
364 The International Arab Journal of Information Technology, Vol. 16, No. 3, May 2019

Preceding Document Clustering by Graph Mining

Based Maximal Frequent Termsets Preservation

Syed Shah and Mohammad Amjad

Department of Computer Engineering, Jamia Millia Islamia, India

Abstract: This paper presents an approach to cluster documents. It introduces a novel graph mining based algorithm to find

frequent termsets present in a document set. The document set is initially mapped onto a bipartite graph. Based on the results

of our algorithm, the document set is modified to reduce its dimensionality. Then, Bisecting K-means algorithm is executed

over the modified document set to obtain a set of very meaningful clusters. It has been shown that the proposed approach,

Clustering preceded by Graph Mining based Maximal Frequent Termsets Preservation (CGFTP), produces better quality

clusters than produced by some classical document clustering algorithm(s). It has also been shown that the produced clusters

are easily interpretable. The quality of clusters has been measured in terms of their F-measure.

Keywords: Bipartite graph, graph mining, frequent termsets mining, bisecting K-means.

Received June 18, 2016; accepted June 29, 2017

1. Introduction

Document clustering (or text clustering) is the

application of cluster analysis to textual documents. It

has applications in text mining, automatic document

organization, topic extraction and fast information

retrieval or filtering. The applications may be online or

offline. Originally document clustering was used to

improve the precision in information retrieval systems

[10, 16] and for finding the nearest neighbors of a

document [2]. Later it was found to be useful in

browsing text documents (e.g., news articles) [19] and

also for organizing the results of a web user’s query

onto a search engine [22]. It has also been used to

generate hierarchical clusters of documents [9].

Two well known document clustering techniques

are K-means and agglomerative hierarchical clustering.

K-means is faster than agglomerative hierarchical

clustering (hierarchical clustering has a quadratic time

complexity in contrast to a variant of K-means that has

a linear time complexity) [18]. But both these

algorithms do not address the fundamental problem of

document clustering that of very high dimensionality.

Later a new approach was introduced where a

clustering algorithm was not applied to the input

document corpus but instead to its refined form that

constitutes not all terms but only those that are

frequent. Thus two fields of data mining-frequent

termsets mining and clustering - were treated as two

phases of document clustering, one after another.

Based on this new approach many algorithms were

proposed (see section 1.1.).

1.1. Related Work

Morzy et al. [15] introduces a hierarchical clustering

algorithm that uses sequential patterns found in the

database to generate both the clustering model and data

clusters, [13] in one approach Clustering based on

Frequent Word Sequences (CFWS) takes into

consideration the sequence of frequent words where

{cricket, bat} and {bat, cricket} are treated as two

different patterns and in another approach Clustering

based on Frequent Word Meaning Sequences

(CFWMS) takes into consideration frequent word

meaning sequences where not only sequence but also

the contextual meaning of each word has been

considered, [11] applies frequent-itemset based

clustering to web search results, [6] proposes document

clustering based on maximal frequent sequences where

only maximal word sequences have been considered,

[1] starts with an empty set, it continues selecting one

more element (one cluster description) from the set of

remaining frequent itemsets until the entire document

collection is contained in the cover of the set of all

chosen frequent itemsets, [4] takes into consideration

both global frequent items and cluster frequent items,

[23] finds frequent itemsets and then uses minimum

spanning tree algorithm to construct clusters, [21]

groups web transactions using a hierarchical pattern-

based clustering approach, [12] uses Apriori for

finding frequent itemsets and then uses the mined

frequent itemsets to obtain partitions (with no

overlapping) and after that groups documents within a

partition using derived keywords, some other

researches propose use of Wikipedia as external

knowledge source thus taking into consideration the

semantic relationships between words [8], for dynamic

data [17] proposed evolutionary clustering that was

again based on frequent itemsets, to decrease the

number of patterns and time complexity [14] proposed

a pattern-based hierarchical document clustering that

mines for local patterns and builds a cluster hierarchy

Preceding Document Clustering by Graph Mining Based Maximal Frequent ... 365

without mining for globally significant patterns, [5]

performs pattern-based clustering on numerical

datasets using unsupervised decision trees (it extracts,

from a collection of trees generated through a new

induction procedure, a small subset of patterns useful

for clustering), to improve accuracy of clustering [3]

proposes usage of fuzzy association rule mining

algorithm, [20] uses a measure h-confidence

(minimum of all confidence values in an itemset) to

consider only those frequent itemsets that pass a

certain h-confidence threshold and [4] applies

hierarchical clustering to global frequent itemsets thus

constructing a cluster tree followed by child pruning

and sibling merging,. Algorithms that take into

consideration word meanings or the word sequences or

propose use of external knowledge source(s) for

finding out semantic relationships between words

produce slightly better quality clusters but the trade-off

between quality and time is too much. The

evolutionary approaches suffer from creating low

quality clusters but since the input data stream is

dynamic this problem seems unavoidable. Algorithms

that mine for local patterns instead of global do save

time but produce low quality clusters.

