
The International Arab Journal of Information Technology, Vol. 16, No. 3, May 2019 407

Toward Proving the Correctness of TCP Protocol

Using CTL

Rafat Alshorman

Department of Computer Science, Yarmouk University, Jordan

Abstract: The use of the Internet requires two types of application programs. One is running in the first endpoint of the

network connection and requesting services, via application programs, is called the client. The other, that provides the

services, is called the server. These application programs that are in client and server communicate with each other under

some system rules to exchange the services. In this research, we shall try to model the system rules of communications that are

called protocol using model checker. The model checker represents the states of the clients, servers and system rules (protocol)

as a Finite State Machine (FSM). The correctness conditions of the protocol are encoded into temporal logics formulae
Computational Tree Logic (CTL). Then, Model checker interprets these temporal formulae over the FSM to check whether the

correctness conditions are satisfied or not. Moreover, the introduced model of the protocol, in this paper, is modelling the

concurrent synchronized clients and servers to be iterated infinite often.

Keywords: CTL, model checking, TCP protocols, correctness conditions, kripke structure.

Received January 28, 2017; accepted March 21, 2017

1. Introduction and Related Work

As concurrent users request and provide the Internet

services in terms of program applications, a system

rules are needed to make this process work correctly.

These system rules are called ‘protocol’. In this paper,

we introduce a technique, based on model checking

and Computational Tree Logic (CTL), to prove the

correctness conditions of the protocol. Most of trials to

prove the correctness of network connections protocols

consider the number of concurrent clients and servers

to be bounded [6, 8, 9, 15]. Also, they use pure

mathematical proof or computer simulation. The

problem of using computer simulation is that all

possible situations, of the protocol, cannot be covered.

And, mathematical proofs required an expert people to

conduct such proofs or sometimes it is difficult to

express the abstract model of the protocol in

mathematical Equations [3, 16]. In this research, we

assume that the number of concurrent clients and

servers is bounded, but they are iterated infinitely

many times. The importance of such assumption has

been recognised from nowadays applications where the

clients and servers requesting and providing services in

a continuous stream [1]. This research proposes a

protocol, based on Transmission Control Protocol/

Internet Protocol (TCP/IP) protocol. TCP/IP protocol

is the Internet Protocol Suite (usually abbreviated

TCP/IP) which developed to be the standard and basis

of the global Internet and computer networking [5].

We presume that the server is connection-oriented

concurrent type. This means that several clients

requesting services at the same time and the server

serve multiple clients concurrently and independently

using TCP (i.e., connection-oriented) as a transport

layer protocol. The ultimate aim of this research is to

give a new notion of how to prove protocols where

number of requested services are iterated infinitely

many times. This paper is organized as follows. In

section 2, we shall introduce the model of concurrent

clients and server. The Kripke structure and the CTL

syntax and semantics are discussed in section 3. In

section 4, we define the correctness conditions of the

proposed protocol and their corresponding CTL

formulae for infinitely many clients requesting services

from a server. The NuSMV model for the proposed

protocol is given in section 5, and the conclusions are

drawn in section 6. NuSMV script for the proposed

model is added in Appendix A.

2. A Model of Concurrent Clients and

Servers

The model of clients and servers is one of the most

popular models in the computer networking. In this

model, the clients request a service (or multiple

services) from a server such as email service, file

transfer, etc., the servers provide the services for the

requesting clients. Moreover, servers allow concurrent

clients to obtain a given service without having to wait

for the server to finish previous requests. Both clients

and servers communicate with each other by

application programs. To illustrate this model in a

clearer way, assume that a user has two windows

opened simultaneously and running two applications:

one that retrieves and displays email, the other that

connects to download a file. Each application is

considered to be a client requesting a service from a

408 The International Arab Journal of Information Technology, Vol. 16, No. 3, May 2019

particular server. Or, assume that the server provides

two different services: email and shared files. One or

more clients can request these services from one

terminal, with two or more opened applications, or

from different terminal, with one request for each

terminal. The concept of terminal, in this paper, means

any device that terminates one endpoint and requests a

service such as Personal Computer (PC), Personal

Digital Assistant (PDA), Smart Phone, etc., See

Figures 1 and 2.

