking” form

and “Flight Program” table.

Figure 2. HTML pages along with HTML-form and HTML-table.

4.1. Analysis of HTML Pages Structure

The main goal of this phase is to understand the form

meaning and explicit its structure by analyzing HTML

forms (both their structure and data they contain) to

identify its components and interrelationships and

extract a form model schema.

4.1.1. The Form Model

A form model schema was originally proposed,

suitable for databases reverse engineering task [16].

The model allows abstracting any database form to

make explicit its components, fields, and their

interrelationships. Basically, this model consists of:

A. Form type: is a structured collection of empty fields

that are formatted in a way that permits

communication with the database. A particular

representation of a form type is called form template

that suggests three basic components namely title,

captions, and entries.

B. Structural units: correspond to objects that closely

group related fields in a form.

C. Form instance: is an occurrence of a form type. This

is the extensional part obtained when a form

template is filled in with data. Figure 2 is an

instance of the “Booking form” and “Program of

flight” forms type.

D. Form fields: consists of a caption and its associated

entry. Each entry is generally linked to a table's

name as per the table names in the underling

database. The values that a form field

displays/receives are provided by (or stored in) the

linked-attribute. We distinguish three types of

fields: filling fields (text, checkbox, radio, textarea

Towards ontology Extraction from Data-Intensive Web sites: An HTML … 37

attributes); selection fields (select attribute); and

link fields (href attribute).

E. Underlying source: corresponds to the structure of

the relational database (i.e., relational schema) in

terms of relations and attributes along with their

data types.

F. Relationships: this is a connection between

structural units that relates one structural unit to

another (or back to itself). There are two kinds of

relationship: association and inheritance.

G. Constraint: This is a rule that defines what data is

valid for a given form field. A cardinality constraint

specifies for an association relationship the number

of instances that a structural unit can participate in.

4.1.2. Form Model Schema Identification Rules

The following rules summarize the mechanisms that

permit identifying a form model's constructs using a

relational schema as input. These rules populate the

extraction engine of Figure 1.

A. Rule 1: Identifying form instances. In order to

clearly distinguish different kinds of information

in the document, the web pages are usually split to

multiple areas. Each area is created using specific

tags. For our approach we perform a filtering

process and consider both:

•••• The section between the open and closing

<form> tag used to access and updates the

relational databases.

•••• The section between the open and closing

(<table>, <td>, <tr>, ,) tags returned

as the query results and representing a

particular view of the relational databases.

B. Rule 2: Identifying linked attributes. Linked

attributes are identified by examining the HTML

code for structural tags such as <thead> and <th>

[17]. If the linked attributes aren’t separated with

the structural tags (merged data), we use visual

cues [18, 19]. This approach typically implies that

there will be some separators (e.g. blank areas)

that help users split the merged data.

C. Rule 3: Identifying structural unit. To determine

the logical structure of an HTML page (i.e., the

real meaning of the page, as it is understood by

users), we can use visual cues [18]; e.g., users

might consider firstName, lastName, and age in

Figure 2 as a whole group (Passenger), just

because they all are specifications.

D. Rule 4: Identifying relationship. Relationship can be

indicated by the fact that two structural units appear

in the same page. If both structural units come

together, they might be logically related. Since the

relational database information typically does not

reside in a single HTML page, we try to find

relationships using hyperlinks. Hyperlinks can be

interpreted, in many cases, as semantic relations

between structural units.

4.2. Extraction of Form XML-Schema

Once the structure of the form type is extracted, the

corresponding XML-schema is generated based on a

set of translation rules between concepts of form

models and those of the XML schema.

A. Rule 1: each structural unit in the form type is

translated as a complexType element in the

corresponding XML schema.

Example: The structural unit “passenger” is

translated as follow:

 <xsd:complexType name=”passenger”> ... </xsd:

 complexType>

Rule 1 is applied recursively on the complex

 structural unit components.

B. Rule 2: each form field of the structural unit is

translated into a sub-element of the corresponding

complexeType element. The primitive type of the

element is one of the field.

Example: the field “FirstName” is translated as a

string type:

<xsd: element name=”firstname”

type=”xsd:string”/>

C. Rule 3: if the structural unit contains some simple

filling fields (e.g., text tag), the corresponding

ComplexeType element takes “minOccurs = 1” and

“maxOccurs = 1” as occurrence.

D. Rule 4: if the structural unit contains some multiple

filling fields (e.g., multiple attribute), the

corresponding ComplexeType element takes

“maxOccurs = “*”” as maximum occurrence.

