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Abstract: This paper presents an approach to cluster documents. It introduces a novel graph mining based algorithm to find 

frequent termsets present in a document set. The document set is initially mapped onto a bipartite graph. Based on the results 

of our algorithm, the document set is modified to reduce its dimensionality. Then, Bisecting K-means algorithm is executed 

over the modified document set to obtain a set of very meaningful clusters. It has been shown that the proposed approach, 

Clustering preceded by Graph Mining based Maximal Frequent Termsets Preservation (CGFTP), produces better quality 

clusters than produced by some classical document clustering algorithm(s). It has also been shown that the produced clusters 

are easily interpretable. The quality of clusters has been measured in terms of their F-measure.  
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1. Introduction 

Document clustering (or text clustering) is the 

application of cluster analysis to textual documents. It 

has applications in text mining, automatic document 

organization, topic extraction and fast information 

retrieval or filtering. The applications may be online or 

offline. Originally document clustering was used to 

improve the precision in information retrieval systems 

[10, 16] and for finding the nearest neighbors of a 

document [2]. Later it was found to be useful in 

browsing text documents (e.g., news articles) [19] and 

also for organizing the results of a web user’s query 

onto a search engine [22]. It has also been used to 

generate hierarchical clusters of documents [9].  

Two well known document clustering techniques 

are K-means and agglomerative hierarchical clustering. 

K-means is faster than agglomerative hierarchical 

clustering (hierarchical clustering has a quadratic time 

complexity in contrast to a variant of K-means that has 

a linear time complexity) [18]. But both these 

algorithms do not address the fundamental problem of 

document clustering that of very high dimensionality.  

Later a new approach was introduced where a 

clustering algorithm was not applied to the input 

document corpus but instead to its refined form that 

constitutes not all terms but only those that are 

frequent. Thus two fields of data mining-frequent 

termsets mining and clustering - were treated as two 

phases of document clustering, one after another. 

Based on this new approach many algorithms were 

proposed (see section 1.1.).  

1.1. Related Work 

Morzy et al. [15] introduces a hierarchical clustering 

algorithm that uses sequential patterns found in the  

 

database to generate both the clustering model and data 

clusters, [13] in one approach Clustering based on 

Frequent Word Sequences (CFWS) takes into 

consideration the sequence of frequent words where 

{cricket, bat} and {bat, cricket} are treated as two 

different patterns and in another approach Clustering 

based on Frequent Word Meaning Sequences 

(CFWMS) takes into consideration frequent word 

meaning sequences where not only sequence but also 

the contextual meaning of each word has been 

considered, [11] applies frequent-itemset based 

clustering to web search results, [6] proposes document 

clustering based on maximal frequent sequences where 

only maximal word sequences have been considered, 

[1] starts with an empty set, it continues selecting one 

more element (one cluster description) from the set of 

remaining frequent itemsets until the entire document 

collection is contained in the cover of the set of all 

chosen frequent itemsets, [4] takes into consideration 

both global frequent items and cluster frequent items, 

[23] finds frequent itemsets and then uses minimum 

spanning tree algorithm to construct clusters, [21] 

groups web transactions using a hierarchical pattern-

based clustering approach, [12] uses Apriori for 

finding frequent itemsets and then uses the mined 

frequent itemsets to obtain partitions (with no 

overlapping) and after that groups documents within a 

partition using derived keywords, some other 

researches propose use of Wikipedia as external 

knowledge source thus taking into consideration the 

semantic relationships between words [8], for dynamic 

data [17] proposed evolutionary clustering that was 

again based on frequent itemsets, to decrease the 

number of patterns and time complexity [14] proposed 

a pattern-based hierarchical document clustering that 

mines for local patterns and builds a cluster hierarchy 
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without mining for globally significant patterns, [5] 

performs pattern-based clustering on numerical 

datasets using unsupervised decision trees (it extracts, 

from a collection of trees generated through a new 

induction procedure, a small subset of patterns useful 

for clustering), to improve accuracy of clustering [3] 