2.1. The proposed Model

In this Subsection, we demonstrate the proposed model

of the TCP/IP protocol that will be abstracted into a

special kind of finite state machine called Kripke

structure. And, the correctness conditions of the

abstract model are encoded into CTL. This will be

clarified in details in the next Section. In this research,

we assume that the server provides two services P1 and

P2. Each service has a socket i.e., soc1

and soc2. The

Sockets are created and used to order the client

requests as a queue. So, for each service in the server,

there is a queue that contains the clients requests in the

same order as they arrived. In this case, the client will

wait its turn to serve. As the queue is a buffer, it will

be bounded. If the queue is full of requests and a new

request is arrived, then the server will reject that

request. The server will be busy if and only if all

sockets queues are full. We shall denote the state

where the server does not have any request to serve as

idle. This means that all sockets queues are empty. The

server will be in process state if and only if each socket

queue neither full nor empty. Moreover, we assume, in

this research, that the clients concurrently request the

services infinite often.

Figure 1. Clients and servers model.

Figure 2. Application programs as clients.

This assumption means the repetitions (or iterations)

of the 𝑛 clients will constitute the infinite number of

requests. This is not investigated in the literature. All

researchers presume that the number of clients are

bounded [6, 9]. Therefore, this research will give a

stepping stone to model and prove unbounded number

of clients that are requesting a services from server

(servers). The importance of such assumption is

emerged from nowadays applications where the

number of requests incoming to the server in

continuous stream and iterated infinitely many times.

But, at any point in time, there is bound number of

clients receiving the services. For that, it is very

important to prove that this assumption keep the heavy

use of the protocols is correct such as TCP/IP protocol

[12, 17].

3. Kripke Structure and Temporal Logics

Kripke structure is a special type of finite state

machine for representing finite state model. Each state,

in kripke structure, is labelling with a set of atomic

propositions that are true in this state [2, 10, 11].

Formally, it can be defined as follows

 Definition 1: A kripke structure𝑀 is defined by a

tuple (𝑆, 𝐼, 𝑅, 𝐴𝑃, 𝐿), where

𝑆: is a finite set of states

I S : is a finite set of initial states.

𝑅: is a total transition relation such that R S S  .

𝐴𝑃: is the set of atomic propositions
𝐿: is a function which labels each state with the set of

atomic propositions that are true in that state such that

: 2APL S  .

In this research, we shall model the proposed protocol

using synchronous kripke structure. This means that

the components of the protocol change their state

variables simultaneously, such as clients, servers and

sockets queues. To achieve that, we shall use NuSMV

Model checker, see [4], to create a kripke structure that

describing the proposed protocol. The correctness

conditions and properties, that the proposed protocol

Toward Proving the Correctness of TCP Protocol Using CTL 409

should satisfy, will be encoded into temporal logic

formulae, as we will see in later in this paper. Now,

given a description of a Kripke model M, path (in M) λ

and a property (or correctness condition) expressed in a

temporal logic formula 𝛷, the model checker decides

whether 𝑀, 𝜆 𝛷 holds. This means that the formula

𝛷 is interpreted over the kripke structure 𝑀along path

λ. The model checker returns true if formula 𝛷 is

satisfied. Otherwise, it returns false provided with

counterexample.

3.1. CTL Syntax and Semantics

CTL is a temporal logic where the next time is

branching. This means that every state has several

successors. As CTL is interpreted over branching-time

structures (like Trees), it contains path quantifiers to

evaluate the formulae over the set of paths, see [14].

3.2. CTL Syntax

A CTL formula 𝛷 consists of a set of atomic

propositions, that are used in the proposed protocol,

such as idle, req, rej, wait, rec, comp, p1 and p2,

ordinary Boolean operations , , , ,,     ,

quantifiers Existential (E), A (Universal), and temporal

operators X, F, G and U. Formulae in CTL can be

generated by:

1 2 1 2 1 2:: | | | | AX | E[U] ipr       

1 2EX | AF | EF | AG | EG | A[U]       Where

pr1, pr2,... are any atomic propositions used in the

proposed protocol.

