
The International Arab Journal of Information Technology, Vol. 16, No. 2, March 2019 295

Tunisian Arabic Chat Alphabet Transliteration

Using Probabilistic Finite State Transducers

Nadia Karmani, Hsan Soussou, and Adel Alimi

 Research Groups on Intelligent Machines, University of Sfax, Tunisia

Abstract: Internet is taking more and more scale in Tunisians life, especially after the revolution in 2011. Indeed, Tunisian

Internet users are increasingly using social networks, blogs, etc. In this case, they favor Tunisian Arabic chat alphabet, which

is a Latin-scripted Tunisian Arabic language. However, few tools were developed for Tunisian Arabic processing in this

context. In this paper, we suggest developing a Tunisian Arabic chat alphabet-Tunisian Arabic transliteration machine based

on weighted finite state transducers and using a Tunisian Arabic lexicon: aebWordNet (i.e., aeb is the ISO 639-3 code of

Tunisian Arabic) and a Tunisian Arabic morphological analyzer. Weighted finite state transducers allow us to follow Tunisian

Internet user’s transcription behavior when writing Tunisian Arabic chat alphabet texts. This last has not a standard format

but respects a regular relation. Moreover, it uses aebWordNet and a Tunisian Arabic morphological analyzer to validate the

generated transliterations. Our approach attempts good results compared with existing Arabic chat alphabet-Arabic

transliteration tools such as EiKtub.

Keywords: Tunisian arabic chat alphabet, tunisian arabic, transliteration, aebWordNet, tunisian arabic morphological

analyzer, weighted finite state transducer.

Received August 6, 2015; accepted April 17, 2016

1. Introduction

Machine transliteration is a useful component for

many multilingual applications such as information

retrieval, question-answering, chat application,

Internet monitoring, automatic translation, named

entity recognition, etc. Many transliteration tools

have been developed. Generally, they convert a

word from Latin script to the native word script. These

tools are used for many languages such as Hindi [14],

Persian [8], Arabic [2, 3, 5, 13, 24], etc., However, few

contributions are made for Tunisian Arabic Chat

Alphabet transliteration (TACA) [17] i.e., a

transliteration using Latin script to express Tunisian

Arabic script.

Indeed, with the Tunisian political revolution,

Tunisian Arabic (TA) processing is taking more and

more scale. Particularly, TACA transliteration

becomes very important seen its increasing use by

Internet users instead of TA.

In this context, we face 4 main challenges: script

specifications, missing sounds, transliteration variants

and language of origin [7]. Firstly, TACA and TA have

different scripts illustrated in Table 1. TACA uses

Latin script (i.e., with separate characters) written

from Left To Right (LTR). However, TA uses Arabic

script (i.e., with intermediate characters like the

character ‘ڨ’/q’/1 written as ‘ڤ’ in the middle of the

word) written from (RTL).

1Phonetic according to the International Phonetic Alphabet (IPA).

Table 1. Examples of TACA-TA graphemes alignments.

Source language: TACA Target language: TA Graphemes alignment

tounes
Tunisia

 /tu:nis/ تونِس

Thawra
Revolution

 /θawra/ ثوَره

cha3b
People

 /ʃaʔˤb/ شَعب

Secondly, some sounds are missing from TACA to

TA e.g., the sound of the character ‘x’ /ks/, and from

TA to TACA e.g., the sound of the character ‘ض’ /dˁ/.

Thirdly, TACA-TA transliteration allows multiple

variants of a source term to be valid based on the

opinion of different human transliterators e.g. the TA

transliterations I ‘آنا’/ʔa:na:/ and ‘أنا’/ʔana:/ are valid for

the TACA word ‘ana’ respectively according to a TA

native speaker from Tunis i.e., the capital of Tunisia

and a TA native speaker from Gafsa i.e., a city in

Tunisia. Finally, more than one TA character can be

chosen to represent the origin of the word e.g. for the

TACA word ‘Ali’ one could choose ‘ع’/ʔˤ/ for the

character ‘A’ to specify that the word is originally

Arabic rather than the most common Arabic character

 ./ʔ/’أ‘

In this paper, we suggest a TACA machine

transliteration based on probabilistic Weighted Finite-

State Transducers (WFSTs) for automatic

transliterations generation and calling aebWordNet and

a TA morphological analyzer for transliterations

validation. Our proposed machine transliteration

adopts a hybrid transliteration approach i.e. ,

using both spelling and phonetics [7]. We

296 The International Arab Journal of Information Technology, Vol. 16, No. 2, March 2019

evaluated it and compared it with EiKtub using a

TACA-TA testing corpus.

We decompose this paper in 6 main sections:

introduction, related works, Tunisian Arabic chat

alphabet, the proposed TACA machine transliteration,

experimental results and conclusion.

2. Related Works

Transliteration has been subject to many works for

many languages especially for the Arabic language.

We notice the works of Arbabi et al. [3], stalls and

Knight [23], Al-Onaizan and Knight [2], Hassan and

Sorensen [5], Kashani [13], etc., the first work

suggested using a hybrid algorithm based on neuronal

networks and knowledge based system for named

entity. The second one proposed a generative model

based on pronunciation. The third one improved the

last work by incorporating web counts to re-score the

transliteration candidate. The fourth work used a

probabilistic block based transliteration. However, the

fifth work adopted hidden Markov models.

These efforts have converged to some free Arabic

chat alphabet transliteration tools such as Yoolki,

Yamli, Microsoft Marren, Google translator IME and

EiKtub2 [20]. The last tool is the most accurate for TA

transliteration. Indeed, EiKtub adopts a phonetic one to

one rule based approach that uses Bikdash Arabic

transliteration rules3, supports full vowelization and

takes in charge some marginal TA consonants.

However, Tunisian Arabic is less fortunate in

natural language research work and particularly in

transliteration. We identified only the work in progress

of Masmoudi et al. [17] that adopts a semi-automatic

rule-based approach.