This paper proposes an algorithm for document

clustering on the same lines (performing frequent

termset mining followed by clustering) on a document

corpus. A novel algorithm has been introduced to

perform frequent termsets mining. The results of this

phase are then provided as an input to the most time

efficient clustering algorithm-Bisecting K-means.

The rest of this paper is organized as follows.

Section 2 briefly defines some of the terms related to

our work. In section 3, we introduce our novel

algorithm for frequent termsets mining. In section 4,

clustering of the results of section 3 has been

discussed. An experimental evaluation on real text data

was conducted, and section 5 reports its major results.

Section 6 summarizes the paper and outlines some

interesting directions for future research.

2. Basic Preliminaries

We quickly review some standard definitions related to

our work. Let D={d1, d2, d3,…} represent the set of

documents called as document set or document corpus

and let T={t1, t2, t3,…) represent the set of all the

terms that occur in all the documents of D i.e., ti ∈ D ∀

i. A termset TS ⊆ T is a term or a set of terms and the

support of a termset TS, denoted by supp (TS), is the

fraction of documents containing TS. A termset whose

support is equal to or greater than a user-specified

minimum is a frequent termset i.e., if supp (TS) ≥

min_sup, then TS is a frequent termset.

We represent the document set D, the term set T and

the relationships between them using a bipartite graph.

A bipartite graph, also known as a bigraph, is

a graph whose vertices can be divided into two disjoint

independent sets U and V such that every edge

connects a vertex in U to one in V. In our paper, D

represents one such set and T another and the graph is

denoted by G=(D, T, E) where E={e1, e2, e3,…} is the

set of edges of G, each edge ek acknowledging

presence of term ti in document dj (ti is represented by

one type of vertex in in G and dj by another type of

vertex).

3. Graph Mining Based Maximal Frequent

Termsets Preservation

The most natural way to represent two sets that are

interrelated to each other but the elements within a set

are independent of each other is a bipartite graph. We

stick to this nature of a document corpus. After

performing the following preprocessing operations on

our document corpus, we map the preprocessed corpus

onto a bipartite graph (GB):

1. Strip extra whitespaces.

2. Convert all alphabets to lower-case.

3. Remove all punctuation symbols (except intra-word

dashes).

4. Remove all numbers.

5. Remove stop-words.

6. Perform stemming on each word of each document.

A summarized view of the various stages of our

proposed approach is shown in Figure 1.

Figure 1. Stages of our proposed approach.

Next method shows the pseudocode of our

algorithm-Frequent Termsets Mining using Bipartite

Graphs (FTMBG). This algorithm operates on GB and

consists of three steps. In Step 1, FTMBG finds all

frequent 1-termsets, in Step 2 it finds all frequent 2-

termsets and in Step 3 it finds all frequent 3 or greater

than 3 term-sets.1

Algorithm 1: FTMBG Algorithm

Input: GB: Bipartite graph of preprocessed

 document set.

 min_sup: minimum support threshold.

 max_sup: maximum support

 threshold.

Output: FT: Frequent termsets.

Variables: nodocs: Number of type-1 (document)

 vertices of GB.

 noterms: Number of type-2 (term)

1The implementation has been done in R language and all

the results were produced using this tool.

Clustering

using

Bisecting

K-means

Algorithm

Frequent

Termsets

Mining

using

FTMBG

Algorithm

Mapping

of pre-

processed

document

corpus

onto a

Bipartite

Graph

Document

Corpus

Pre-

processing

366 The International Arab Journal of Information Technology, Vol. 16, No. 3, May 2019

 vertices of GB left after Step I.

 GC, Gtemp: Graph objects of temporary

 usage.

 α: min_sup x nodocs.

 β: max_sup x nodocs.

Method
Step 1: Frequent 1-termsets discovery

1. Delete all type-2 vertices of GB whose degree is

 below α or above β.