3.3. Semantics of CTL

We will start by defining when an atomic proposition

pr true at a state/time si such that:

𝑀, 𝑠𝑖 𝑝𝑟 iff ∈ 𝐿(𝑠𝑖) , for all 𝑝𝑟 ∈ 𝑝𝑟𝑖 .

The semantics for the other ordinary operators are

defined as follows:

𝑀 , 𝑠𝑖 ¬ 𝜙 iff 𝑀 , 𝑠𝑖 𝜙

𝑀 , 𝑠𝑖 𝜙 ∧ 𝜓 iff 𝑀 , 𝑠𝑖 𝜙𝑎𝑛𝑑

𝑀 , 𝑠𝑖 𝜓

𝑀 , 𝑠𝑖 𝜙 ∨ 𝜓 iff 𝑀 , 𝑠𝑖 = 𝜙 or

𝑀 , 𝑠𝑖 𝜓

𝑀 , 𝑠𝑖 𝜙 ⇒ 𝜓 iff if 𝑀 , 𝑠𝑖 𝜙 then

𝑀 , 𝑠𝑖 𝜓

𝑀 , 𝑠𝑖 ⊤

𝑀 , 𝑠𝑖 ⊥

The CTL operators have the following semantics

where λ=(si, si+1,…) is a generic path outgoing from

state𝑠𝑖in the model M

𝑀 , 𝑠𝑖 AX iff ∀𝜆 = (𝑠𝑖 , 𝑠𝑖 + 1, …)

 𝑀 , 𝑠𝑖 + 1 

𝑀 , 𝑠𝑖 EX iff ∃𝜆 = (𝑠𝑖 , 𝑠𝑖 + 1, …)

 𝑀 , 𝑠𝑖 + 1 

𝑀 , 𝑠𝑖 AF iff ∀𝜆 = (𝑠𝑖 , 𝑠𝑖 + 1, …), ∃ j i

 𝑀 , 𝑠𝑗 

𝑀 , 𝑠𝑖 EF iff ∃𝜆 = (𝑠𝑖 , 𝑠𝑖 + 1, …), ∃ j i

 𝑀 , 𝑠𝑗 

, AGiM s 

iff , ∀𝜆 = (𝑠𝑖 , 𝑠𝑖 + 1, …), and∀𝑗

, , jj i M s 

, EGiM s 

iff ∃𝜆 = (𝑠𝑖 , 𝑠𝑖 + 1, …), and ∀𝑗

, , jj i M s  .

1 2, A[U]iM s  

iff ∀𝜆 = (𝑠𝑖 , 𝑠𝑖 + 1, …), ∃

j i such that
2, jM s  and,∀𝑘, ,i k j 

1, kM s 

1 2, E[U]iM s  

iff ∃𝜆 = (𝑠𝑖 , 𝑠𝑖 + 1, …)such

that,∃
2, , jj i M s  and,∀𝑘, ,i k j 

1., kM s 

Now, we can notice that the future in CTL is branching

or there is more than one path we can go through [14].

4. The Model of Iterated Concurrent

Clients and Server

In this section, we shall presume that the clients

request the services from the server in a continuous

manner. As the number of clients and services are

finite and the requests are not ending, each request will

iterate infinitely many time. The proof of such model is

not trivial. So, we need to take this new constraint in

our account. Also, to express the correctness

conditions of such model, we need to choose a

language contains operators that can deal with this

constraint. In this paper, we shall use CTL (as

expressiveness language) to encode and express the

model and its properties with the additional constraint.

Now, It is important to conduct proofs, of infinite

many requests iterated in the server, using fully

automated techniques (Model Checkers) to avoid

disadvantages of manual (or traditional) proofs.

