
288 The International Arab Journal of Information Technology, Vol. 16, No. 2, March 2019

Prediction of Future Vulnerability Discovery in

Software Applications using Vulnerability Syntax

Tree (PFVD-VST)

Kola Periyasamy1 and Saranya Arirangan2
1Department of Information Technology, Madras Institute of Technology, India

2Department of Information Technology, SRM Institute of Engineering and Technology, India

Abstract: Software applications are the origin to spread vulnerabilities in systems, networks and other software applications.

Vulnerability Discovery Model (VDM) helps to encounter the susceptibilities in the problem domain. But preventing the

software applications from known and unknown vulnerabilities is quite difficult and also need large database to store the

history of attack information. We proposed a vulnerability prediction scheme named as Prediction of Future Vulnerability

Discovery in Software Applications using Vulnerability Syntax Tree (PFVD-VST) which consists of five steps to address the

problem of new vulnerability discovery and prediction. First, Classification and Clustering are performed based on the

software application name, status, phase, category and attack types. Second, Code Quality is analyzed with the help of code

quality measures such as, Cyclomatic Complexity, Functional Point Analysis, Coupling, Cloning between the objects, etc,.

Third, Genetic based Binary Code Analyzer (GABCA) is used to convert the source code to binary code and evaluates each bit

of the binary code. Fourth, Vulnerability Syntax Tree (VST) is trained with the help of vulnerabilities collected from National

Vulnerability Database (NVD). Finally, a combined Naive Bayesian and Decision Tree based prediction algorithm is

implemented to predict future vulnerabilities in new software applications. The experimental results of this system depicts that

the prediction rate, recall, precision has improved significantly.

Keywords: Vulnerability discovery, prediction, classification and clustering, binary code analyzer, code quality metrics,

vulnerability syntax tree.

Received October 30, 2014; accepted April 21, 2016

1. Introduction

Software vulnerabilities degrade the performance of the

software’s, systems and integrated applications. The

security of software system is the considerable scrutiny

of these technological years. Evaluation of security

systems and vulnerability detection and prevention

techniques were developed quantitatively. Vulnerable

software‘s lead to crack the system or destroy the user’s

goal. Discovering vulnerability in software components

is not a simple one, it has many measurements,

analysis, conceptualization and techniques are utilized.

The inspected data [9] is tested in five mostly used

operating systems and it includes three consecutive

versions of Windows and two versions of Red Hat

Linux. For vulnerability data discovery, we need

standard database. The National Vulnerability Database

(NVD) is a public data source that sustains

homogeneous information about reported software

vulnerabilities. In this database more than 43,000

software vulnerabilities are affecting 17,000 software

applications [14].

This information is possibly valuable in

understanding trends and patterns in software

vulnerabilities. NVD data sets are used to examine the

pattern of new vulnerability and new software

application flaws. Currently, much security software is

available to detect the vulnerable actions present in the

system, but it needs history information of that

particular action. NVD data’s are useful for preventing

software’s from the vulnerable achievements.

Vulnerability prediction is a vital provision for

preventing applications from security harms. There is

an attempt to build a prediction model for the attribute

[7] Time to Next Vulnerability (TTNV), the time that

it will take before the next vulnerability about a

particular application will be found. The predicted

[12] TTNV metrics could be translated into the

likelihood that a zero - day vulnerability exists in the

software.

The widely used networking applications like [16]

Mozilla, Apache httpd and Apache Tomcat are largely

introduced the vulnerabilities. By seeing at 292

vulnerability reports for Mozilla, 66 for Apache, and

21 for Tomcat, and discover the number of people

committing vulnerability attack changes

proportionally to the number of vulnerability attacks

for Mozilla and Tomcat, but not for Apache httpd.

Dynamic taint analysis is used to automatic attack

detection [15] and overwrites of attacks. This system

does not work with source code of the application; it

will convert the input to binary at run time. In this

paper first, I described about related work then,

Prediction of Future Vulnerability Discovery in Software Applications ... 289

proposed system with all modules, experimental

analysis with results. Finally conclusion will express

the performance of the system.

2. Related Work

To compare the prediction capability of different

VDMs, fit the model to the first half of the

vulnerabilities, and use it to predict the second half of

the vulnerabilities. The prediction will be performed

without using the Vulnerability database or history

information.