3. Tunisian Arabic Chat Alphabet

Many textual Internet communications are written with

TACA. It is a transliteration of TA (i.e., an Arabic

dialect) using Latin alphabet instead of TA alphabet

based on phonemic (e.g. the character ‘أ’ and ‘a’) or

graphic similarities (e.g. the character ‘ق’ and ‘9’). It

does not depend on predefined rules e.g. the word

Revolutions ‘thawrat’ /θawra:t/ uses the Latin

morpheme ‘a’ to replace ‘ ََ ’ then to replace ‘ا’.

Mainly, it is based on users practice.

TACA is a transliteration of a variant of Arabic

language: TA. In fact, TA and Arabic have similar

properties in transcription, lexicon and morphology.

Their transcription uses Arabic script, is RTL written,

is based on the Arabic consonant alphabet composed of

28 consonants and formulates vowels using Arabic

diacritics. Their lexicon is composed of derived words,

fixed words and exceptional words. Also, their

2http://eiktub.com/
3https://en.wikipedia.org/wiki/Bikdash_Arabic_Transliteration_Rul

es

morphology is marked by graphical words (i.e., a

sequence of morphemes) which can be a unique entity

or a composite unity (i.e., composed of a stem

surrounded by particles such as proclitics, a prefix,

suffixes and enclitics) illustrated by Figure 1.

PCL: proclitic; PRF: prefix; SUF: suffix; ECL: enclitic

Figure 1. The structure of graphical TA word.

However, TA varied deeply from Arabic even in

transcription, lexicon and morphology. The

transcription of TA uses an extended Arabic consonant

alphabet composed of 31 consonants (i.e., the 28

Arabic consonants extended by three marginal TA

consonants: ‘ڢ’ /v/, ‘ڤ’ /q’/ and ‘پ’ /P/) and generally

formulates vowels using a limited set of Arabic

diacritics (i.e. 6 diacritics from 9 Arabic diacritics: ‘ ََ ’

/a/, ‘ َ ’ /u/, ‘ َِ ’ /i/, ‘ َ ’ //, ‘ َ ’ // and ‘ء’ /ʔ/). In addition,

its lexicon is full of exceptional words, particularly

borrowed words but Arabic lexicon is rich of derived

words. And its morphology is marked by TA

morphemes (i.e., stem and particles) e.g. in the negation

form, TA uses the enclitic ‘ش’ /ʃ/ at the end of the word

such as He doesn’t abandon ‘م’سیلمش /majsallamʃ/ but

in Arabic, the enclitic ‘ش’ /ʃ/ is not used. When there

is a negation, the Arabic word is preceded by ‘لا’ /la:/

e.g., He doesn’t abandon ‘لا’ یستسلم/la: jastaslimu/.

Seen that TACA is a transcription of TA, it shares

TA language’s specificities but it differs in

transcription. TACA uses Latin script and is LTR

written e.g. he doesn’t abandon ‘mysallamch’

/majsallamʃ/. It hasn’t a standard alphabet (i.e., its

alphabet counts Latin consonants, vowels, numbers and

even symbols e.g., People ‘cha3b’, Work ‘5édma’,

Loaf ‘KHob’za’). Internet users define its alphabet. In

this case, we suggest building a TACA machine

transliteration to define TACA alphabet and TACA-TA

transliteration rules, and to generate possible TA

word(s) for an inputted TACA word.

4. The Proposed TACA Machine

Transliteration

Commonly, Machine transliteration is composed of

two main parts: training and transliteration. For the

proposed machine transliteration, we suggest a training

part based on a manual statistical study realized by two

TA native speakers and a transliteration part realized

automatically using WFSTs. The last part calls

aebWordNet and a TA morphological analyzer as it is

shown in Figure 2.

Tunisian Arabic Chat Alphabet Transliteration Using Probabilistic ... 297

Figure 2. The proposed TACA machine transliteration structure.

4.1. Training

The training is based on TACA-TA training corpus

detailed in section 5.1. From this corpus, we manually

align graphemes and generate transliteration rules

formulated as Finite State Automata (FSA).

4.1.1. Alignment and Segmentation

This step consists on the alignment of TACA and TA

graphemes for every transliteration pair in the training

corpus according to script specifications followed by

the segmentation.

Generally, graphemes alignment is done

automatically using existing word alignment tools like

GIZA++ [21], Berkely aligner [16], Natura alignment

tools4, etc. The most used one for transliteration pairs

alignment is GIZA++. However, GIZA++ considers

the word in lower case, does not allow multiple to one

alignment and is typically quite low for low resource

language pairs [22].

Seen that TACA uses differently lower and upper

case, TACA-TA transliteration contains multiple to

one alignment and our training corpus is limited to

500-word pairs, we suggest manual alignment by two

TA native speakers to get an efficient training model.

Indeed, a TACA word is aligned with the inversion

of a TA word seen that TACA is LTR but, TA is RTL

e.g., see Table 1. After alignment, the equivalent

TACA-TA graphemes are manually extracted

according to their position in the word, phonetic

similarity e.g., ‘a’ is equivalent to ‘أ’ and graphic

similarity e.g. ‘9’ is equivalent to ‘ق’. Table 2

summarizes TACA-TA equivalent graphemes

extracted from the training corpus.

The alignment according to graphemes instead of

characters allows us to avoid the problem of missing

sounds. Indeed, missing sounds are obtained by the

combination of more than one character e.g. the

character ‘x’ /ks/ is transliterated as ‘كس’ /ks/ and the

character ‘th’ /th/ is transliterated as ‘ض’/dˁ/.

4http://corpora.di.uminho.pt/natools/

Table 2. TACA-TA equivalent graphemes.