To demonstrate that, as in section 2, we shall give

the following example:

Consider that we have a sever S that contains m

services P1, P2,... Pm. Each service has a socket i.e.,

soc1 and soc2. Also, we have n clients C1, C2,..Cn. Now,

we shall denote to the client Ci requesting service Pj by

𝑅𝑖
𝑗
. Moreover, we shall denote to the sequence of

410 The International Arab Journal of Information Technology, Vol. 16, No. 3, May 2019

requesting a service Pj from a sever S by 𝑅𝑆
𝑗
.The

sequence of will be of the form

j j j j j j j j j

S l i k k i i l kR R R R R R R R R

1 ,1 , , .j m i k l n    This depiction corresponds a

path in the kripke structure that we discussed in

Section 3. Now we can use CTL to encode the

correctness conditions and the properties of the

proposed model. Thus, model checker, such as

NuSMV, can be used to verify whether these

conditions and properties are true or false. In case of

false, counterexample will be generated by model

checker to demonstrate the set of states, in the model,

that may aggregate together to violate the one of the

correctness conditions that is encoded in CTL.

4.1. Correctness Conditions of the Proposed

Model

In this section, we shall introduce some correctness

conditions for synchronous processes in general and

for the proposed model in specific. These conditions

will form a framework (or stepping stone) for

specifying such synchronous processes and protocols

that are dealt with. Now, we shall assume that the

proposed model will be correct (or working in a correct

manner) if and only if the following conditions and

properties are satisfied:

1. Each client requests a service should eventually

complete it. This condition is encoded into CTL as

follows:

1 1

1 ()j

i n j m

j

i iAG R oAF C
   

  

We add an extra proposition called
j

iCo to indicate

that the client Ci complete the execution of service Pj.

This condition asserts that the clients will eventually

progress and will not starved forever. Moreover, if the

above condition satisfied for each client, then we can

say that the proposed protocol is starvation free.

2. In this paper, we assume that the client requesting

the processes infinitely often. This is can be

encoded as follows:

1

2

1

() ()j j j j

i i i i

i n j m

AG R A o o AF RF C C
   

    

The above condition is asserted that if the client Ci

requested the service Pj and completed the execution of

it, then the client Ci will iterate the request infinitely

often

3. If the client Ci request process Pj from the server

and the socket queue, associated to that process, is

not full, then the process will be added to the queue.

This can be encoded such that:

1

3

1

(() ((1)))j

j i

i j

j

n m

AG qu t R AX qu t
   

      

The proposition 𝑞𝑢𝑗 denotes to the socket queue that is

associated to the service Pj. 𝑡is the number of clients

requesting the service Pj and t < k, where k is the size

of the queue.

4. If the socket queue has an empty space for any

process Pj, then the server should not reject the

client:

1

4 AG!(C qu k)
i

R

i i

n


 

  

The proposition 𝑐𝑖
𝑅 denotes to the case that the is

rejected (or in reject state)

5. The server will not enter an unreachable state

(busy):

1

5 AG (A F (S))
i n

b
 

 

The proposition Sb means that the server 𝑆 is in busy

state.

6. If the client is rejected, the client will eventually

progress:

1 1

6 ()R

i n j m

j

i iAG C oAF C
   

  

Now, we shall build a model checking called TCPi,j

which can be reduced to CTL model checking. So,

given a Kripke structure M, a statesa, and a formula

∅ ∈ TCPi,j, we have that

M is a 𝑇𝐶𝑃𝑖,𝑗 structure,

iff, for all sa ∈ S,

𝑀, 𝑠𝑎 ∅,

Where

∅ = ⋀ 𝜔𝑖

1≤𝑖≤6

.

Now, it is clear that ∅ ∈CTL.

5. The Corresponding NuSMV Model

In this section, we shall describe the proposed model in

the NuSMV language to make sure that the proposed

TCP model meet the correctness conditions that we

introduced in the previous section. NuSMV language is

low-level language for describing a Finite State

Machine (FSM). Usually, some aspects of the protocol

are difficult to model. One of these aspects is the queue

associated to each socket is modelled as a variable

queuesoc1 (orqueuesoc2) being increment or

decrement depending on the request and the

completion of the service.