proposes usage of fuzzy association rule mining 

algorithm, [20] uses a measure h-confidence 

(minimum of all confidence values in an itemset) to 

consider only those frequent itemsets that pass a 

certain h-confidence threshold and [4] applies 

hierarchical clustering to global frequent itemsets thus 

constructing a cluster tree followed by child pruning 

and sibling merging,. Algorithms that take into 

consideration word meanings or the word sequences or 

propose use of external knowledge source(s) for 

finding out semantic relationships between words 

produce slightly better quality clusters but the trade-off 

between quality and time is too much. The 

evolutionary approaches suffer from creating low 

quality clusters but since the input data stream is 

dynamic this problem seems unavoidable. Algorithms 

that mine for local patterns instead of global do save 

time but produce low quality clusters. 

This paper proposes an algorithm for document 

clustering on the same lines (performing frequent 

termset mining followed by clustering) on a document 

corpus. A novel algorithm has been introduced to 

perform frequent termsets mining. The results of this 

phase are then provided as an input to the most time 

efficient clustering algorithm-Bisecting K-means.  

The rest of this paper is organized as follows. 

Section 2 briefly defines some of the terms related to 

our work. In section 3, we introduce our novel 

algorithm for frequent termsets mining. In section 4, 

clustering of the results of section 3 has been 

discussed. An experimental evaluation on real text data 

was conducted, and section 5 reports its major results. 

Section 6 summarizes the paper and outlines some 

interesting directions for future research. 

2. Basic Preliminaries 

We quickly review some standard definitions related to 

our work. Let D={d1, d2, d3,…} represent the set of 

documents called as document set or document corpus 

and let T={t1, t2, t3,…) represent the set of all the 

terms that occur in all the documents of D i.e., ti ∈ D ∀ 

i. A termset TS ⊆ T is a term or a set of terms and the 

support of a termset TS, denoted by supp (TS), is the 

fraction of documents containing TS. A termset whose 

support is equal to or greater than a user-specified 

minimum is a frequent termset i.e., if supp (TS) ≥ 

min_sup, then TS is a frequent termset. 

We represent the document set D, the term set T and 

the relationships between them using a bipartite graph. 

A bipartite graph, also known as a bigraph, is 

a graph whose vertices can be divided into two disjoint 

independent sets U and V such that every edge 

connects a vertex in U to one in V. In our paper, D 

represents one such set and T another and the graph is 

denoted by G=(D, T, E) where E={e1, e2, e3,…} is the 

set of edges of G, each edge ek acknowledging 

presence of term ti in document dj (ti is represented by 

one type of vertex in in G and dj by another type of 

vertex). 

3. Graph Mining Based Maximal Frequent 

Termsets Preservation  

The most natural way to represent two sets that are 

interrelated to each other but the elements within a set 

are independent of each other is a bipartite graph. We 

stick to this nature of a document corpus. After 

performing the following preprocessing operations on 

our document corpus, we map the preprocessed corpus 

onto a bipartite graph (GB): 

1. Strip extra whitespaces. 

2. Convert all alphabets to lower-case. 

3. Remove all punctuation symbols (except intra-word 

dashes). 

4. Remove all numbers. 

5. Remove stop-words. 

6. Perform stemming on each word of each document. 

A summarized view of the various stages of our 

proposed approach is shown in Figure 1. 

          

Figure 1. Stages of our proposed approach. 

Next method shows the pseudocode of our 

algorithm-Frequent Termsets Mining using Bipartite 

Graphs (FTMBG). This algorithm operates on GB and 

consists of three steps. In Step 1, FTMBG finds all 

frequent 1-termsets, in Step 2 it finds all frequent 2-

termsets and in Step 3 it finds all frequent 3 or greater 

than 3 term-sets.1 

Algorithm 1: FTMBG Algorithm 

Input: GB: Bipartite graph of preprocessed  

                   document set.  

         min_sup: minimum support threshold. 

         max_sup: maximum support  

                    threshold. 

Output:      FT: Frequent termsets.  