G
ra

p
h

em
es

TACA TA

G
ra

p
h

em
es

TACA TA

a, e, A, E, é, è ا /a:/ 3

 /ʔˤ/ ع

a, e, o, A أ /ʔ/ g, 4, gh غ /ɣ/

e, i, E, I إ /ʔ/ f, F ف /f/

a, e آ /ʔa:/ k, 9 ق /q/

b, B ب /b/ c, k, q, C, ck ك /k/

t, T ت /t/ l, L ل /l/

t ة /t/ m, M م /m/

th ث /θ/ n, N ن /n/

g, j ج /ʒ/ a, h, H ه /h/

h, H, 7 ح /ħ/ u, w, U, W, ou و /w/, و/u:/

5, kh خ /x/ e, i, y, I, W, Y ي/j/,ي /i:/

d, D د /d/ a, é ى /a:/

dh, th ذ /ð/ g ڤ /q’/

r, R ر /r/ p پ /P/, پ /b’/

s, z, Z ز /z/ v, V ڢ /v/

s, S, Z س /s/ e ء //

ch, ck, CH ش /ʃ/ a, e, i, A, E, è َ /a/

s, S ص/sˁ/ e, o, O, ou َ /u/

th ض /dˁ/ e, i, u, I َ /i/

t ط /tˁ/ ’ َ //

 /ks/ كس dˁ/ x/ظ

4.1.2. Rule Generation

With the absence of standard in the case of TACA-TA

transliteration, we consider TACA-TA equivalent

graphemes identified in the section above as

transliteration rules. That allows us to cover frequent

transliteration variants and the language of origin. We

suggest formulating transliteration rules with a Finite

State Transducer (FST). A FST is a FSA whose state

transitions are labelled with both input and output

symbols. Therefore, a path through the transducer

encodes a mapping from an input symbol sequence to

an output symbol sequence [19].

We define TACA transliteration FST T as T <1,

2, Q, i, F, E >
1={a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w,

x, y, z, A, B, C, D, E, F, H, I, L, M, N, O, R, S, T, U, V, W,

Y, Z, 3, 4, 5, 7, 9, é, è, ’, ch, ck, dh, gh, kh, th, ou,CH}

2 = {ص ,ش ,س ,ز ,ر ,ذ ,د ,خ ,ح ,ج ,ث ,ة ,ت ,پ ,ب ,آ ,أ ,إ ,أ ,ا ,ء,

ََ ,ى ,ي ,و ,ه ,ن ,م ,ل ,ك ,ڤ ,ق ,ڢ ,ف ,غ ,ع ,ط ,ض , َ , َِ , َ {كس ,

Q= {0}

i=0

F= {0}

E={(0,a:0,ا), (0,a:0,أ), (0,a:0,آ), (0,a:0,ى), (0,a:0,ه), (0,a: ََ ,0),

(0, b:0,ب), (0,c:0,ك), (0,d:0,د), (0,e:0,ء), (0,e:0,ا), (0,e:0,أ),

(0,e:0,إ), (0,e:0,آ), (0,e:0,ي), (0,e: ََ ,0), (0,e: َ ,0), (0,e: َِ ,0),

(0,f:0,ف), (0,g:0,ج), (0,g:0,غ), (0,g:0,ڤ), (0,h:0,ح), (0,h:0,ه),

(0,i:0,إ), (0,i:0,ي), (0,i: ََ ,0), (0,i: َِ ,0), (0,j:0,ج), (0,k:0,ق),

(0,k:0,ك), (0,l:0,ل), (0,m:0,م), (0,n:0,ن), 0,o:0) ,(0,أ,o: َ ,0),

(0,p:0,پ), (0,q:0,ك), (0,r:0,ر), (0,s:0,ز), (0,s:0,س), (0,s:0,ص),

(0,t:0,ت), (0,t:0,ة), (0,t:0,ط), (0,u:0,و), (0,u: َِ ,0), (0,v:0,ڢ),

(0,w:0,و), (0,x:0ك,س), (0,y:0,ي), (0,z:0,ز), (0,A:0,أ), (0,A:0,ا),

(0,A: ََ ,0), (0,B:0,ب), (0,C:0,ك), (0,D:0,د), (0,E:0,إ), (0,E:0,ا),

(0,E: ََ ,0), (0,F:0,ف), (0,H:0,ح), (0,H:0,ه), (0,I:0,إ), (0,I:0,ي),

(0,I: َِ ,0), (0,L:0,ل), (0,M:0,م), (0,N:0,ن), (0,O: َ ,0),

(0,R:0,ر), (0,S:0,س), (0,S:0,ص), (0,T:0,ت), (0,U:0,و),

(0,V:0,ڢ), (0,W:0,و), (0,W:0,ي), (0,Y:0,ي), (0,Z:0,ز),

(0,Z:0,س), (0,ع:0,3), (0,غ:0,4), (0,خ:0,5), (0,ح:0,7), (0,ق:0,9),

(0,é:0,ا), (0,é:0,ى), (0,è:0,ا), (0,è: ََ ,0), (0,’: َ ,0), (0,ch:0,ش),

(0,ck:0,ش), (0,ck:0,ك), (0,dh:0,ذ), (0,gh:0,غ), (0,kh:0,خ),

(0,th:0,ث), (0,th:0,ذ), (0,th:0,ض), (0,ou:0,و), (0,ou: َ ,0),

298 The International Arab Journal of Information Technology, Vol. 16, No. 2, March 2019

(0,CH:0,ش)}

In fact, Σ1 is the set of input alphabet (i.e., TACA

graphemes in Table 1), Σ2 is the set of output alphabet

(i.e., TA graphemes in Table 1), Q is the set of states, i

is the initial state, F is the set of final states and E is

the transitions set.

We notice that T is not a deterministic finite state

i.e., for the same state and the same input TACA

grapheme there is many outputs in T, e.g., the state 0

and the input grapheme ‘a’ has many output

graphemes as ‘ى‘,’آ‘,’أ‘ ,’ا’ and ‘ ََ ’. So, using T, every

TACA word may have more than one TA

transcription. For every word w=l1 l2 l3 … ln, we find P

possible TA transliterations as detailed in Equation (1)

(i.e., ai is the number of transitions for li).

P=




n

i
ai
1

Consequently, the transliteration process is

ambiguous.