Clients may iterate infinitely many

timestimes

(1)

(2)

(4)

(5)

(6)

(3)

Toward Proving the Correctness of TCP Protocol Using CTL 411

5.1. State Variables of NuSMV Model

In this subsection, we will provide description of some

correctness conditions that have been written, in the

previous section, against system model described in the

NuSMV model. We have used CTL for this purpose.

In general, temporal logics are suitable formalism for

reasoning about critical and concurrent systems [7]. In

the proposed TCP protocol, the desired properties and

their conditions are (see section 4):

1. Each client requests a service should eventually

complete it as in Equation (1)

1 1

1 ()j

i n j m

j

i iAG R oAF C
   

  

This condition can be written in NuSMV language as

follows:

SPEC AG(c1.state=req ->AF c1.state=comp)

SPEC AG(c2.state=req ->AF c2.state=comp)

SPEC AG(c3.state=req ->AF c3.state=comp)

In simple English, the SPEC denotes to CLT

Specification in NuSMV language and the operators

AG and AF have the same meaning as they defined in

section 3.3. The other properties and conditions can be

analyzed and encoded in a similar way. The full

NuSMV model code is in Appendix A.

5.2. Observations and Results

While checking the correctness of the abovementioned

properties and conditions in NuSMV, we found that all

properties and conditions, that are introduced in section

4, hold in all situations, see Figure 3. Moreover, to

show the powerful of NuSMV, we add the following

condition:
SPEC AG (qu1.queuesoc1=-1 -> AX qu1.queuesoc1=-1)

This condition assert that, at any point in time, if the

queue associated to the socket 1 is empty (the value of

queuesoc1 equals -1), then always in the next state will

remain empty. This means that no client will request

the service number one from the server. The Model

checker NuSMV falsifies this condition and give us

counterexample, see Figure 4.

Figure 3. Example of NuSMV run for correct condition.

Figure 4. NuSMV Counterexample.

6. Conclusions

The ultimate objective of this study was to introduce

and use CTL in the context of synchronous processes

contending to share resources according to some

protocol rules. This kind of protocols are widely used

in networking, security and mobile computing. This

study has given us a stepping stone to prove the

correctness conditions of such protocols. Moreover,

this study shows that, in some situations, we can

encode and prove the correctness of infinitely many

processes iterated in a concurrent system. In this paper,

we have shown that the proposed TCP protocol and its

properties can be encoded and proven using CTL.

Also, we have introduced a transition structure to

model the synchronous processes and its properties in

terms of propositions. The proof part can be executed

by NuSMV model checkers, to test whether the

proposed protocol satisfies our correctness conditions

or not. In case of no, counterexamples will be

produced by model to show the errors. This represents

the disprove example in traditional mathematical

proofs. We have found that CTL is suitable for

encoding synchronous processes.

This approach gives an automatic proof method that

can overcome the obstacles of the traditional

mathematical proofs techniques such as the user should

know how to use and apply mathematical theorems,

human error, some properties and conditions cannot be

modelled mathematically in a way as we intended, and

sometimes, we are not be able to cover the all possible

system situations and this will not consider to be a

proof as in the simulation [13].

References

[1] Adalid D., Salmeron A., Gallardo M., and

Merino P., “Using SPIN for Automated

Debugging of Infinite Executions of Java

Programs,” Journal of Systems and Software, vol.

90, no. 5, pp. 61-75, 2014.

412 The International Arab Journal of Information Technology, Vol. 16, No. 3, May 2019

[2] Alshorman R. and Hussak W., “A CTL

Specification of Serializability for Transactions

Accessing Uniform Data,” International Journal

of Computer Science and Engineering, vol. 3, no.

5, pp. 26-32, 2009.

[3] Casoni M., Grazia C., Klapez M., and Patriciello

N., “Implementation and Validation of TCP

Options and Congestion Control Algorithms for

Ns-3,” in Proceedings of the Workshop on ns-3,

Barcelona, pp.112-119. 2015.