Alabsi and Naoum [2] proposed vulnerability

Discovery Models (VDMs) to model the vulnerability

discovery and has been fitted to vulnerability data

against calendar time. The models have been shown to

fit very well with the prediction capabilities that these

models offer by evaluating the accuracy of predictions

made with partial data. This [4, 5] model examined

both the recently proposed logistic model and a new

linear model. In addition to VDMs, They regard as

static approaches to estimating some of the key

attributes of the vulnerability detection process,

presenting an inert approach to calculating the initial

values of some of the VDM’s parameters. A relation is

an ordered pair [6] of members, in which data is owned

from the source (first member) to the target (second

member). There are four types of relation as follow:

parameter passing, function return, data read, and data

write. But this system is not suitable for nesting level

metrics because it does not focus on the entire code

base of several versions of Firefox.

Alhazmi and Malaiya [3] proposed the prediction of

vulnerabilities in the Hyper Text Transfer Protocol

(HTTP) server can permit us to assess the security risk

related to its exercise. Vulnerability discovery models

have newly been proposed which can be used to

estimate the future vulnerabilities expected to be

discovered. Both long time predictions relating several

years and short time predictions for the subsequent year

are considered. Kim et al. [10] proposed the

vulnerability detection method for a plan that described

a rate at which the security vulnerabilities were

discovered. Thus, there is a need to extend a model of

the discovery process that can predict the total of

vulnerabilities that are likely to be discovered in a

particular time frame. Recent studies have produced

vulnerability discovery models that are fitting for an

exact version of the software. However, these [11]

models may not accurately estimate the vulnerability

discovery rates for software when we believe

consecutive versions.

Ozment [17] proposed a usual set of definitions

significant for measuring characteristics of

vulnerabilities and their discovery procedure and it

illustrates the speculative requirements of VDMs. It

particularly the assumption that vulnerability discovery

is an independent process. A Genetic algorithm is used

for tracing the misbehaviours in intrusion [8] detection

systems; it has a fitness function to measure two types

of attack detection. One detects the attack patterns

with the known patterns, by matching the existing

records and new records. Second, measure [13] the

deviation from the normal patterns. For this type of

problem fitness function is used. [1] Machine

Learning (ML) algorithm helps to do better prediction

in network vulnerabilities. ML can be applicable in

many fields like web search engine, mail servers,

weather sites etc.

3. Proposed System

The vulnerability prediction scheme is essential to

protect software applications from failures. Users

always prefer the best and reliable software to develop

their products. Some of the software invaders inject

vulnerabilities into the applications to corrupt the

progression of software. This type of deeds is

trimming down the reliability of the software. We

need a solution to overcome this problem of

developers and users. Without database or history

information about the vulnerabilities, vulnerability

discovery and prediction is performed.
We predict future vulnerabilities from previously

released software applications, based on time and

number of vulnerabilities present in the application.

Each type of applications is considered to discover the

vulnerability in different versions. Predicting

Vulnerabilities in software application are plastered

into five key concepts such as Classification and

clustering, code quality analyzer, binary code

analyzer, vulnerability syntax tree construction,

vulnerability prediction. Figure 1 illustrates the system

architecture of vulnerability prediction.

v

Figure 1. System architecture for vulnerability prediction

3.1. Classification and Clustering

Different vulnerabilities are discovered from various

software applications. National vulnerability database

has a variety of software vulnerabilities and it has

been discovered. There is a need to classify the

vulnerabilities present in the software’s based on the

Data

Collection

Classification

and clustering

Vulnerability
tree

construction

New

vulnerability

prediction

Binary code

analysis

Code quality

measures

Vulnerability

discovering

Lynx

Emacs

Gnupg

Openssl

Attack

notification to

user

290 The International Arab Journal of Information Technology, Vol. 16, No. 2, March 2019

similarities. Initially need to apply the pre-processing

(filter) techniques to NVD data samples to select the

clean the best attribute for classification.

Naive Bayesian (NB) classification algorithm is one

of the efficient and traditional approaches to deal with

complex queries. The Naive Bayesian algorithm is

programmed into weka data mining tool which makes it

easy to handle large number of data at the minimal

time. Weka tool classifies the vulnerabilities based on

the software application name, status, phase, category

and attacks present. We have given 250 records to

classify the attacks based on the attack behaviour and it

increases recall and precision. Four main attacks such

as buffer overflow, remote attack, denial of service,

SQL injection attack and DNS poisoning are

considered based on the frequency of occurrence in

software’s.

3.2. Code Quality Analyzer

Complex code has the high probability of vulnerability

and it is hard to fix the bugs in it. Many code quality

measures are used to evaluate the software reliability.