To avoid the ambiguity, we suggest using statistics

to weight T. This allows us to distinguish transitions

with the same state and input graphemes using weights.

In this case, we propose to take the training corpus as

a sample. From this sample, we count frequency f (i.e.,

number of occurrences) of every transition ei in E and

calculate relative frequency Rf (i.e., empirical

probability) for every element l in Σ1. Relative

frequency is detailed in Equation (2).

For l, Rf(l, ei)= f(l,ei)/Σi f(l, ei).

E.g., for l=‘a’, we count frequency in Table 3 and we

calculate relative frequency in Table 4.

Table 3. Frequency table for the graphem ‘a’ in the training corpus.

Association Number of instances

(a,ا) 168

(a,أ) 12

(a,آ) 1

(a,ى) 6

(a,ه) 2

(a, ََ) 204

Total 393

Table 4. Relative frequency table for the graphem ‘a’ in the training
corpus.

Association Relative frequency

(a,ا) 0.427

(a,أ) 0.030

(a,آ) 0.002

(a,ى) 0.015

(a,ه) 0.005

(a, ََ) 0.519

Total 1

The statistical study of T allows us to define a

WFST for TACA transliteration over the probability

semiring (+, +, ×, 0, 1). A WFST puts weights on

transitions in addition to the input and output symbols.

Weights may encode probabilities, durations, penalties

or any other quantity that accumulates along paths to

compute the overall weight of mapping an input

sequence to an output sequence [18]. In our work, we

use relative frequencies as weights for T transitions.

Consequently, we get the probabilistic weighted finite

state T as T <Σ1, Σ2, Q, i, F, E, λ, ρ>

1={a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w,

x, y, z, A, B, C, D, E, F, H, I, L, M, N, O, R, S, T, U, V, W,

Y, Z, 3, 4, 5, 7, 9, é, è, ’, ch, ck, dh, gh, kh, th, ou, CH}

2 = {ء, ا ,ص ,ش ,س ,ز ,ر ,ذ ,د ,خ ,ح ,ج ,ث ,ة ,ت ,پ ,ب ,آ ,أ ,إ ,أ ,

ََ ,ى ,ي ,و ,ه ,ن ,م ,ل ,ك ,ڤ ,ق ,ڢ ,ف ,غ ,ع ,ط ,ض , َ , َِ , َ {كس ,

Q= {0}

i=0

F= {0}

E={(0, a:0 ,0.427 ,ا), (0, a:0 ,0.030 ,أ), (0, a:0 ,0.002 ,آ), (0,

a:0 ,0.015 ,ى), (0, a:0 ,0.005 ,ه), (0, a: ََ , 0.519, 0), (0, b:ب,

1,0), (0,c:1,0 ,ك), (0,d:1,0 ,د), (0,e:0.006,0 ,ء), (0,e:0.245 ,ا,

0), (0, e:0 ,0.006 ,أ), (0, e:0 ,0.072 ,إ), (0, e:0 ,0.033 ,آ), (0,

e:0) ,(0 ,0.006 ,ي, e: ََ , 0.072, 0),(0, e: َ , 0.013, 0), (0, e: َِ ,

0.543, 0), (0, f:0 ,1 ,ف), (0, g:0 ,0.285 ,ج), (0, g:0 ,0.142 ,غ),

(0, g:0 ,0.571 ,ڤ), (0, h:0 ,0.157 ,ح), (0, h:0 ,0.842 ,ه), (0, i:إ,

0.028, 0), (0, i:0 ,0.706 ,ي), (0, i: ََ , 0.005, 0), (0, i: َِ , 0.259,

0), (0, j:0 ,1 ,ج), (0, k:0 ,0.086 ,ق), (0, k:0 ,0.913 ,ك),(0, l:ل,

1, 0), (0, m:0 ,1 ,م), (0, n:0 ,1 ,ن), (0, o:0 ,0.038 ,أ), (0, o: َ ,

0.961, 0), (0, p:0 ,1 ,پ),(0, q:0 ,1 ,ك), (0, r:0 ,1 ,ر), (0, s:ز,

0.016, 0), (0, s:0 ,0.516 ,س), (0, s:0 ,0.467 ,ص), (0, t:ت,

0.864, 0), (0, t:0 ,0.135 ,ط), (0, u:0 ,0.984 ,و), (0, u: َِ , 0.015,

0), (0, v:0 ,1 ,ڢ), (0, w:0 ,1 ,و), (0, x:0 ,1 ,كس), (0, y:0 ,1 ,ي),

(0, z:0 ,1 ,ز), (0, A:0 ,0.125 ,أ), (0, A:0 ,0.375 ,ا), (0, A: ََ ,

0.500, 0), (0, B:0 ,1 ,ب), (0, C:0 ,1 ,ك), (0, D:0 ,1 ,د), (0,

E:0 ,0.333 ,إ), (0, E:0 ,0.500 ,ا), (0, E:◌, 0.166, 0), (0, F:ف,

1, 0), (0, H:0 ,0.250 ,ح),(0, H:0 ,0.750 ,ه), (0, I:0 ,0.222 ,إ), (0,

I:0) ,(0 ,0.444 ,ي, I: َِ , 0.333, 0), (0, L:0 ,1 ,ل),(0, M:0 ,1 ,م),

(0, N:0 ,1 ,ن), (0, O: َ , 1, 0),(0, R:0 ,1 ,ر), (0, S:0.800 ,س,

0), (0, S:0 ,0.200 ,ص), (0, T:0 ,1 ,ت),(0, U:0 ,1 ,و), (0, V:ڢ,

1, 0), (0, W:0 ,0.666 ,و), (0, W:0 ,0.333 ,ي), (0, Y:0 ,1 ,ي), (0,

Z:0 ,0.500 ,ز), (0, Z:0 ,0.500 ,س), (0 ,1 ,ع:3 ,0), (0 ,1 ,غ:4 ,0),

 ,(0 ,0.833 ,ا:é ,0) ,(0 ,1 ,ق:9 ,0) ,(0 ,1 ,ح:7 ,0) ,(0 ,1 ,خ:5 ,0)