Rules 3 and 4 are applied recursively on the form fields

of each structural unit. While applying the rules

mentioned above on the “Booking form” type

structure, we obtain the XML-schema as shown in

Figure 4.

4.3. Extraction of the Domain Semantics

The goal of this phase of extraction is to derive the

relational sub-schemas of forms from their hierarchical

structure and their instances according to the physical

schema of the underlying database.

First, the relations and their primary keys are

respectively identified with regard to both structural

units (nodes) of form and underlying database, then the

functional and inclusion dependencies are extracted

through both the forms structure and instances.

38 The International Arab Journal of Information Technology, Vol. 5, No. 1, January 2008

<?xml version=”1.0”?>

<xsd:schema=xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:complexType name=”BookingForm”>

< xsd:attribute name=”class” type=”xsd:integer”/>

<xsd:complexType name=”Passenger” type=

“xsd: ”PassengerID” maxOccurs=”1”/>

<xsd:complexType name=”City” type=

“xsd: ”CityID” maxOccurs=”1”/>

<xsd:complexType name=”Date” type=

“xsd: ”DateID” maxOccurs=”1”/>

<xsd:complexType name=” PassengerID”>

<xsd:element name=”FirstName” type=”xsd:string”/>

<xsd:element name=”LastName” type=”xsd:string”/>

<xsd:element name=”Age” type=”xsd:integer”/>

<xsd:complexType/>

<xsd:complexType name=” CityID”>

<xsd:element name=”LeavingFrom” type=”xsd:string”/>

<xsd:element name=”GoingTo” type=”xsd:string”/>

<xsd:complexType/>

...

<xsd:complexType/>

<xsd:complexType/>

<xsd:schema/>

Figure 4. XML schema of “Booking form”.

4.3.1. Form Relations Extraction

The identification of form relations and their primary

keys respectively, consists of determining the

equivalence and/or the similarity between structural

units (nodes) of hierarchical structure and relations in

the underlying database. This is a basis point from a

reverse engineering point of view [8].

A node of a form hierarchical structure may be

either:

D. Equivalent to a relation in the underlying

database, i.e., these two objects (node and

relation) have a same set of attributes.

E. Similar to a relation, i.e., its set of attributes is a

subset of the one of the relation.

F. A set of relations, i.e., its set of attributes regroups

several relations in underlying database.

In addition, for dependent nodes (or form relation),

primary keys are formed by concatenating the primary

key of its parent with its local primary key. This

identification process is semi-automated because it

requires the interaction with the analyst to identify

objects that do not verify proprieties of equivalence

and similarity.

While applying this process on the hierarchical

structure of “Booking Form” and the physical

relational schema of underlying database, we extract

the following relational sub-schemas:

Passenger (PassengerID, FirstName, LastName, Age)

City (CityID)

DepartureCity (CityID, Name)

ArrivalCity (CityID, Name)

Date (DeparatueDate)

From the “program flights” form we identify the

following relational sub-schemas:

DepartureHour (Dep_HourID, type)

ArrivalHour (Arr_HourID, type)

Plane (PlaneID, Capacity)

Flight (ID, DepartureCityID, ArrivalCityID,

Dep_HourID, Arr_HourID, PlaneID)

From the relationships among hierarchical structure

of “booking form” and “program flight” forms we

identify the following relational sub-schemas:

Book (PassengerID, FlightID, DepartureDate, Class)

LeavingFrom (FlightID, DepartureCityID)

GoingTo (FlightID, ArrivalCityID)

4.3.2. Functional Dependencies Extraction

The extraction of functional dependencies from the

extension of database has received a great deal of

attention [20, 21, 22] In our approach we use the

algorithm introduced by [8] to reduce the time for

exacting functional dependencies by replacing

database instances with a more compact representation

that is, the form instances. While applying this

algorithm on the sub-schema of “program of flights”

and their instances, one finds the functional

dependencies:

Flight.ID � DepartureCity.CityID

Flight.ID � ArrivalCity.CityID

4.3.3. Inclusion Dependencies Extraction

In our approach, we formulate possible inclusion

dependencies between relations’ key of relational sub-

schema of form. The time of this process is more

optimized with regard to the other approaches [22, 6]

because the possible inclusion dependencies are

verified by analyzing the form extensions which are

more compact representation with regard to the

database extension.