Here, we have used four main complexity metrics such

as, Cyclomatic complexity, coupling, cloning between

the objects, function point analysis.

We have used the following formula for Cyclomatic

complexity analysis of software engineering concepts,

PNEM 2

In Equation (1), E refers to Number of Edges, N

denotes Number of Nodes and P relates to Number of

Connected components. Function point analysis is

calculated using Equation (2), this will help user to

understand the nature of code quality.

VAFUFPFP *

Where UFP is Unadjusted Functional Point count, VAF

is Value Adjustment Factor given by Equation (3).

)*01.0(65.0 TDIVAF 

Where, represents the sum of 14 characteristics Total

Degree of Influence (TDI). These equations were

adapted from software engineering for source code

analysis. It incorporates many risk factor evaluations to

significantly point the false bug codes.

Based on the code’s quality, it is categorized into

four types such as info, trace (normal), high and critical.

With this categorization process, possibility of

vulnerability is measured and intimation to the users is

provided. The critical and high risk codes have high

probability of attack injection. In addition, PMD plugin

is used to cover all types of code quality metrics in order

to identify the risk and complexity of the code. It is one

of the bugs (code rules) fixing plugin, which is enabled

in netbeans and eclipse platform IDs. PMD plugin is

totally wrapped into 64 coding rule set to protect the

software’s. We have used this plugin to improve code

quality to obtain highly secured as well as reliable

software’s. PMD plugin is an easy way to capture the

bad quality of code and it supports new types of rule

set (user defined rules). So software developers can

create a protected environment for the users.

3.3. Binary Code Analyzer

Instead of source code, binary code analysis is done

with the proposed Genetic Algorithm Based Binary

Code Analysis (GABCA) as Algorithm1. Software

source code is converted into binary form to identify

the modification or error bit in the core parts. Each

input is deeply tested for match with the correct

format. Here we have injected the attack code to the

source code of the application. Thus attack code is

generated based on the significant features of the

attacks present in the software’s. Genetic algorithm is

the best way to identify the binary code behaviour by

incorporating crossover and mutation techniques.

Attack injected binary code is randomly generated to

form 50 individuals and are given to the fittest

function. Fittest value is calculated based on the

number of bits matching to the original individual.

Range is defined on the fittest value to take the best or

the fittest individual for further processing. The

individuals are processed up to (N) number of

generations. In each generation, one best fittest value

(F) is selected. Then, the selected best individual is

made to perform crossover c with the randomly

selected population. Mutation is carried for this

individual and again fitness value is calculated. Based

on the fitness value, the possibility of vulnerability can

be identified. The flow of binary code analysis is

explained in the following Algorithm 1 Genetic based

Binary Code Analyzer (GABCA). This algorithm

depicts the attack type which is presented in software

codes.

Algorithm 1: Genetic based Binary Code Analyzer (GABCA)

Input: Source code

Output: Attack Type (defined)

Step 1: Process: Fitness value F= max (Fittest fit)

Step 2: Fittest=new pop ∩ original pop

Step 3: Indiv 1= Tournament selection € original

 population

Step 4: Indiv 2= Tournment selection € Fitness

Step 5: Crossover c= indiv 1 U indiv 2

Step 6: C= attack code U c

Step 7: Mutation= crossover (C) € Random bit

Step 8: Again Fitness ()

Step 9: Range R

3.4. Vulnerability Syntax Tree Construction

The extracted features of classification such as name,

status, phase, category and attack types are considered

as key attributes for Vulnerability Syntax Tree (VST).

The root node of the tree is defined as base attribute,

which contains a unique value of application name.

The root node is divided into a number of sub-trees

(1)

(2)

(3)

Prediction of Future Vulnerability Discovery in Software Applications ... 291

based on application status, which are of two types such

as candidate and entry. Then the sub-tree is recursively

divided into many sub-trees based on phase and

category of the application. Finally the leaf node

indicates the attack type which is present in that

particular application. Here the phase attribute includes

8 bit numeric value, the first four bits indicate the year

of the application published and next four bits indicate

the application phase.

Application category is divided into two ways, one is

Standard Format (SF) and another is Extended Format

(XF). Decision tree is the classification technique used

for prediction. All level of leaf nodes are filled by

splitting the decisions. Each level of the tree is

compared with the known or unknown samples to

predict new vulnerabilities. Predicting the vulnerability

in a software application is significant for ensuring

security in the system. The predicted vulnerabilities are

taken and stored into the vulnerability database for

further reference.