(0, é:0 ,0.166 ,ى), (0, è:0 ,0.800 ,ا), (0, è: ََ , 0.200, 0), (0,’: َ ,

1, 0), (0, ch:0 ,1 ,ش), (0, ck:0 ,0.900 ,ش), (0, ck:0 ,0.100 ,ك),

(0, dh:0 ,1 ,ذ), (0, gh:0 ,1 ,غ), (0, kh:0 ,1 ,خ), (0, th:0.125 ,ث,

0), (0, th:0 ,0.625 ,ذ), (0, th:0 ,0.250 ,ض), (0, ou:0 ,0.500 ,و),

(0, ou: َ , 0.500, 0), (0, CH:0 ,1 ,ش)}

4.2. TACA Transliteration Process

The proposed TACA machine transliteration detailed

in Figure 2 takes as input a TACA word and generates

as output TA word(s). The inputted TACA word is

processed over four main steps. The first step consists

on TACA graphemes identification. The second step

uses these graphemes to formulate the input word

segmentation as a FSA. The third step represents

transliteration generation based on FSTs. Finally, the

fourth step is the validation step that calls

aebWordNet and if necessary, TA morphological

analyzer to identify acceptable outputted TA word(s).

4.2.1. TACA Graphemes Identification

In this step, we retain every graphem in Σ1 (i.e., the

inputted alphabet of T) included in the TACA word.

Therefore, we obtain a set of possible graphemes that

will be used for segmentation e.g., in Table 5.

(1)

(2)

Tunisian Arabic Chat Alphabet Transliteration Using Probabilistic ... 299

Table 5. Examples of TACA word graphemes identification.

TACA input word Possible graphemes

tounes G={t, o, u, n, e, s, ou}

Thawra G={T, h, a, w, r, Th}

cha3b G={c, h, a, 3, b, ch}

4.2.2. Segmentation

A TACA word can be represented as a list of

graphemes. However, more than one list of graphemes

is possible for the same word from the set of

graphemes identified by the previous step e.g. For the

TACA word Tunisia ‘tounes’, the lists L1= t→ o → u

→n → e → s and L2= t→ ou → n→ e → s are

acceptable.

In this case, we suggest using a FSA noted W to

represent all possible graphemes succession. In fact,

the TACA word is formulated as: W <Σ, Q, i, F, E>

where Σ is the set of input alphabet (i.e., possible

TACA graphemes in the word identified in the step

above), Q is the set of states (i.e., they represent

grapheme positions), i is the initial state, F is the set of

final states and E is the set of transitions (i.e.,

graphemes succession in the word).

To define E, we use the inputted word and Σ (i.e.,

we note Σ= {gi}). It consists on the extraction of the

transitions (state1, g1, state2) and (state2, g2, state3)

such that g1 is the predecessor of g2 and g2 is the

successor of g1 in the inputted word e.g., for the

TACA word Tunisia ‘tounes’, we get the FSA tounes

<Σ, Q, i, F, E >, where Σ= {t, o, u, n, e, s, ou}, Q={0,

1, 2, 3, 4, 5, 6} and E= {(0,t,1), (1,ou,3), (1,o,2),

(2,u,3), (3,n,4), (4,e,5), (5,s,6)}.

Figure 3. The FSA ‘tounes’.

The FSA tounes is detailed in Figure 3 and its

adjacency matrix is illustrated in Table 6.

Table 6. The adjacency matrix of ‘tounes’.

× t o u n e s ou

t 0 1 0 0 0 0 1

o 0 0 1 0 0 0 0

u 0 0 0 1 0 0 0

n 0 0 0 0 1 0 0

e 0 0 0 0 0 1 0

s 0 0 0 0 0 0 0

ou 0 0 0 1 0 0 0

4.2.3. Transliterations Generation

This step aims to generate possible transliterations for

an inputted word. For this purpose, we calculate the

transliteration WFST, then we optimize it using

morphological rules and finally we deduce possible

transliterations.

To get the transliteration WFST noted WT, we use

the FSA W, considered as WFST with the same input

and output that all transitions are weighted with 1,

and the WFST T. Indeed, the composition i.e., W º T

[18], between W and T generates WT e.g. from the

FSA tounes and the WFST T, we get tounesT (see

Figure 4) as tounesT <Σ1, Σ2, Q, i, F, E >, where Σ1=

{t, o, u, ou, n, e, s}, Σ2= {ي, و, ن ,ط, ت ,آ, إ, أ, ا, ء , ََ , َ

, َِ ,ت:Q={0, 1, 2, 3, 4, 5, 6} and E= {(0, t ,{ ص ,س ,ز ,

0.864, 1), (0, t:0.135,1 ,ط), (1, o: َ , 0.961, 2), (1, o:أ,

0.038, 2), (1, ou: َ , 0.500, 3), (1, ou:3 ,0.500 ,و), (2, u:و,

0.984, 3), (2, u: َِ , 0.015, 3), (3, n:4 ,1 ,ن), (4, e:0.006 ,ء,

5), (4, e:5 ,0.245 ,ا), (4, e:5 ,0.006 ,أ), (4, e:5 ,0.072 ,إ),

(4, e:5 ,0.033 ,آ), (4, e:5 ,0.006 ,ي), (4, e: ََ , 0.072, 5),

(4, e: َ , 0.013, 5), (4, e: َِ , 0.543, 5), (5, s:6 ,0.016 ,ز),

(5, s:6 ,0.516 ,س), (5, s :6 ,0.467 ,ص)}.

Figure 4. The WFST tounesT.

The WFST WT can be optimized based on TA

morphological rules detailed in Table 7. In fact, we

valid every transition in E by the verification of

morphological rules. Two main optimization cases

exist:

1. Identification of one wrong transition.

2. Identification of two wrong successive transitions.

Table 7. TA morphological rules.