In this algorithm, attributes of dependencies are the

primary keys and foreign keys. Thus, the time

complexity is reduced to the test of the inclusion

dependency on the form instances.

The set of the inclusion dependencies extracted is:

Book.FlightID << Flight.FlightID

Book.PassengerID << Passenger.PassengerID

4.4. Transforming the Relational Sub-Schema

 of Form into UML Sub-Schema

The transformation is usually a collection of mapping

rules that replace constructs in the form relational

schema with (semantically equivalent) conceptual

entities in the Unified Modeling Language (UML)

model, as shown in Figure 5.

Towards ontology Extraction from Data-Intensive Web sites: An HTML … 39

ownedAttribute

0..1

*

0..1

type

0..1
memberEnd

0..1

*

2..*

Classifier
generalization

ownerEnd

Class Association

Property

Type

ownedAttribute

0..1

*

0..1

type

0..1
memberEnd

0..1

*

2..*

Classifier
generalization

ownerEnd

Class Association

Property

Type

Figure 5. Key aspects of UML class diagram.

Basically, the process uses the constructs generated

from the precedent step as the main input (i.e. form

relational schema, functional dependencies and

inclusion dependencies). It goes through four steps: (1)

identification of classes, (2) identification of binary

association, (3) identification of n-ary association, (4)

identification of inheritance relationships. This process

is based on the classification of relations. Relation can

be classified into one of the three categories.

A. Base relation: if a relation is independent of any

other relation in a form relation schema.

 Example: Passenger (PassengerID, FirstName,

 LastName, Age).

B. Dependent relation: if a primary key of a relation

depends on another relation’s primary key.

 Example: Book (PassengerID, FlightID,

 DepartureDate, Classe).

C. Composite relation: if it is neither base nor

dependent.

 Example: Flight (FlightID, DepartureCityID,

 ArrivalCityID, Dep_HourID, Arr_HourID,

PlaneID).

4.4.1. The Transformation Rules

Our rules are similar to those used in [8] to perform a

transformation into an object oriented model.

A. Rule 1: Identification of object class. The general

assumption is that each base relation is mapped into

an object class. These object classes have the same

attributes as those contained in the relations. The

relation Passenger is translated to class shown if the

Figure 6.

Passenger

PassengerID

FirstName

LastName

Age

Passenger

PassengerID

FirstName

LastName

Age

Figure 6. UML class.

B. Rule 2: Identification of binary association. The

foreign keys of class-relation and the corresponding

functional dependencies identify a binary

association between class-relations. Therefore, this

referential link is translated in binary association in

the UML model. The target will be, in general, a

role attribute typed by the other class.

 While applying this transformation rule on the two

 class-relations Flight and DepartureCity and their

 functional dependencies:

 Flight.ID � DepartureCity.DepartureCityID, We

 generate the following object schema, as shown in

 Figure 7.

DepartureCity

DeparatureCityID

CityName

Leaving From
Flight

FlightID

DepartureCity

DeparatureCityID

CityName

DepartureCity

DeparatureCityID

CityName

Leaving From
Flight

FlightID

Flight

FlightID

Figure 7. Binary UML association.

C. Rule 3: Identification of association class. For every

n-airy class-relation whose primary key is entirely

composed of foreign keys, we create an association

class between all the classes corresponding to the

class-relation that foreign keys refer to.

 The relation Book is translated into association-

 class as show in Figure 8.

1..*

1..*

1..*
Passenger

PassengerID

Date

DeparatureDate

Flight

FlightID

Book

Classe

1..*

1..*

1..*
Passenger

PassengerID

Passenger

PassengerID

Date

DeparatureDate

Date

DeparatureDate

Flight

FlightID

Flight

FlightID

Book

Classe

Book

Classe

Figure 8. n-ary UML association.

D. Rule 4: Identification of inheritance relationships.

Extracting inheritance relationship from a relational

schema usually requires behavioural information.

Every pair of relations (R1, R2) that have the same

primary key (noted X) and the corresponding

inclusion dependencies (i.e., R1: X << R2: X) may

be involved in an inheritance relationship, i.e., R1

“is-a” R2.

In Figure 9, the relations City, DepartureCity and

ArrivalCity have the same primary key (CityID)

and the corresponding inclusion dependencies:

 DepartureCity.CityID << City.CityID;

 ArrivalCity.CityID << City.CityID

 Therefore City is a superclass and DepartureCity

 and ArrivalCity are a subclass.