3.5. Vulnerability Prediction

Predicting vulnerability in software is quite difficult,

because some of the malicious software appear to be

reliable. Most of the software are published through the

internet for the sake of availability, and is prone to

attack injection. Each application is nearly similar to

the previous version of the software product. So

analyzing the attacks in the current version of the

software leads to predict the future vulnerabilities

present in the next generation software applications.

Figure 2 shows the internal structure of the

Vulnerability Syntax Tree. Red node represents the

base node (root), and it can only decide the node that

needs to be split. Green node represents the derived

node and green node indicates the leaf nodes.

Figure 2. Vulnerability syntax tree.

 Prediction is performed by discovering attack

vulnerabilities. First one is training phase, it can be

done by means of learning the vulnerable data

behaviour based on the past history. Second, the

testing phase is performed based on the learned data, it

can accurately predict the attack which is present or

may be present in the application. For this prediction,

we have used Decision Tree Learning Applet

prediction tool. This tool will improve the prediction

rate by reducing the sum of mean square error rate and

sum of absolute error rate.

4. Experimental Analysis

Vulnerability data are collected from the National

Vulnerability Database, in which some portion of data

are pre-processed and it has been propelled to the

Naive Bayesian Classifier to perform Classification

and Clustering. The obtained results of classification

and clustering accuracy are shown in Table 1. The

remaining analysis and results of binary code analysis,

code quality analysis and vulnerability tree predictions

are explained as follows,

Table 1.Classification of vulnerability records.

Vulnerability
Number of Records (50) Number of Records (250)

Training (30) Testing (20) Training (150) Testing (100)

Buffer Overflow 0.56 0.39 0.3 0.12

Remote Attack 0.11 0.13 0.3 0.57

Denial of Service 0 0.3 0.11 0.06

SQL Injection 0 0 0.09 0.12

File Crash 0.14 0.09 0.08 0.05

Based on the correctly classified records, the True

Positive (TP) and False Positive (FP) rates are

calculated by following Equations (4) and (5).

 True Positive Rate

FN)TP/(TP (TPR) 

 False Positive Rate

TN) + (FP / FP = (FPR)

The recall or true positive rate is defined as the

amount of correctly predicted attacks to the actual size

of the attack class.

The Precision (P) is the amount of attack cases that

were correctly predicted relative to the predicted

amount of the attack class and is calculated using the

Equation (6).

Precision (P) = TP / (TP+FP)

In data samples, the number of records that are

correctly classified based on the attributes and

constraints are taken as true positives. The remaining

and imperfectly classified records are considers as

false records and are taken as false positives. Here, the

data are clustered into five forms of attacks. Table 2

explains the classification accuracy for both the

training and testing records.

(4)

(5)

(6)

292 The International Arab Journal of Information Technology, Vol. 16, No. 2, March 2019

Table 2. Accuracy of vulnerability data classification.

Accuracy Metric TP Rate FP Rate

Training Phase (100) 85 % 15 %

Testing Phase (100) 92 % 8 %

Data set is divided into multiple samples to test the

classification system. Each sample is tested to evaluate

Classification Accuracy Parameters (CAP) such as true

positive, false positive, precision, recall and confusion

matrix and is shown in Table 3.

Table 3. Classification accuracy parameters.

Number of Records True Positive False Positive Precision Recall

50 0.5 0.303 0.43 0.46

100 0.516 0.198 0.462 0.51

150 0.537 0.192 0.49 0.537

200 0.579 0.179 0.56 0.579

250 0.662 0.159 0.665 0.692

Vulnerability data records classified with the

attributes of vulnerability software name, status, phase,

category and attack types. This result has been obtained

from the weka 3.6 data mining tool which has totally 76

classification algorithms. Comparing to other data

mining tool, weka is efficient due to its high portability

and ease of use. Further, weka tool is implemented with

Java code and so users can easily understand the

modelling techniques.

Figure 3. Accuracy measures for naïve bayesian classification.

Result of Naive Bayesian classification shown in

Figure 3. For each set of samples, the rate of true

positive is increased and false positive is decreased. It

can be seen that the value of precision and recall

increases with increased number of records. It explains

that the data samples have highly related vulnerability

records that match with the attack properties.

Complexity of conditional codes is used to measure the

complexity of software. High complexity of code leads

to hijack a software user (victims) session to the other

end and also crab the sensitive information. The PMD

plugin supports many rule sets to reduce the complexity

of code and increase the code quality. Based on the

number of lines, complexity of code is increased and is

shown in Figure 4.