2. Preserve all remaining type-2 vertices’ names.

3. Create a copy of GB in GC.

Step 2: Frequent 2-termsets discovery

1. for k in nodocs+1 to nodocs+noterms-1

 find all the neighbors of kth vertex.

 for j in k+1 to noterms

 countk,j = 0

 for i in 1 to degree of kth vertex

 if an edge exists between jth vertex of

 GB and ith neighbor of k, increment

 countk,j

 endfor

 if countk,j >= α

 Preserve kth and jth vertices’ names as

 one unit.

 Add this unit to GB as a new type-2

 vertex.

 Add edges between this new vertex and

 each of the type-1 vertices that have an

 edge with both kth and jth vertices.

 endif

 endfor

 endfor

Step3: Frequent 3 or greater than 3 termsets discovery

1. Create a copy of GC in Gtemp.
2. for k in nodocs+1 to nodocs+noterms-1

 find all the neighbors of kth vertex.

 for j in noterms+k to VertexCount(GB)

 countk,j = 0

 for i in 1 to degree of kth vertex

 if an edge exists between jth vertex of GB

 and ith neighbor of k, increment

 countk,j

 endfor

 if countk,j >= α

 Preserve kth and jth vertices’ names (in

 sorted order) as one unit (avoiding

 redundancy).

 Add this unit to Gtemp as a new type-2

 vertex.

 Add edges between this new vertex and

 each of the type-1 vertices that have an

 edge with both kth and jth vertices in GB.

For an example, we consider a small text document set

of three documents {d1, d2, d3}. Preprocess it and then

map it onto a bipartite graph GB (Figure 2). Term-

vertex has been marked grey and document-vertex as

orange. An edge between a term-vertex and

adocument-vertex represents the presence of the term

in the document.

Figure 2. Bipartite graph of example dataset.

Step 1 of FTMBG deletes all those terms from the

graph that do not cross the user-defined minimum

support threshold. It also deletes those terms that fall

above the maximum support threshold value. We used

maximum support threshold to eliminate those terms

that are present in too many documents because such

terms are of no use to clustering. In our example, for

sake of simplificity, we have kept minimum support

threshold as 50% and maximum support threshold as

100%. Figure 3 shows the state of graph GB after

execution of Step 1 of FTMBG on our example graph.

Each term-vertex (grey-vertex) represents a frequent 1-

termset. In other words all the global frequent terms

are represented here by the term-vertex set.

Figure 3. State of graph after execution of Step 1 of FTMBG.

In Step 2, each term-vertex of Figure 4 is checked

for how many common neighbors does it have with

another term-vertex and if the number crosses the

minimum support threshold, both (as one unit) are

preserved as a frequent 2-termset. This termset is also

added to the graph. Figure 4 shows the state of graph

after Step 2.

Preceding Document Clustering by Graph Mining Based Maximal Frequent ... 367

Figure 4. State of graph after Step 2.

In first iteration of Step 3, each term-vertex (with

one-word name) is checked for how many common

neighbors does it have with another term-vertex (with

two-word name) (note: the index of each vertex, be it

one-word name vertex or two-word name vertex is

known to the algorithm) and if the number crosses the

minimum support threshold, both (as a three-word

name unit) are preserved as a frequent 3-termset. In

second iteration of Step 3, each term-vertex (with one-

word name) is checked for how many common

neighbors does it have with another term-vertex (with

three-word name) and if the number crosses the

minimum support threshold, both (as a four-word name

unit) are preserved as a frequent 4-termset; and the

iterations continue until graph comes back to the state

in which it was after Step 1 (i.e., state of Figure 3). The

coming back to this state indicates that, now, no

unfound frequent termsets exist. Figures 5, 6, 7, and 8

show the state after first, second, third and fourth

iteration of Step 3, respectively.

Figure 5. State of graph after first iteration of Step 3.

Figure 6. State of graph after second iteration of Step 3.

Figure 7. State of graph after third iteration of Step 3.

Figure 8. State of graph after fourth iteration of Step 3.

FTMBG algorithm discovers all frequent termsets in

the document corpus. Before going on to the next

phase we remove all those frequent termsets that have

a frequent superset, thus keeping only maximal

frequent termsets. Then, we represent each document

in the document set by only these maximal frequent

termsets, thus drastically reducing dimensionality.

Those documents that fail to get a representation in

terms of maximal frequent termsets are represented by

maximal subsets of maximal frequent termsets (this is

done in accordance with the monotonic property-that

every subset of a frequent termset is also frequent).

Figure 9 shows the bipartite graph representation of the

modified document set of our example.