40 The International Arab Journal of Information Technology, Vol. 5, No. 1, January 2008

City

CityID

CityName

DeparatureCity

DeparatureCityID

ArrivalCity

ArrivalCityID

Is-a

City

CityID

CityName

City

CityID

CityName

DeparatureCity

DeparatureCityID

DeparatureCity

DeparatureCityID

ArrivalCity

ArrivalCityID

ArrivalCity

ArrivalCityID

Is-a

Figure 9. Inheritance relationship.

4.4.2. Integration of UML Sub-Schema

In the precedent phase, relational sub-schemas were

transformed into object oriented sub-schemas. These

object sub-schemas will be merging into a global

object-oriented schema that represents the whole

underlying database. However, we apply the

techniques of integration schema. We assume, in

agreement with [23] that the integration schema

process consists in two phases: comparison and

merging of schemas.

The comparison phase performs a parities

comparison of objects (of the sub-schemas) and finds

possible objects pairs, which may be semantically

similar with respect to some proprieties, such as

synonyms (name of attribute and class) of equal

primary key attribute and equivalent of classes. The

merging phase generates an integrated schema from

two component schemas that have been compared.

Figure 10 presents the integrated UML global schema.

Assured By
*

Plane

PlaneID

Leaving From

Passenger

PassengerID

Book

Classe

*

Going To

City

CityID

CityName

Is-a

1

Leaving At Going At

Hour

HourID

Type

Is-a

Date

DepartureDate

Flight

FlightID

DeparatureCity

DeparatureCityID

ArrivalCity

ArrivalCityID

ArrivalHour

ArrivalHourID

DeparatureHour

DeparatureHourID

Assured By
*

Plane

PlaneID

Plane

PlaneID

Leaving From

Passenger

PassengerID

Passenger

PassengerID

Book

Classe

Book

Classe

*

Going To

City

CityID

CityName

City

CityID

CityName

Is-a

1

Leaving At Going At

Hour

HourID

Type

Hour

HourID

Type

Is-a

Date

DepartureDate

Date

DepartureDate

Flight

FlightID

Flight

FlightID

DeparatureCity

DeparatureCityID

DeparatureCity

DeparatureCityID

ArrivalCity

ArrivalCityID

ArrivalCity

ArrivalCityID

ArrivalHour

ArrivalHourID

ArrivalHour

ArrivalHourID

DeparatureHour

DeparatureHourID

DeparatureHour

DeparatureHourID

Figure 10. Global UML schema.

4.5. UML into OWL Mapping Rules

UML conceptual models can be translated into other

ontology languages like Resource Description

Framework Schema (RDFS), Web Ontology Language

(OWL) or even in to object oriented database systems.

Some proposals which address the problem of reusing

knowledge previously specified as UML in a form that

allows it to be ‘on the Web’ and can be reasoned with

[24, 25, 26].

The rules below briefly summarise the

transformation rules used in the mapping between

UML and OWL constructs. OWL is designed for using

by applications that need to process the content of

information instead of just presenting information to

humans. OWL facilitates greater machine

interpretability of web content than that supported by

XML, RDF, and RDFS by providing a standard

language for the representation of ontologies on the

World Wide Web.

A. Rule 1: Both OWL and UML are based on classes.

So, in order to translate the UML class of Figure 6,

an OWL class is declared by assigning a name to

the relevant type.

 Example: <owl: class rdf: ID=”Passenger”/>.

B. Rule 2: By default a property is a binary relation

between thing and thing. It comes from two

different sources in the UML model:

• First, an instance of class ownedAttribute

Property would translate as properties whose

domain is Class and whose range is the type of

Property. The UML ownedAttribut instance

would translate to owl:ObjectProperty if the type

of Property were a UML class, and

owl:DatatypeProperty otherwise. Table 1 shows

the translation of classes, as shown in Figure 7.

• Second an instance of a binary UML

association translates directly to an

owl:ObjectProperty. The translation of the binary

association of Figure 7 is given in Table 2.

Table 1. Classes translation.