[4] Cimatti A., Clarke E., Giunchiglia F., and Roveri

M., “NuSMV: A New Symbolic model Verifier,”

in Proceedings of the 11th International

Conference on Computer Aided Verification,

London, pp. 495-499, 1999.

[5] Comer D., Computer Networks and Internets,

Pearson, 2014.

[6] Debiao H., Jianhua C., and Jin H., “An ID-Based

Client Authentication with Key Agreement

Protocol for Mobile Client-Server Environment

on ECC with Provable Security,” Information

Fusion, vol. 13, no. 3, pp. 223-230, 2010.

[7] Gnesi S., “Formal Specification and Verification

of Complex Systems,” Electronic Notes in

Theoretical Computer Science Netherlands, vol.

80, pp. 294-298, 2003.

[8] Gray D., Hamilton G., and Sinclair D., “Four

Logics and a Protocol,” in Proceedings of the 3rd

Irish Conference on Formal Methods, Swinton,

pp. 79-102, 1999.

[9] He C., Sundararajan M., Datta A., Derek A., and

Mitchell J., “A Modular Correctness Proof of

IEEE 802.11i and TLS,” in Proceedings of the

12th ACM Conference on Computer and

Communications Security, Alexandria, pp. 2-15.

2005.

[10] Hussak W., “Monodic Temporal Logic with

Quantified Propositional Variables,” Journal of

Logic and Computation, vol. 22, no. 3, pp. 517-

544, 2012.

[11] Hussak W., “Serializable Histories in Quantified

Propositional Temporal Logic,” International

Journal of Computer Mathematics, vol. 81, no.

10, pp. 1203-1211, 2004.

[12] Ibrahim S., Idris B., Munro M., and Deraman A.,

“Integrating Software Traceability For Change

Impact Analysis,” The International Arab

Journal of Information Technology, vol. 2, no. 4,

pp. 301-308, 2005.

[13] Kerber M., Lange C., and Rowat C., “An

Introduction to Mechanized Reasoning,” Journal

of Mathematical Economics, vol. 66, pp. 26-39,

2016.

[14] Pucella R., “The Finite and the Infinite in

Temporal Logic,” ACM SIGACT, vol. 36, no. 1,

pp. 86-99, 2005.

[15] Ran G., Zhang H., and Gong S., “Improving on

LEACH Protocol of Wireless Sensor Networks

Using Fuzzy Logic,” Journal of Information and

Computational Science, vol. 7, no. 2, pp. 767-

775, 2010.

[16] Salmeron A. and Merino P., “Integrating Model

Checking and simulation for Protocol

Optimization,” Simulation: Transactions of the

Society for Modeling and Simulation

International, vol. 91, no. 1, pp. 3-25, 2015.

[17] Shatnawi m., “Discrete Time NHPP Models for

Software Reliability Growth Phenomenon,” The

International Arab Journal of Information

Technology, vol. 6, no. 2, pp. 124-131, 2009.

Rafat Alshorman is an assistant

professor in the department of

computer science at Yarmouk

University/Jordan. Dr. Alshorman

completed his Ph.D. at

Loughborough University/UK and

his under graduate studies at

Yarmouk University/Jordan. His research interests lie

in the area of algorithms and mathematical models,

ranging from theory to implementation, with a focus

on checking the correctness conditions of concurrent

and reactive systems. In recent years, he has focused

on theoretical computer science such as Graph theory

and Numerical analysis. Dr. Alshorman research

interests are: 1. Mathematical methods in computer

science 2. Temporal logics 3. Concurrent systems

4.Serializability of Transactions 5.Numerical analysis.