N° Morphological rule

1 A TA word does not begin by a diacritic.

2 A TA word does not begin by the long vowel ‘ى’.

3 A TA word may contain ‘ى’ or ‘ة’ or ‘ء’ only at the end.

4
A TA consonant takes at most two diacritics: ‘ ◌’ or ‘ء’ with one of

the other diacritics.

5 A TA diacritic does not succeed the long vowels ‘ا’ and ‘ى’.

6 The diacritic ‘ ◌’ does not succeed another diacritic.

7 The diacritic ‘ َِ ’ does not succeed the graphem ‘أ’.

8 The diacritics ‘ ََ ’, ‘ َ ’ and ‘ َ ’ do not succeed the graphem ‘إ’.

In the first case, we delete the wrong transition from

E. However, the second case is more complicated. Let

a state s with I= {i0…in} the set of its previous

transitions and O= {o0…om} the set of its following

transitions.

 In this case, we notice four possibilities:

1. Every transition in I cannot precede all transitions

in O. Therefore, we exclude the sets I and O from

E and the state s from Q.

300 The International Arab Journal of Information Technology, Vol. 16, No. 2, March 2019

2. Every transition in I cannot precede a transition oi in

O. Therefore, we exclude the transition oi from E.

3. One transition ii in I cannot precede all transitions in

O. Therefore, we exclude the transition ii from E.

4. One transition ii in I cannot precede one transition

oi in O. Therefore, we add a new state s2’ in Q, we

replace the transition ii (s1, g, w, s2) by a new

transition ii’ (s1, g, w, s2’) in E and we add in E a

copy of transitions in O excluding oi where the first

state is replaced by s2’.

We suggest using these rules for the correction and

simplification of WT e.g., to optimize tounesT, we

apply morphological rules one by one. Only two rules

i.e. rule n°4 and rule n°7 intervene. In fact, for the

state 2 in tounesT every transition in I cannot precede

the transition oi (1, u: َِ ,2). Consequently, the set E of

tounesT composed of 21 transitions becomes E’ with

20 transitions. The optimization of tounesT: tounesT’

is showed in Figure 5.

Figure 5. Morphological optimization of the WFST tounesT.

After morphological optimization, we generate

transliterations by the traverse the WFST WT to search

output paths ∏=e0 e1… en (i.e., the concatenation of the

output alphabet graphemes ei) from initial state to final

state representing possible transliterations and we sort

them according to the path weight representing the

transliteration probability. Indeed, for every path ∏ a

weight w [∏] is defined by Equation (3) [18].

w [∏] =w [e0]  w [e1] …  w [en]

Seen that WT is defined over the probability semiring, w

[∏] is calculated as in Equation (4).

w [∏] =w [e0] × w [e1] ×… × w [en]

E.g., for the path ∏= تونس /tunis/ (i.e., the concatenation of

 the path weight ,(ت←و←ن←س

w[∏]=0.135×0.961×0.984×1×0.543×0.516=0.035.

4.2.4. Transliterations Validation

All transliterations generated in the step before need to

be validated. In the first time, we use aebWordNet. In

fact, a transliteration takes the valid state if we find it

in aebWordNet Lemmas or in aebWordNet

wordForms e.g., for the inputted word ‘tounes’ we get

 .tunis/ (P=0.035) as valid transliteration/ ’تنوس‘

In this way, we can validate basically simple TA

words and some graphical TA words. However,

graphical TA words are not covered by aebWordNet

wordForms. So, if none of the transliterations is

validated, we call a TA morphological analyzer. The

last one is used to extract the stems of the

transliterations representing graphical TA words. The

stem is validated by aebWordNet instead of the

transliteration. Therefore, the validation of a

transliteration stem implies the validation of the

concerned transliteration.

4.3. The Lexicon aebWordNet

WordNet (i.e., a semantic lexicon), firstly developed for

English, covers nowadays many other languages like

Arabic and even dialects such as TA.

We use the standardized aebWordNet [10]

according to ISO 24613 [6], that adopts an extended

WordNet-LMF [23] model. This WordNet represents

simple TA words as Lemmas and graphical TA

words as WordForms [11]. It covers many simple TA

words (i.e., verbs, nouns, adjectives and adverbs) and

some graphical words like verbs in imperative tense,

feminine nouns, plural nouns etc., The lexicon

aebWordNet currently counts 8,279 different lemmas

(i.e., 3,530 verbs, 3,010 nouns, 1,267 adjectives and

472 adverbs) and 12,152 word forms [12]. The version

of aebWordNet, used for validation, covers all lexical

stems of TACA testing corpus.

4.4. Tunisian Arabic Morphological Analyzer

Graphical TA words are considered canonically as

words. However, morphologically and lexically, it is a

set of lexical unities. The proposed morphological

analyzer allows us to extract lexical unities and to

establish lexical and grammatical labeling based on

lexical characteristics of the stem, the proclitics, the

prefix, the suffixes and the enclitics. This

morphological analyzer is an adapted version of Arabic

intelligent morphological analyzer described in [9] to

TA language that uses a lexical TA dictionary,

aebWordNet and an expert system. It uses a filtering

approach to identify possible lexical unities

combinations for an inputted TA word. Then, it calls

the lexical dictionary (i.e., containing labeled TA

proclitics, prefixes, suffixes and enclitics) for

combinations generation and labeling i.e., every

combination adopts the common lexical characteristics

of its unities. Finally, the labeled combinations are

submitted to an expert system that excludes wrong

combinations based on labels incoherence.

(3)

(4)

Tunisian Arabic Chat Alphabet Transliteration Using Probabilistic ... 301

5. Experimental Results

We evaluate our machine transliteration and EiKtub

i.e., Arabic chat alphabet-Arabic transliteration tool,

with standards metrics using TACA-TA testing corpus.

Indeed, Seen the similarity between Arabic and TA in

one hand and the common use of Latin script for the

transcription of Arabic chat alphabet and TACA in the

other hand, Arabic chat alphabet-Arabic transliteration

tools seem accurate for TACA-TA transliteration.