<owl:DatatypeProperty rdf:ID=“CityName">

<rdfs:domain rdf:resource="# DepartureCity"/>

<rdfs:range rdf:resource=

"http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

String CityName

<owl:DatatypeProperty rdf:ID="CityID">

<rdfs:domain rdf:resource="#DepartureCity"/>

<rdfs:range rdf:resource=

"http://www.w3.org/2001/XMLSchema#integer"/>

</owl:DatatypeProperty>

IntegerCityIDDepartureCity

<owl:DatatypeProperty rdf:ID="FlightID">

<rdfs:domain rdf:resource="#Flight"/>

<rdfs:range rdf:resource=

"http://www.w3.org/2001/XMLSchema#integer"/>

</owl:DatatypeProperty>

IntegerFlightIDFlight

OWL equivalentType of

Owned

Property

Owned

Property

UML class

<owl:DatatypeProperty rdf:ID=“CityName">

<rdfs:domain rdf:resource="# DepartureCity"/>

<rdfs:range rdf:resource=

"http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

String CityName

<owl:DatatypeProperty rdf:ID="CityID">

<rdfs:domain rdf:resource="#DepartureCity"/>

<rdfs:range rdf:resource=

"http://www.w3.org/2001/XMLSchema#integer"/>

</owl:DatatypeProperty>

IntegerCityIDDepartureCity

<owl:DatatypeProperty rdf:ID="FlightID">

<rdfs:domain rdf:resource="#Flight"/>

<rdfs:range rdf:resource=

"http://www.w3.org/2001/XMLSchema#integer"/>

</owl:DatatypeProperty>

IntegerFlightIDFlight

OWL equivalentType of

Owned

Property

Owned

Property

UML class

Towards ontology Extraction from Data-Intensive Web sites: An HTML … 41

Table 2. Binary association translation.

<owl: objectProperty

rdf:ID="LeavingFrom">

<rdfs:domain rdf:resource="#Flight"/>

<rdfs:range rdf:resource=

"#DepartureCity"/>

</owl:objectProperty>

DepartureCityFlightLeavingFrom

OWL equivalentMember 2

Property

Type

Member 1

Property

Type

UML

Association

<owl: objectProperty

rdf:ID="LeavingFrom">

<rdfs:domain rdf:resource="#Flight"/>

<rdfs:range rdf:resource=

"#DepartureCity"/>

</owl:objectProperty>

DepartureCityFlightLeavingFrom

OWL equivalentMember 2

Property

Type

Member 1

Property

Type

UML

Association

C. Rule 3: n-ary relation among types T1...TN is

formally equivalent to a set R of identifiers together

with N projection functions P1...PN, where Pi: R →

Ti. Thereby n-ary UML associations are translated

to OWL classes with bundles of binary functional

properties, as shown in Figure 8.

D. Rule 4: In UML, a class can exist as a generalisation

for one or more other classes. The generalisation

element is synonymous with the OWL:subClassOf

construct. The inheritance relationship in the Figure

9 is translated as follow:

 <owl:class rdf:about="DepartureCity">

 <owl:subClassOf rdf:resource="#City" />

 </owl:class>

 <owl:class rdf:about="ArrivalsCity">

 <owl:subClassOf rdf:resource="#City" />

 </owl:class>

E. Rule 5: In OWL, a property when applied to a class

can be constrained by cardinality restrictions on the

domain giving the minimum (minCardinality) and

maximum (maxCardinality) number of instances

which can participate in the relation. In UML an

association can have minimum and maximum

cardinalities (multiplicity) specified for any of its

ends. OWL allows individual-valued properties

(ObjectProperty) to be declared in pairs, one the

inverse of the other. So if a binary UML association

has a multiplicity on a navigable end, the

corresponding OWL property will have the same

multiplicity. If a binary UML association has a

multiplicity on its both ends, then the corresponding

OWL property will be an inverse pair, each having

one of the multiplicity declarations.

4.6. Migrating Data

Once the ontology is created, the process of data

migration can start. The objective of this task is the

creation of ontological instances (that form a

knowledge base) based on the tuples of the relational

database. The data migration process has to be

performed in two phases based on the following rules:

A. Rule 1: First, the instances are created. To each

instance is assigned a unique identifier. This

translates all attributes, except for foreign-key

attributes, which are not needed in the metadata.

B. Rule 2: Second, relations between instances are

established using the information contained in the

foreign keys in the database tuples. This is

accomplished using a mapping function that maps

keys to ontological identifiers. Figure 11 illustrates

an example result of the data migration process

from the Table 3.

Table 3. Relational model instances.

Plane

Plane

ID

Capacity Company

ID

A330 150 1

B767 200 2

5. Implementation

In this section, we present some experiments we

performed to assess the effectiveness of the proposed

approach to semi-automatically build OWL ontology

from relational database using the related HTML-

forms. The main purpose of the experiments is to

evaluate the effectiveness of the ontology development

rules presented in the previous sections, and to verify

that the proposed approach can contribute in helping

the user in performing the labour intensive ontology

development task. Since the construction of OWL

ontology from an enriched relational schema is

characterized by the specific rules, the generation of

the ontology can be automated.