368 The International Arab Journal of Information Technology, Vol. 16, No. 3, May 2019

Figure 9. Bipartite graph representation of the modified document

set.

This completes Phase 1 of our proposed approach.

4. Clustering of Modified Document Set

In Phase 2, clustering algorithm has been applied to the

modified document set. Among the hierarchical

clustering approaches UPGMA is the most appropriate

for document clustering and among the partitional

approaches a variant of K-means-Bisecting K-means

has been found to be the best [18]. We use the latter-

Bisecting K-means in Phase 2, the reason being its

linear complexity.
Before applying Bisecting K-means, we perform the

following operations on the modified document set:

1. Create a Document-Term Matrix (DTM) of the

modified document set.

2. Assign a weight to each term (set) in the modified

document set-the weight being the number of words

in that term (set).

3. Construct a modified DTM (MDTM) for which we

propose a novel mathematical Equation:

],[*)(],[jiDTM
noterms

w
jiMDTM

j


where MDTM [i, j] is the floating point value of the ith

row jth column of the modified document term matrix,

wj is the weight of the jth term(set) of the DTM,

noterms is the total number of frequent 1-termsets and

DTM [i, j] is the integer value of the ith row jth column

of the document term matrix.

For calculating the similarity between two

documents we use cosine similarity measure:

||||||||

.
),(

ji

ji

ji
yx

yx
ddsim 

Where xi and yj are vectors representing, respectively,

documents di and dj in the MDTM, ||xi|| is the Euclidean

norm of vector xi=(xi1, xi2,…., xir) defined as

(xi1
2+xi2

2+….+xir
2)1/2 and ||yi|| is the Euclidean norm of

vector yi.

The cosine similarity measure is not applied directly

to the DTM of the modified document set but to a

modified form of DTM (MDTM).

Table 1 shows the DTM of the modified document

set (Figure 9) of our earlier example (Figure 2).

Table 1. Document term matrix.

 canteen,friday,great canteen,friday,jamia,lunch,today

d1 1 0

d2 0 1

d3 1 1

It can be seen that FTMBG has reduced the

dimensions of our document set from 30 to only 2.

Table 2 shows the MDTM for our example.

Table 2. Modified form of document term matrix.

 canteen,friday,great canteen,friday,jamia,lunch,today

d1 0.5 0

d2 0 0.83

d3 0.5 0.83

After applying bisecting K-means (putting K=2) to

this MDTM, we obtain clusters {d1} and {d2, d3}.

5. Experimental Evaluation

This section presents the experimental evaluation of

our proposed method by comparing its results with

popular document clustering algorithms. Three (widely

used) datasets were used for the evaluation-Re0, Wap

and Hitech (Table 3). These datasets are heterogeneous

with regard to number of terms and document

distribution. In these datasets each document has been

pre-classified into a single topic, this eased the task of

evaluation. Our clustering algorithm is but unaware of

this classification. The data sets have been obtained

from [7].

Table 3. Summary of evaluated datasets.

Dataset # of Documents # of Terms # of Classes Class Size

Re0 1504 2886 13 11-608

Wap 1560 8460 20 5-341

Hitech 2301 13170 6 116-603

Since F-measure has been found to be the most

appropriate method for evaluating the quality of

clusters, we have chosen it for the evaluation of our

resultant clusters. Entropy has not been considered

because of its inherent bias – it favors larger number of

clusters. The F-measure combines the precision and

recall concepts of information retrieval [16]. We

calculate Recall and Precision of a cluster for each

given class as follows:

i

ij

n

n
jicall ),(Re

j

ij

n

n
jiecision ),(Pr

Where nij is the number of documents of class i in

cluster j, ni is the number of documents in class i and nj

is the number of documents in cluster j. The F-measure

of cluster j and class i is given by the harmonic mean

of Recall and Precision:

(1)

(2)

(3)

(4)

Preceding Document Clustering by Graph Mining Based Maximal Frequent ... 369

),(Pr),(Re

),(Pr*),(Re*2
),(

jiecisionjicall

jiecisionjicall
jiF




5.1. Results

The F-measure results are shown in Table 4. The

minimum and maximum support threshold is 5% and

90%, respectively. For ease of comparison, we have

also plotted the results (see Figures 10, 11, and 12).

The table clearly shows that in many cases our

algorithm produces better quality clusters than one or

the other popular clustering algorithm. The table shows

that our algorithm outperforms Bisecting K-means in

terms of quality of clusters. For Wap dataset, our

algorithm beats its counterpart HFTC [1] and for

Hitech dataset it is almost as good as UPGMA.