Variables: nodocs: Number of type-1 (document)  

                   vertices of GB. 

                   noterms: Number of type-2 (term)  

                                                 
1The implementation has been done in R language and all 

the results were produced using this tool. 
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                   vertices of GB left after Step I. 

                   GC, Gtemp: Graph objects of temporary  

                   usage. 

                   α: min_sup x nodocs.  

                   β: max_sup x nodocs. 

Method 
Step 1:  Frequent 1-termsets discovery 

1.  Delete all type-2 vertices of GB whose degree is  

      below α or above β. 

2.  Preserve all remaining type-2 vertices’ names. 

3.  Create a copy of GB in GC. 

Step 2: Frequent 2-termsets discovery 

1.  for k in nodocs+1 to nodocs+noterms-1 

         find all the neighbors of kth vertex. 

         for j in k+1 to noterms 

             countk,j = 0  

             for i in 1 to degree of kth vertex 

                 if an edge exists between jth vertex of   

                 GB and ith neighbor of k, increment  

                 countk,j 

             endfor 

             if countk,j >= α  

                 Preserve kth and jth vertices’ names as  

                 one unit. 

                 Add this unit to GB as a new type-2  

                 vertex. 

                 Add edges between this new vertex and  

                 each of the type-1 vertices that have an  

                 edge with both kth and jth vertices. 

             endif 

         endfor 

     endfor 

Step3: Frequent 3 or greater than 3 termsets discovery 

1.  Create a copy of GC in Gtemp. 
2.  for k in nodocs+1 to nodocs+noterms-1 

       find all the neighbors of kth vertex. 

       for j in noterms+k to VertexCount(GB) 

               countk,j = 0  

               for i in 1 to degree of kth vertex 

              if an edge exists between jth vertex of GB  

              and ith neighbor of k, increment  

              countk,j 

               endfor       

          if countk,j >= α 

              Preserve kth and jth vertices’ names (in  

              sorted order) as one unit (avoiding  

              redundancy). 

              Add this unit to Gtemp as a new type-2  

              vertex. 

              Add edges between this new vertex and  

              each of the type-1 vertices that have an  

              edge with both kth and jth vertices in GB. 
 

For an example, we consider a small text document set 

of three documents {d1, d2, d3}. Preprocess it and then 

map it onto a bipartite graph GB (Figure 2). Term-

vertex has been marked grey and document-vertex as 

orange. An edge between a term-vertex and 

adocument-vertex represents the presence of the term 

in the document. 

 

Figure 2. Bipartite graph of example dataset. 

Step 1 of FTMBG deletes all those terms from the 

graph that do not cross the user-defined minimum 

support threshold. It also deletes those terms that fall 

above the maximum support threshold value. We used 

maximum support threshold to eliminate those terms 

that are present in too many documents because such 

terms are of no use to clustering. In our example, for 

sake of simplificity, we have kept minimum support 

threshold as 50% and maximum support threshold as 

100%. Figure 3 shows the state of graph GB after 

execution of Step 1 of FTMBG on our example graph. 

Each term-vertex (grey-vertex) represents a frequent 1-

termset. In other words all the global frequent terms 

are represented here by the term-vertex set.  

 

Figure 3. State of graph after execution of Step 1 of FTMBG. 

In Step 2, each term-vertex of Figure 4 is checked 

for how many common neighbors does it have with 

another term-vertex and if the number crosses the 

minimum support threshold, both (as one unit) are 

preserved as a frequent 2-termset. This termset is also 

added to the graph. Figure 4 shows the state of graph 

after Step 2. 
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Figure 4. State of graph after Step 2. 