However, Yoolki and Yamli are available only as a

Web page. Microsoft Maren and Google translator

IME are available as applications, but they ignore

diacritics and specific TA consonants. While EiKtub

takes into consideration diacritics and two specific TA

consonants i.e., ‘ڤ’ /q’/ and ‘پ’ /P/. Consequently, it is

the most adapted tool for TA.

We suggest its evaluation in a TA context i.e., using

TACA-TA testing corpus, to compare it with our

proposed machine transliteration.

5.1. TACA-TA Corpus

Seen the lack of standard TACA-TA corpus, we

suggest building a specialized bilingual corpus listing

1,000 different word pairs. It counts 1,000 TACA

words extracted from many Internet sources i.e.,

forums, blogs, Facebook, etc. We transliterate these

words manually by two TA native speakers to get the

bilingual corpus.

This corpus is divided on a training corpus counting

500 words and testing corpus counting 500 words (see

Appendix A).

We use the training corpus to identify TACA

alphabet, to define TACA-TA transliteration rules and

to establish a statistical study. However, the testing

corpus is used for transliteration tools evaluation.

5.2. Evaluation Metrics

To evaluate machine transliteration, we use standard

transliteration metrics: word accuracy and character

accuracy [7]. The first metric, known as word accuracy,

transliteration accuracy or precision A, measures the

proportion of transliterations that are correct as in

Equation (5).

A =
wordstestofnumberTotal

ationstranslitercorrectofNumber





The second metrics called character accuracy is based

on the edit distance or Levenshtein distance between

the transliterated word and the expected transliteration.

The edit distance measures the number of character

insertions, deletions, and substitutions that are required

to transform one word into another [15]. Character

accuracy CA, checks for the percentage of matched

characters for each word pair as mentioned in Equation

(6).

CA=
)(

))(,()(

Wlen

WiLwEDWlen 

Where, len(W) is the length of the expected target

word W ; L(Wi) is the suggested transliteration of the

system at rank i, and ED is the edit distance between

two strings [4]. When CA is used to evaluate a system,

an average over all the test pairs is reported.

5.3. Results

We implement the proposed machine transliteration

using OpenFst5[1] Then we evaluated it and we

compare it to EiKtub using TACA-TA testing corpus.

We get results detailed in Table 8.

Table 8. Experimental results on TACA-TA machine transliteration

and EiKtub.

Standard metrics TACA machine transliteration EiKtub

Word accuracy 82.8% 14.2%

Character accuracy 81.99% 79.85%

We notice that EiKtub is not accurate for TACA-

TA transliteration. Despite that EiKtub attemps 79.85

percent as character accuracy, it gets only 14.2

percent as word accuracy. While our machine

transliteration gets 81.99 percent as character accuracy

and 82.8 percent as word accuracy. Consequently, our

machine transliteration attempts good results.

In fact, we study the TACA-TA machine

transliterations excluded by the TA native speakers in

word accuracy and we notice that about the half of

them i.e., 48.83 percent, share the same stem or root

e.g., (Table 9).

When they share the root, the TACA-TA machine

transliteration form represents inflected or derived

form of the manual transliteration. If we accept these

transliterations, the word accuracy attempts 91.2

percent. These results are very encouraging compared

with EiKtub results.

Table 9. Examples of excluded transliterations.

TACA

word

Manuel

transliteration

TACA machine

transliteration

Shared

stem/root
form

sidi سدی سدیي Stem سدی -

winou

 وونی

 وین

Stem وین

-

khobza خبز خبزه Root خبز Inflexion

7yout حیط حویط Root حوط Inflexion

9a3ed قعد قاعد Root قعد Derivation

jme3a جمع جامعھ Root جمع Derivation

6. Conclusions

The proposed TACA transliteration machine adopts a

hybrid transliteration approach. It is based on

probabilistic WFSTs deduced from a statistical study

of Internet user transliteration practice through the

training corpus. It respects TACA-TA transliteration

specificities such as scripts specifications, missing

sound, transliteration variant and language of origin,

5http://www.openfst.org

(5)

(6)

302 The International Arab Journal of Information Technology, Vol. 16, No. 2, March 2019

and allows us to follow Tunisian Internet user’s

transliteration behavior. Its evaluation, using TACA-

TA testing corpus, attempts good results (i.e., word

accuracy of 82.8 percent and a character accuracy of

81.99 percent) compared with EiKtub which is mainly

an Arabic transliteration tool.

Our machine transliteration is very useful for TA

processing as semantic analysis, clustering,

information retrieval, etc which is taking more and

more scale, especially after Tunisian politic revolution.

In fact, TA processing tools and particularly machine

transliteration are taking a main part in the Tunisian

Internet monitoring in many fields such as political,

economic, commercial etc. Thus, our transliteration

machine can help and support the stability

establishment in varied Tunisian domains.

Acknowledgments

This work is supported by the General Direction of

Scientific Research (DGRST), Tunisia, under the ARUB

program.

References

[1] Allauzen C., Riley M., Schalkwyk J., Skut W.,

and Mohri M., “OpenFst: A General and

Efficient Weighted Finite-State Transducer,” in

Proceedings of the 12th International Conference

on Implementation and Application of Automata,

Prague, pp. 11-23, 2007.

[2] Al-Onaizan Y. and Knight K., “Translating

Named Entities using Monolingual and Bilingual

Resources,” in Proceedings of the 40th Annual

Meeting of the Association for Computational

Linguistics, Philadelphia, pp. 400-408, 2002.

[3] Arbabi M., Fischthal S., Cheng V., and Bart E.,

“Algorithms for Arabic Name Transliteration,”

IBM Journal of Research and Development, vol.

38, no. 2, pp. 183-194, 1994.

[4] Hall P. and Dowling G., “Approximate String

Matching,” ACM Computing Surveys, vol. 12,

no. 4, pp. 381-402, 1980.