<?xml version="1.0"?>

<rdf:RDF

<owl:Ontology rdf:about=""/>

<owl:Class rdf:ID="Company"/>

<owl:Class rdf:ID="Plane"/>

...

<Company rdf:ID="Company1">

<CompanyId rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int"

>1</CompanyId>

<CompanyName rdf:datatype=

"http://www.w3.org/2001/XMLSchema#string"

>Air Algerie</CompanyName>

</Company>

<Plane rdf:ID="Plane1">

<capacity rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int"

>150</capacity>

<PlaneId rdf:datatype=

"http://www.w3.org/2001/XMLSchema#string"

>A330</PlaneId>

<Possede rdf:resource="#Company1"/>

</Plane>

...

</rdf:RDF>

Figure 11. Ontology instances.

Company

Company ID Company

Name

1 Air Algeria

2 Air France

42 The International Arab Journal of Information Technology, Vol. 5, No. 1, January 2008

5.1 Prototype

A prototype is developed using Java (j2sdk 1.4.2) and

Jena 2.1, the Java API for ontology development and

processing, as shown in Figure 12. The prototype has

been implemented in order to experiment and verify

that the proposed approach is an applicable solution.

Our tool has a user friendly GUI to perform the

ontology development process and to produce ontology

stored in an OWL file.

Figure 12. Snapshot of the ontology development tool.

 The Web site URL, the relational schema and other

parameters such as information for the database

connection (e.g. JDBC driver, database URL), base

URI and ontology URI of the output OWL ontology

are provided in an input configuration file. The output

ontology can be formalized in the following standard

formats: OWL, RDF/XML, RDF/XML-ABBREV, N3

and N-Triples.

5.2. Experimental Evaluation

In order to evaluate our approach, we have performed

two experiments on tourism domain. In the first

experiment, we analyzed an airlines company Web

site
2
. The constructs of the obtained OWL ontology are

presented in Table 4. The results are compared to the

tutorial ontology for a Semantic Web of tourism
3
.

To evaluate the quality of the ontology development

process, we compare the OWL ontology constructs

(correctly extracted: C, and incorrectly extracted: I)

returned by the automatic extraction process with

manually determined constructs (M) in the tutorial

2
 http://www.britishairways.com
3
 http://protege.stanford.edu/plugins/owl/owl-library/travel.owl.

Table 4. Results from the ontology development process using an

airlines company web site.

OWL

Ontology

constructs

Constructs in

the tutorial

Ontology

(M)

Constructs

extracted

Correctly

(C)

Constructs

extracted

incorrectly (I)

Recall

Ratio

(C/M)

Prec is ion

Ratio

C/(C+I)

Classes 30 15 1 0.50 0.94

Objects

properties

16 09 1 0.56 0.90

Datatype

properties

77 34 3 0.44 0.92

Ontology for a Semantic Web of tourism. Based on

the cardinalities of these sets, the following quality

measures are computed.

Precision= (C)/(C+I), is the faction of the automatic

discovered constructs which are correct.

Recall= (C)/ (M), is the fraction of the correct

constructs (the set M) which has been discovered by

the ontology development process.

The ontology development process was rather

successful, with average recall and precision ratios of

94% and 92% respectively, as shown in Table 5. The

results obtained with the use of the second experiment

could be much better if more Web sites covering a

large part of the tourism activities were used as input.

The low recall ratio is not so much a consequence of

bad ontology development approach, but much more

due to the restricted domain knowledge covered by the

Web site itself. In the second experiment, we have

conducted experiments on three tourism Web sites

related respectively to flights4, hotel
4
 and leisure

5

activities.

Table 5. Results from the ontology development process using

three Web sites related.