Table 4. Comparison of F-Measure.

Dataset # of Clusters Bisecting K-

means
UPGMA HFTC CGFTP

Re0

15 0.34 0.36 0.43 0.40

30 0.38 0.47 0.43 0.39

60 0.28 0.42 0.43 0.34

Avg. 0.35 0.41 0.43 0.38

Wap

15 0.57 0.49 0.35 0.49

30 0.44 0.58 0.35 0.49

60 0.37 0.59 0.35 0.39

Avg. 0.46 0.55 0.35 0.46

Hitech

15 0.44 0.33 0.37 0.39

30 0.29 0.33 0.37 0.35

60 0.21 0.47 0.37 0.31

Avg. 0.31 0.40 0.37 0.35

Figure 10. F-Measure comparison on Re0 dataset.

Figure 11. F-Measure comparison on Wap dataset.

Figure 12. F-Measure comparison on hitech dataset.

Upon executing our algorithm on Re0 dataset for

number of clusters=15, one of the produced clusters

was of size 190. A cluster with 190 documents is very

difficult to be interpreted but since we had kept only

maximal frequent termsets in the documents, we could

easily interpret such clusters. Just a walk through the

cluster to find the within cluster frequent termsets

gives a clear idea of what the cluster stands for.

6. Conclusions

In this paper, a novel approach to frequent termsets

based document clustering was introduced. An

algorithm was presented that executes on a bipartite

graph. This bipartite graph is a mapping of the input

document corpus.

Experimental evaluation on real document datasets

demonstrated that in many cases our approach

produced better quality clusters compared to one or the

other popular document clustering approach. In

addition to that, our algorithm also assists in

interpreting the resultant clusters with ease.

Finally, we would like to outline a few directions

for future research. Hierarchical clusterings are of

importance to many applications, so we can follow our

FTMBG algorithm by some hierarchical algorithm to

cater needs of such applications. FTMBG can also be

used for transaction data analysis, for market basket

analysis etc., we plan to consider these applications in

future.

References

[1] Beil F., Ester M., and Xu X., “Frequent Term-

Based Text Clustering,” in Proceedings of 8th

International Conference on Knowledge

Discovery and Data Mining, Alberta, pp. 436-

442, 2002.

[2] Buckley C. and Lewit A., “Optimizations of

Inverted Vector Searches,” in Proceedings of 8th

Annual International ACM SIGIR Conference on

Research and Development in Information

Retrieval, Montreal, pp. 97-110, 1985.

[3] Chen C., Tseng F., and Liang T., “Mining Fuzzy

Frequent Itemsets for Hierarchical Document

Clustering,” Information Processing and

Management, vol. 46, no. 2, pp. 193-211, 2010.

[4] Fung B., Wang K., and Ester M., “Hierarchical

Document Clustering Using Frequent Itemsets,”

in Proceedings of 3rd SIAM International

Conference on Data Mining, San Francisco, pp.

59-70, 2003.

[5] Gutierrez A., Martinez J., Garcia M., and

Carrasco J., “Mining Patterns For Clustering on

Numerical Datasets Using Unsupervised

Decision Trees,” Knowledge-Based Systems, vol.

82, pp. 70-79, 2015.

(5)

370 The International Arab Journal of Information Technology, Vol. 16, No. 3, May 2019

[6] Hernandez-Reyes E., Garcia-Hernández R.,

Carrasco-Ochoa J., and Martinez-Trinidad J.,

“Document Clustering Based on Maximal

Frequent Sequences,” in Proceedings of 5th

International Conference on Natural Language

Processing, Turku, pp. 257-267, 2006.

[7] Karypis G., Karypis Lab.

http://glaros.dtc.umn.edu/gkhome/cluto/cluto/do

wnload, Last Visited, 2016.

[8] Kiran G., Shankar K., and Pudi V., “Frequent

Itemset based Hierarchical Document Clustering

using Wikipedia as External Knowledge,” in

Proceedings of 14th International Conference on

Knowledge-Based and Intelligent Information

Engineering Systems, Cardiff, pp. 11-20, 2010.

[9] Koller D. and Sahami M., “Hierarchically

Classifying Documents Using Very Few Words,”

in Proceedings of 14th International Conference

on Machine Learning, Nashville, pp. 170-178,

1997.

[10] Kowalski G., Information Retrieval Systems-

Theory and Implementation, Kluwer Academic

Publishers, 1997.