In first iteration of Step 3, each term-vertex (with 

one-word name) is checked for how many common 

neighbors does it have with another term-vertex (with 

two-word name) (note: the index of each vertex, be it 

one-word name vertex or two-word name vertex is 

known to the algorithm) and if the number crosses the 

minimum support threshold, both (as a three-word 

name unit) are preserved as a frequent 3-termset. In 

second iteration of Step 3, each term-vertex (with one-

word name) is checked for how many common 

neighbors does it have with another term-vertex (with 

three-word name) and if the number crosses the 

minimum support threshold, both (as a four-word name 

unit) are preserved as a frequent 4-termset; and the 

iterations continue until graph comes back to the state 

in which it was after Step 1 (i.e., state of Figure 3). The 

coming back to this state indicates that, now, no 

unfound frequent termsets exist. Figures 5, 6, 7, and 8 

show the state after first, second, third and fourth 

iteration of Step 3, respectively. 

 

Figure 5. State of graph after first iteration of Step 3. 

 

 

Figure 6. State of graph after second iteration of Step 3. 

 

Figure 7. State of graph after third iteration of Step 3. 

 

Figure 8. State of graph after fourth iteration of Step 3. 

FTMBG algorithm discovers all frequent termsets in 

the document corpus. Before going on to the next 

phase we remove all those frequent termsets that have 

a frequent superset, thus keeping only maximal 

frequent termsets. Then, we represent each document 

in the document set by only these maximal frequent 

termsets, thus drastically reducing dimensionality. 

Those documents that fail to get a representation in 

terms of maximal frequent termsets are represented by 

maximal subsets of maximal frequent termsets (this is 

done in accordance with the monotonic property-that 

every subset of a frequent termset is also frequent). 

Figure 9 shows the bipartite graph representation of the 

modified document set of our example. 
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Figure 9. Bipartite graph representation of the modified document 

set. 

This completes Phase 1 of our proposed approach. 

4. Clustering of Modified Document Set 

In Phase 2, clustering algorithm has been applied to the 

modified document set. Among the hierarchical 

clustering approaches UPGMA is the most appropriate 

for document clustering and among the partitional 

approaches a variant of K-means-Bisecting K-means 

has been found to be the best [18]. We use the latter- 

Bisecting K-means in Phase 2, the reason being its 

linear complexity.  
Before applying Bisecting K-means, we perform the 

following operations on the modified document set: 

1. Create a Document-Term Matrix (DTM) of the 

modified document set. 

2. Assign a weight to each term (set) in the modified 

document set-the weight being the number of words 

in that term (set). 

3. Construct a modified DTM (MDTM) for which we 

propose a novel mathematical Equation: 

],[*)(],[ jiDTM
noterms

w
jiMDTM

j
  

where MDTM [i, j] is the floating point value of the ith 

row jth column of the modified document term matrix, 

wj is the weight of the jth term(set) of the DTM, 

noterms is the total number of frequent 1-termsets and 

DTM [i, j] is the integer value of the ith row jth column 

of the document term matrix. 

For calculating the similarity between two 

documents we use cosine similarity measure: 

||||||||

.
),(
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ji
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Where xi and yj are vectors representing, respectively, 

documents di and dj in the MDTM, ||xi|| is the Euclidean 

norm of vector xi=(xi1, xi2,…., xir) defined as 

(xi1
2+xi2

2+….+xir
2)1/2 and ||yi|| is the Euclidean norm of 

vector yi. 

The cosine similarity measure is not applied directly 

to the DTM of the modified document set but to a 

modified form of DTM (MDTM). 

Table 1 shows the DTM of the modified document 

set (Figure 9) of our earlier example (Figure 2). 

Table 1. Document term matrix. 

 canteen,friday,great canteen,friday,jamia,lunch,today 

d1 1 0 

d2 0 1 

d3 1 1 

It can be seen that FTMBG has reduced the 

dimensions of our document set from 30 to only 2.  

Table 2 shows the MDTM for our example.  

Table 2. Modified form of document term matrix. 

 canteen,friday,great canteen,friday,jamia,lunch,today 

d1 0.5 0 

d2 0 0.83 

d3 0.5 0.83 

After applying bisecting K-means (putting K=2) to 

this MDTM, we obtain clusters {d1} and {d2, d3}. 