6. Conclusion and Perspectives

Research on ontology is becoming increasingly

widespread in the computer science community. The

major difficulties in building ontology are a mass of

handwork. So, the use of a semi-automatic ontologies

extraction is seen as a practical and good solution. In

this paper we focus on the problem of automating the

generation of domain ontologies, at least partially, by

applying reverse engineering technique. We present

the complete details of the process of semi-

4 http://www.hm-usa.com
5 http://www.travelandleisure.com

OWL

Ontology

constructs

Constructs in

the tutorial

ontology

(M)

Constructs

extracted

correctly

(C)

Constructs

extracted

incorrectly

(I)

Recall

Ratio

(C/M)

Precision

Ratio

C/(C+I)

C l a s s e s 30 28 2 0.93 0.93

Objects

properties

16 15 2 0.94 0.88

 Datatype

properties

77 73 5 0.95 0.94

Towards ontology Extraction from Data-Intensive Web sites: An HTML … 43

automatically create OWL ontology corresponding to

the content of relational database based on the analysis

of its related HTML-forms. Our approach can be used

for migrating HTML pages (especially those that are

dynamically generated from a relational database) to

the ontology-based Semantic Web. The main reason

for this migration is to make the relational database

information that is available on the Web machine-

processable, and reduce the time consuming task of

ontology creation.

However, in the most circumstances, the obtained

ontological structure is coarse. In addition, some

semantics of obtained information need to be validated.

So refining obtained ontological structure is necessary.

Because existing repositories of lexical knowledge

usually includes authoritative knowledge about some

domains, we suggest as future work refining obtained

ontology according to them, especially machine-

readable dictionaries and thesauri (e.g., WordNet).

References

[1] Anderson M., “Extracting a E.R. Schema from a

Relational Database through Reverse

Engineering,” in Proceedings of the 13th

International Conference on the (ERA’94), pp.

403-419, 1994.

[2] Astrova I., “Reverse Engineering of Relational

Databases to Ontologies,” in Proceedings of the

1st European Semantic Web Symposium (ESWS),

Heraklion, Greece, LNCS, 3053, pp. 327-341,

2004.

[3] Astrova I. and Stantic B., “An HTML Forms

Driven Approach to Reverse Engineering of

Relational Databases to Ontologies,” in

Proceedings of the 23rd IASTED International

Conference on Databases and Applications

(DBA), Innsbruck, Austria, pp. 246- 251, 2005.

[4] Baclawski M., Kokar M., Kogut P., and Hart L.,

“Extending UML to Support Ontology

Engineering for the Semantic Web,” in

Proceedings of the Fourth International

Conference on UML (UML’2001), Toronto,

2001.

[5] Batini C., Lenzerini M., and Navathe S., “A

Comparative Analysis of Methodologies for

Database Schema Integration,” ACM Computing

Surveys, vol. 18, no. 4, pp. 323-364, 1986.

[6] Behm A., Geppert K., and Dittrich K., “On the

Migration of Relational Schemas and Data to

Object-Oriented Database Systems,” in

Proceedings of the 5th International Conference

on Re-Technologies for Information Systems, pp.

13-33, 1997.

[7] Benslimane S., Malki M., and Amar D.,

“Automated Migration of Data-Intensive Web

Pages into Ontology-Based Semantic Web: A

Reverse Engineering Approach,” in Meersman

R., Tari Z. et al., (eds.),ODBASE, vol. 2, LNCS

3761, pp. 1640 – 1649, Springer Verlag, 2005.

[8] Chiang R., Barron T., and Story V., “Reverse

Engineering of Relational Databases: Extraction

of an EER Model from A Relational Database,”

Data and Knowledge Engineering, vol. 12, no. 2,

pp. 107-142, 1994.

[9] Choobineh J., “A form-based Approach for

Database Analysis and Design,” Communication

of the ACM, vol. 35, no. 2, pp. 108-120, 1992.

[10] Cranefield S., “UML and the Semantic Web,” in

Proceedings of the International Semantic Web

Working Symposium, Palo Alto, 2001.

[11] Embley D., “Toward Semantic Understanding –

An Approach Based on Information Extraction,”

in Proceedings of the 15th Australasian

Database Conference (ADC), Dunedin, New

Zealand, 2004.

[12] Erdmann M., Maedche A., Schnurr H., and Staab

S., “From Manual to Semi-automatic Semantic

Annotation: About Ontology-based Text

Annotation Tools,” Buitelaar P., and Hasida K.,

(eds.), in Proceedings of the Workshop on

Semantic Annotation and Intelligent Content

(COLING), 2000.

[13] Falkovych K., Sabou M., and Stuckenschmidt H.,

“UML for the Semantic Web: Transformation-

Based Approaches,” in B. Omelayenko and M.

Klein, (eds.), Knowledge Transformation for the

Semantic Web, pp. 92-106, 2003.

[14] Fraternali P., “Tools and Approaches for

Developing Data-intensive Web Applications: a

Survey,” ACM Computing Surveys, vol. 31, no.