Figure 4. Code complexity measures.

Complexity of code is determined by labels such as

if, while, for, case, etc. Based on the severity of code,

it is classified into four levels such as info (low level),

trace (moderately), high (high risk), critical (most

complex and highly unstable) shown in Table 4.

Table 4. Code complexity level.

Number of Lines Code Complexity of Code Risk Level

20 5 Low Risk

60 14 Moderate Risk

71 16 Moderate Risk

93 19 Moderate Risk

168 52 High Risk

Table 5. Binary code analysis.

Population Generation Possibility of attack

50 14 Buffer Overflow (8), Remote Attack (6)

50 12 Buffer Overflow (7), Remote Attack (5)

50 19
Buffer Overflow (11), Remote Attack (6),

Denial of Service (2)

50 17
Buffer Overflow (10), Remote Attack (6),

Denial of Service (1)

50 26
Buffer Overflow (17), Remote Attack (7),

Denial of Service (2)

Dynamic Program Analysis is used to analyze the

computer software while in execution. In the form of

binary code, vulnerability analysis is performed based

on genetic algorithm. Single source gene namely

individual generates number of population strings, and

attack code is made to perform crossover and mutation

with the populated strings.

Figure 5. Vulnerability impact on the binary code analysis.

The possibility of vulnerability present in that

software application is detected and denoted with

name of attack and number of occurrence as shown in

Table 5.Thus the attack injection in the binary code

reflects the possibility of attack which may appear in

the future. This system is experimented in several

P
ro

b
ab

il
it

y
 V

al
u

e
o

f
A

tt
ac

k
s

Number of Records

Cyclomatic Complexity

PMD Rulcs

Number of Lincs of Code

R
is

k
 L

ev
el

s
P

ro
b
ab

il
it

y
 o

f
A

tt
ac

k

Number of Generation

Binary Code Analysis

Prediction of Future Vulnerability Discovery in Software Applications ... 293

types of software applications such as web browser,

text editors, security protocols, communication control

protocols, etc. Figure 5 illustrates the possibility of

attacks in common software application with varying

generation count. Total vulnerabilities are denoted as N

and are divided for training and testing process.

Training Samples are taken from the range of 1 to N/2

and remaining N/2 to N vulnerabilities is given to the

testing phase, which predicts new vulnerabilities. To fit

the Vulnerability prediction model, decision tree

parameters like entropy, Gini index are used which

helps in tree construction.

Entropy of each data record is derived from the

Equation (7).

ii

e

i

pP 2

1

log-Entropy(E) 




Pi is defined as the probability of occurrence; c is the

number of occurrences (positive & negative). The

Information Gain (IG) is calculated using Equation (8)

)()(adEntropybdEntropyIG 

Where, ad-after decision bd-before decision Gini Index

(IG) is calculated by using Equation (9),

2n

1i

G f- 1=) (IIndex Gini
i




From this Equation (9), i value ranges from 1 to n and fi

represents the number of items present in this set. These

equations are adopted from decision tree parameters for

accurate split. The node to split during tree construction

is decided by the metrics such as Entropy, Information

Gain and Gini Index.

Figure 6. Tree based classification.

The vulnerability data set has been tested with many

classifiers. Tree based classification obtains high

classification rate as shown in figure 6. But this

proposed work has considered probability model. When

data set samples are increased, it adapts the training and

testing rate to obtain better classification result.

Probability models are highly sophisticated and it

performs better prediction in large data. The

remaining classification algorithms are tested on

the pre-processed data set with the same samples

like software application name, status, and

category, phase and attack types.

5. Conclusions

Vulnerability prediction scheme is performed by the

five proposed techniques and is ordered as

Classification and Clustering, Code Quality, Binary

Code Analysis, Vulnerability Tree Construction,

Vulnerability Prediction. Binary code analysis

accurately shows the error or changes in the code. Our

proposed system improves the vulnerability prediction

rate. Without vulnerability database or history

information, it is able to predict the future

vulnerabilities in software application and to

recommend the best quality software to the users. This

system further helps to protect the software

applications from future vulnerabilities or attacks. The

results obtained from data mining techniques shows

that the proposed system produces significant

improvement in performance compared to other

methods.

References

[1] Abdulla S., Ramadass S., Altaher A., and Al-

Nassiri A., “Employing Machine Learning

Algorithms to Detect Unknown Scanning and

Email Worms,” The International Arab Journal

of Information Technology, vol. 11, no. 2, pp.