5. Experimental Evaluation 

This section presents the experimental evaluation of 

our proposed method by comparing its results with 

popular document clustering algorithms. Three (widely 

used) datasets were used for the evaluation-Re0, Wap 

and Hitech (Table 3). These datasets are heterogeneous 

with regard to number of terms and document 

distribution. In these datasets each document has been 

pre-classified into a single topic, this eased the task of 

evaluation. Our clustering algorithm is but unaware of 

this classification. The data sets have been obtained 

from [7].  

Table 3. Summary of evaluated datasets. 

Dataset # of Documents # of Terms # of Classes Class Size 

Re0 1504 2886 13 11-608 

Wap 1560 8460 20 5-341 

Hitech 2301 13170 6 116-603 

Since F-measure has been found to be the most 

appropriate method for evaluating the quality of 

clusters, we have chosen it for the evaluation of our 

resultant clusters. Entropy has not been considered 

because of its inherent bias – it favors larger number of 

clusters. The F-measure combines the precision and 

recall concepts of information retrieval [16]. We 

calculate Recall and Precision of a cluster for each 

given class as follows: 

i

ij

n

n
jicall ),(Re

 

j

ij

n

n
jiecision ),(Pr  

Where nij is the number of documents of class i in 

cluster j, ni is the number of documents in class i and nj 

is the number of documents in cluster j. The F-measure 

of cluster j and class i is given by the harmonic mean 

of Recall and Precision: 

(1) 

(2) 

(3) 

(4) 
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5.1. Results 

The F-measure results are shown in Table 4. The 

minimum and maximum support threshold is 5% and 

90%, respectively. For ease of comparison, we have 

also plotted the results (see Figures 10, 11, and 12). 

The table clearly shows that in many cases our 

algorithm produces better quality clusters than one or 

the other popular clustering algorithm. The table shows 

that our algorithm outperforms Bisecting K-means in 

terms of quality of clusters. For Wap dataset, our 

algorithm beats its counterpart HFTC [1] and for 

Hitech dataset it is almost as good as UPGMA.  

Table 4. Comparison of F-Measure. 

Dataset # of Clusters Bisecting K-

means 
UPGMA HFTC CGFTP 

Re0 

15 0.34 0.36 0.43 0.40 

30 0.38 0.47 0.43 0.39 

60 0.28 0.42 0.43 0.34 

Avg. 0.35 0.41 0.43 0.38 

Wap 

15 0.57 0.49 0.35 0.49 

30 0.44 0.58 0.35 0.49 

60 0.37 0.59 0.35 0.39 

Avg. 0.46 0.55 0.35 0.46 

Hitech 

15 0.44 0.33 0.37 0.39 

30 0.29 0.33 0.37 0.35 

60 0.21 0.47 0.37 0.31 

Avg. 0.31 0.40 0.37 0.35 

 

 
Figure 10. F-Measure comparison on Re0 dataset. 

 
Figure 11. F-Measure comparison on Wap dataset. 

 

Figure 12. F-Measure comparison on hitech dataset. 

Upon executing our algorithm on Re0 dataset for 

number of clusters=15, one of the produced clusters 

was of size 190. A cluster with 190 documents is very 

difficult to be interpreted but since we had kept only 

maximal frequent termsets in the documents, we could 

easily interpret such clusters. Just a walk through the 

cluster to find the within cluster frequent termsets 

gives a clear idea of what the cluster stands for. 

6. Conclusions 

In this paper, a novel approach to frequent termsets 

based document clustering was introduced. An 

algorithm was presented that executes on a bipartite 

graph. This bipartite graph is a mapping of the input 

document corpus.  

Experimental evaluation on real document datasets 

demonstrated that in many cases our approach 

produced better quality clusters compared to one or the 

other popular document clustering approach. In 

addition to that, our algorithm also assists in 

interpreting the resultant clusters with ease. 

Finally, we would like to outline a few directions 

for future research. Hierarchical clusterings are of 

importance to many applications, so we can follow our 

FTMBG algorithm by some hierarchical algorithm to 

cater needs of such applications. FTMBG can also be 

used for transaction data analysis, for market basket 

analysis etc., we plan to consider these applications in 

future. 
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