3, pp. 227-263, 1999.

[15] Gruber T., “Toward Principles for the Design of

Ontologies used for Knowledge Sharing,”

Human Computer Studies, vol. 43, no. 5-6, pp.

907-928, 1995.

[16] Kashyap V., “Design and Creation of Ontologies

for Environmental Information Retrieval,” in

Proceedings of the 12th Workshop on Knowledge

Acquisition, Modeling and Management (KAW),

Banff, Alberta, Canada, 1999.

[17] Malki M., Ayache M., and Rahmouni M.,

“Rétro-ingénierie des Bases de Données

Relationnelles: Approche Basée sur l’Analyse de

Formulaires, ” in Actes du XVIIème Congrès

INFORSID, Toulon, France, 1999.

[18] Malki M., Flory A., Rahmouni M., “Extraction of

Object-oriented Schemas from Existing

Relational Databases: a Form-driven Approach,”

INFORMATICA, International Journal

(Lithuanian Academy of Sciences), vol. 13, no. 1,

pp. 47-72, 2002.

[19] Mannila H. and Räihä K., The Design of

Relational Databases, Addison-Wesley, 1994.

44 The International Arab Journal of Information Technology, Vol. 5, No. 1, January 2008

[20] Noy N. and Klein M., “Ontology Evolution: Not

the Same as Schema Evolution,” Knowledge and

Information Systems, vol. 6, no. 4, pp. 428-440,

2004.

[21] Petit J., Toumani F., and Kouloumdjian J.,

“Relational Database Reverse Engineering: a

Method Based on Query Analysis,” International

Journal of Cooperative Information System, vol.

4, no. 2, pp. 287-316, 1995.

[22] Stojanovic L., Stojanovic N. , and Volz R.,

“Migrating Data-intensive Web Sites into the

Semantic Web,” in Proceedings of the 17th ACM

Symposium on Applied Computing (SAC),

Madrid, Spain, 2002.

[23] Tijerino Y., Embley D., Lonsdale D., Ding Y.,

and Nagy G., Towards Ontology Generation

from Tables, Kluwer Academic Publishers, 2004.

[24] Yang Y. and Zhang H., “HTML Page Analysis

Based on Visual Cues,” in Proceedings of the 6th

International Conference on Document Analysis

& Recognition (ICDAR), Seattle, USA, 2001.

[25] Volz R., Handschuh S., Staab S., Stojanovic L.,

and Stojanovic N., “Unveiling the hidden bride:

deep annotation for mapping and migrating

legacy data to the semantic Web,” Journal of

Web Semantics: Science, Services and Agents on

the Word Wide Web, vol. 1, no. 2, pp. 187-206,

2004.

[26] Wang J. and Lochovsky F., “Data Extraction and

Label Assignment for Web Databases,” in

Proceedings of the 12th International Conference

on World Wide Web (WWW), Budapest,

Hungary, 2003.

 Sidi Benslimane is a lecterer in the

Department of Computer Science,

Sidi Bel Abbes University, Algeria.

He received the MSc degree in

computer science from Sidi Bel

Abbes University, Algeria, in 2001.

He is a PhD candidate in Computer

Science Department at Sidi Bel Abbes University from

December 2002. His research interests include

semantic web, web engineering, ontology engineering,

and information systems.

Mimoun Malki is an assistant

professor at the Department of

Computer Science at Sidi Bel Abbes

University. He received the PhD

degree in computer science from Sidi

Bel Abbes University, Algeria, in

2003. He heads the Evolutionary

Engineering and Distributed Information Systems

Laboratory. His research interests include, knowledg

management, information retrieval, ontology

engineering, semantic web, web services, and soft

computing systems.

Mustapha Rahmouni is a

professor at the Computer Science

Department of the University of

Oran Es-Sénia, Algeria. He

received the PhD degree in

operational research from

Southampton University UK, in

1987. He heads the Information Systems Laboratory

and the local Doctoral School on STIC. His research

interests include formal specifications, information

management and integration, process modelling, and

knowledge management.

Abdellatif Rahmoun is an associate

professor at King Faisal University,

KSA. He received the PhD degree in
computer science from Sidi Bel

Abbes University, Algeria, in 1998.

He has been involved in several

research projects and teaching in

Algeria. His research interests include, logic, genetic

algorithms and genetic programming, neural

networks and applications, e-learning, e-

commerce, and e-business.