140-148, 2014.

[2] Alabsi F. and Naoum R., “Fitness Function for

Genetic Algorithm used in Intrusion Detection

System,” International Journal of Applied

Science and Technology, vol. 2, no. 4, pp. 129-

134, 2012.

[3] Alhazmi O. and Malaiya Y., “Measuring and

Enhancing Prediction Capabilities of

Vulnerability Discovery Models for Apache and

IIS HTTP Servers,” in Proceedings of 17th

International Symposium on Software Reliability

Engineering, Raleigh, pp. 343-352, 2006.

[4] Alhazmi O. and Malaiya Y., “Prediction

Capabilities of Vulnerability Discovery

Models,” in Proceedings of Annual Reliability

and Maintainability Symposium, Newport

Beach, pp. 86-91, 2006.

[5] Alhazmi O., Malaiya Y., and Ray I.,

“Measuring, Analyzing and Predicting Security

Vulnerabilities in Software Systems,”

Computers and Security, pp. 1-10, 2006.

[6] Basili V., Briand L., and Melo W., “A

Validation of Object-Oriented Design Metrics as

Quality Indicators,” IEEE Transactions on

Software Engineering, vol. 22, no. 10, pp. 751-

761, 1996.

[7] Cavusoglu H., Cavusoglu H., and Raghunathan

S., “Efficiency of Vulnerability Disclosure

(7)

(8)

(9)

Classifiers

A
cc

u
ra

cy
 o

f
C

la
ss

if
ic

at
io

n

294 The International Arab Journal of Information Technology, Vol. 16, No. 2, March 2019

Mechanisms to Disseminate Vulnerability

Knowledge,” IEEE Transaction Software

Engineering, vol. 33, no. 3, pp. 171-185, 2007.

[8] Ingols K., Chu M., Lippmann R., Webster S., and

Boyer S., “Modeling Modern Network Attacks

and Countermeasures using Attack Graphs,” in

Proceedings of Annual Computer Security

Applications Conference, Honolulu, pp. 117-126,

2009.

[9] Joh H., Kim J., and Malaiya Y., “Vulnerability

Discovery Modeling using Weibull Distribution,”

in Proceedings of 19th International Software

Reliability Engineering, Seattle, pp. 299-300,

2008.

[10] Kim J., Malaiya Y., and Ray I., “Vulnerability

Discovery in Multi-Version Software Systems,”

in Proceedings of 10th IEEE High Assurance

Systems Engineering Symposium, Plano, pp. 141-

148, 2007.

[11] Kishore K., Samarjeet B., “Use of Genetic

Algorithms in Intrusion Detection Systems: An

Analysis,” International Journal of Applied

Research and Studies, vol. 2, no. 8, 2013.

[12] Nagappan N., Ball T., and Zeller A., “Mining

Metrics to Predict Component Failures,” in

Proceedings of the 28th International Conference

on Software Engineering, Shanghai, pp. 452-461,

2006.

[13] National Institute of Standards and Technology

2011 [online]. Available: http://www.nist.gov/,

Last Visited, 2014.

[14] National vulnerability database:

http://www.cvedetails.com/, Last Visited, 2014.

[15] Newsome J. and Song D., “Dynamic Taint

Analysis for Automatic Detection, Analysis, and

Signature Generation of Exploits on Commodity

Software,” School of Computer Science,

Pittsburgh, 2004.

[16] Nguyen V. and Tran L., “Predicting Vulnerable

Software Components with Dependency Graphs,”

in Proceeding of 6th International Workshop

Security Measures Metrics, Bolzano, pp. 1-8,

2010.

[17] Ozment A., “Improving Vulnerability Discovery

Models,” in Proceedings of ACM Workshop on

Quality of Protection, Alexandria, pp. 6-11, 2007.

Kola Periyasamy received the

M.C.A., M.E. degree from Anna

University, Chennai, India and she

completed her research Ph.D. in

Anna University, India. She is

currently working as an Assistant

Professor (Senior Grade) at Madras

Institute of Technology, Anna University, India. Her

research is focusing on data mining and soft

computing.

Saranya Arirangan received the

M. Tech. Information Technology

degree from Madras Institute of

Technology, Anna University,

Chennai, India in 2014. She is

currently working as an Assistant

Professor at SRM Institute of

Technology and Engineering, India. Her research is

focusing on predicting vulnerabilities in software

applications, data mining analytics techniques and

Block chain applications.

http://www.nist.gov/
http://www.cvedetails.com/