[5] Hassan H. and Sorensen J., “An Integrated

Approach for Arabic-English Named Entity

Translation,” in Proceedings of the ACL

Workshop on Computational Approaches to

Semitic Languages/Association for

Computational Linguistics, Ann Arbor, pp. 87-

93, 2005.

[6] ISO 24613, Language Resource Management –

Lexical Markup Framework, ISO. Geneva, 2008.

[7] Karimi S., Scholer F., and Turpin A., “Machine

Transliterations Survey,” ACM Computing

Surveys, vol. 43, no. 3, 2011.

[8] Karimi S., Scholer F., and Turpin A., “Collapsed

Consonant and Vowel Models: New Approaches

for English-Persian Transliteration and Back-

Transliteration,” in Proceedings of the 45th

Annual Meeting of the Association of

Computational Linguistics/Association for

Computational Linguistics, Czech Republic, pp.

648-655, 2007.

[9] Karmani N. and Souilem D., “Préanalyse Du Mot

Arabe Basée Sur Une Approche De Filtrage Pour

Une Analyse Morphologique,” in Proceedings of

16th Congrés INFormatique des ORganisations et

Systèmes d’Information et de Décision/Workshop

of the Arabic Information System, Hammamet,

2006.

[10] Karmani N., Soussou H., and Alimi A.,

“Building a Standardized Wordnet in the ISO

LMF for Tunisian Arabic Language,” in

Proceedings of 7th Global Wordnet Conference,

Tartu Estonia, 2014.

[11] Karmani N., “Construction d’un Wordnet Standard

Pour l’Arabe Tunisien,” in Proceedings of the 2nd

Colloque Pour Les Étudiants Chercheurs en

Traitement Automatique du Langage Naturel ET

ses Applications, Sousse, 2015.

[12] Karmani N., Soussou H., and Alimi A., “Tunisian

Arabic aebWordNet: Current state and future

extensions,” in Proceedings of the 1st

International Conference on Arabic

Computational Linguistics, Cairo, pp. 3-8, 2015.

[13] Kashani M., Automatic Transliteration from

Arabic to English and its Impact on Machine

Translation, Theses, Simon Fraser University,

2007.

[14] Kaur V., Kaur A., and Singh J., “Hybrid
Approach for Hindi to English Transliteration

System for Proper Nouns,” International Journal

of Computer Science and Information

Technologies, vol. 5, no. 5, pp. 6361-6366, 2014.

[15] Levenshtein V., “Binary Codes Capable of

Correcting Deletions, Insertions and Reversals,”

Doklady Akademi Nauk, vol. 163, no. 4, pp. 845-

848, 1965.

[16] Liang P., Taskar B., and Klein D., “Alignment by

Agreement,” in Proceedings of the 5th of Human

Language Technology Conference-North

American Chapter of the Association for

Computational Linguistics Annual Meeting, New

York, pp. 104-111, 2006.

[17] Masmoudi A., Habash N., Ellouze M., and

Esteve Y., “Arabic Transliteration of Romanized

Tunisian Dialect Text: Preliminary

Investigation,” in Proceedings of the 16th

International Conference on Intelligent Text

processing and Computational Linguistics,

Cairo, pp. 608-619, 2015.

[18] Mohri M ., “Weighted Finite-State Transducer

Algorithms: An Overview, ” Formal

L a n g u a g e s a n d Applications, Heidelberg,

pp. 551-536, 2004.

[19] Mohri M., Pereira F., and Riley M., “Weighted

Finite-State Transducers in Speech Recognition,”

Tunisian Arabic Chat Alphabet Transliteration Using Probabilistic ... 303

Computer Speech and Language, pp. 1-26, 2001.

[20] Mostafa L., “A survey of Automated Tools for

Translating Arab Chat Alphabet into Arabic

Language,” American Academic and Scholarly

Research Journal, vol. 4, no. 3, 2012.

[21] Och F. and Ney H., “The Alignment Template

Approach to Statistical Machine Translation,”

Computational Linguistics, vol. 30, no. 4, pp.

417-449, 2004.

[22] Pal S., Kumar Naskar S., and Bandyopadhyay S.,

“A Hybrid Word Alignment Model for Phrase-

Based Statistical Machine Translation,” in

Proceedings of the 2nd Workshop on Hybrid

Approaches to Translation/ Association for

Computational Linguistics, Sofia, pp 94-101,

2013.

[23] Soria C. and Monachini M., Kyoto-LMF

Wordnet Representation Format, KYOTO

Working Paper, 2008.

[24] Stalls B. and knight K., “Translating Names and

Technical Terms in Arabic Texts,” in Proceedings of

the 17th International Conference on Computational

Linguistics COLING/ACL Workshop on

Computational Approach to Semitic Languages,

Montreal, pp. 34-41, 1998.

Appendix A

Table 10. Examples from the training corpus.

corpusN° TACA word
Manual

transliteration 1

Manuel

transliteration 2

1 5alal َخَللَ خَلل

2 akhaw أكهو أكهاو

3 ittasalt إتَّصَلت إتَّصَلت

4 alihom عليه م عليه م

5 aumourek أم ورِك أوم ورِك

6 menha مِنها مِنها

7 orang أورونج أرَنج

Nadia Karmani (IEEE Student

Member since 2012) She is

graduated in Information systems

and new technologies in 2007. She

obtained a PhD in Information

Systems Engineering in 2017. She is

a member of the research REGIM-

Lab. on intelligent Machines.

Hsan Soussou He obtained a PhD in

Information Systems Engineering in

2011.He is the manager of the

electronic journal “Tunisie

numérique”.He is founder and

manager of MDSoft society since

2005.

Adel Alimi (IEEE Student

Member’91, Member’96, Senior

Member’00). He graduated in

Electrical Engineering in 1990. He

obtained a PhD and then an HDR

both in Electrical & Computer

Engineering in 1995 and 2000

respectively. He is full Professor in Electrical

Engineering at the University of Sfax, ENIS, since

2006. He is founder and director of the research

REGIM-Lab. on intelligent Machines.