[11] Kozlowski M., “Web Search Results Clustering

Using Frequent Termset Mining,” in Proceedings

of 6th International Conference on Pattern

Recognition and Machine Intelligence, Warsaw,

pp. 525-534, 2015.

[12] Krishna S. and Bhavani S., “An Efficient

Approach for Text Clustering Based on Frequent

Itemsets,” European Journal of Scientific

Research, vol. 42, no. 3, pp. 385-396, 2010.

[13] Li Y., Chung S., and Holt J., “Text Document

Clustering Based on Frequent Word Meaning

Sequences,” Data and Knowledge Engineering,

vol. 64, no. 1, pp. 381-404, 2008.

[14] Malik H., Kender J., Fradkin D., and Moerchen

F., “Hierarchical Document Clustering Using

Local Patterns,” Data Mining and Knowledge

Discovery, vol. 21, no. 1, pp. 153-185, 2010.

[15] Morzy T., Wojciechowski M., and Zakrzewicz

M., “Pattern-Oriented Hierarchical Clustering,”

in Proceedings of 3rd East European Conference

on Advances in Databases and Information

Systems, Maribor, pp. 179-190, 1999.

[16] Rijsbergen C., Information Retrieval,

Buttersworth, 1979.

[17] Shankar K., Kiran G., and Pudi V., “Evolutionary

Clustering using Frequent Itemsets,” in

Proceedings of 1st International Workshop on

Novel Data Stream Pattern Mining Techniques,

Washington, pp. 25-30, 2010.

[18] Steinbach M., Karypis G., and Kumar V., “A

Comparison of Document Clustering

Techniques,” Technical Report, University of

Minnesota, 2000.

[19] Tunali V., Turgay B., and Ali C., “An Improved

Clustering Algorithm for Text Mining: Multi-

Cluster Spherical K-Means,” The International

Arab Journal of Information Technology, vol. 13,

no. 1, pp. 12-19, 2016.

[20] Xiong H., Steinbach M., Tang P., and Kumar V.,

“HICAP: Hierarchical Clustering With Pattern

Preservation,” in Proceedings of SIAM

International Conference on Data Mining,

Florida, pp. 279-290, 2004.

[21] Yang Y. and Padmanabhan B., “GHIC: A

Hierarchical Pattern-Based Clustering Algorithm

for Grouping Web Transactions,” IEEE

Transactions on Knowledge and Data

Engineering, vol. 17, no. 9, pp. 1300-1304, 2005.

[22] Zamir O., Etzioni O., Madani O., and Karp R.,

“Fast and Intuitive Clustering of Web

Documents,” in Proceedings of 3rd International

Conference on Knowledge Discovery and Data

Mining, Newport Beach, pp. 287-290, 1997.

[23] Zhang W., Yoshida T., Tang X., and Wang Q.,

“Text Clustering Using Frequent Itemsets,”

Knowledge-Based Systems, vol. 23, no. 5, pp.

379-388, 2010.

Syed Shah is pursuing Ph.D. (in

Computer Engineering) from Jamia

Millia Islamia, New Delhi, India.

He has 7 years of academic

experience. His research interests

include data mining and big data

analytics.

Mohammad Amjad has obtained

his B.Tech. degree in Computer

Engineering from Aligarh Muslim

University, Aligarh. He obtained his

M.Tech. degree in Information

Technology from IP University,

New Delhi and Ph.D. in Computer

Engineering from Jamia Millia Islamia, New Delhi. Dr.

Amjad is currently working as Assistant Professor in

the Department of Computer Engineering, Faculty of

Engineering & Technology, Jamia Millia Islamia

(Central University), New Delhi. He has four years

industry experience and 15 years of teaching

experience. He has contributed thirty research papers

in various reputed journals, national and international

conferences including countries like USA and China.

He is actively involved in research and development

activities in areas of MANET, WSN, software

engineering, mobile computing, network security

systems and allied areas.

http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download
http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download
http://www.sciencedirect.com/science/journal/0169023X
http://www.sciencedirect.com/science/journal/0169023X/64/1
http://link.springer.com/journal/10618
http://link.springer.com/journal/10618
http://link.springer.com/journal/10618/21/1/page/1
http://epubs.siam.org/author/Xiong%2C+Hui
http://epubs.siam.org/author/Steinbach%2C+Michael
http://epubs.siam.org/author/Kumar%2C+Vipin
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=69
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=69
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=69
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=32046
http://www.sciencedirect.com/science/journal/09507051
http://www.sciencedirect.com/science/journal/09507051/23/5