Toward Proving the Correctness of TCP Protocol Using CTL 413

Appendix A

MODULE client(qs1,qs2,st)

VAR

process_c:{p1,p2};

state: {idle, req, rej, wait, rec, comp};

ASSIGN

init(process_c) :={p1,p2};

init(state) := idle;

next(state) :=case

state=idle & process_c=p1 & qs1!=2: req;

state=req & process_c=p1 & qs1!=2: wait;

state=req & process_c=p1 & qs1=2: rej;

 --no space in socket 1

state=wait & process_c=p1 &st!=busy: rec;

state=rec : comp;

state=rej : req; --request again

state=comp :idle; --iterate infinitely often

state=idle & process_c=p2 & qs2!=2: req;

state=req & process_c=p2 & qs2!=2: wait;

state=req & process_c=p2 & qs2=2: rej; --no space in

socket 2

state=wait &process_c=p2 &st!=busy: rec;

TRUE : state;

esac;

next(process_c) :=case

process_c=p1 & state!=comp : p1;

process_c=p1 & state=comp : {p1,p2};

process_c=p2 & state!=comp : p2;

process_c=p2 & state=comp : {p1,p2};

 TRUE : process_c;

esac;

MODULE server (queuesoc1,queuesoc2)

VAR

state_s :{idle, pro, busy};

ASSIGN

init(state_s):=idle;

next(state_s) :=case

state_s=idle & queuesoc1 =-1 & queuesoc2 =-1 : idle;

state_s=idle & queuesoc1!=2 & queuesoc1!=2 : pro;

state_s=pro & queuesoc1=2 & queuesoc1=2 : busy;

TRUE: state_s;

esac;

MODULE Queue1 (st1,pr1,st2,pr2,st3,pr3)

VAR

queuesoc1 : -1..2;

ASSIGN

init (queuesoc1) := -1;

next(queuesoc1) :=case

queuesoc1=-1 & ((st1=req& pr1=p1)|(st2=req&

pr2=p1)|(st3=req& pr3=p1)) : 0;

queuesoc1=0 & ((st1=req& pr1=p1)|(st2=req&

pr2=p1)|(st3=req& pr3=p1)) : 1;

queuesoc1=1 & ((st1=req& pr1=p1)|(st2=req&

pr2=p1)|(st3=req& pr3=p1)) : 2;

queuesoc1=2 & ((st1=req& pr1=p1)|(st2=req&

pr2=p1)|(st3=req& pr3=p1)): queuesoc1;

queuesoc1=0 & ((st1=comp & pr1=p1)|(st2=comp &

pr2=p1)|(st3=comp & pr3=p1)) : -1;

queuesoc1=1 & ((st1=comp & pr1=p1)|(st2=comp &

pr2=p1)|(st3=comp & pr3=p1)) : 0;

queuesoc1=2 & ((st1=comp & pr1=p1)|(st2=comp &

pr2=p1)|(st3=comp & pr3=p1)) : 1;

queuesoc1=-1 & ((st1=comp & pr1=p1)|(st2=comp &

pr2=p1)|(st3=comp & pr3=p1)): queuesoc1;

TRUE: queuesoc1;

esac;

MODULE Queue2 (st1,pr1,st2,pr2,st3,pr3)

VAR

queuesoc2 : -1..2;

ASSIGN

init (queuesoc2):= -1;

next(queuesoc2) :=case

queuesoc2=-1 & ((st1=req& pr1=p2)|(st2=req&

pr2=p2)|(st3=req& pr3=p2)) : 0;

queuesoc2=0 & ((st1=req& pr1=p2)|(st2=req&

pr2=p2)|(st3=req& pr3=p2)) : 1;

queuesoc2=1 & ((st1=req& pr1=p2)|(st2=req&

pr2=p2)|(st3=req& pr3=p2)) : 2;

queuesoc2=2 & ((st1=req& pr1=p2)|(st2=req&

pr2=p2)|(st3=req& pr3=p2)) : queuesoc2;

queuesoc2=0 & ((st1=comp & pr1=p2)|(st2=comp &

pr2=p2)|(st3=comp & pr3=p2)) : -1;

queuesoc2=1 & ((st1=comp & pr1=p2)|(st2=comp &

pr2=p2)|(st3=comp & pr3=p2)) : 0;

414 The International Arab Journal of Information Technology, Vol. 16, No. 3, May 2019

queuesoc2=2 & ((st1=comp & pr1=p2)|(st2=comp &

pr2=p2)|(st3=comp & pr3=p2)) : 1;

queuesoc2=-1 & ((st1=comp & pr1=p2)|(st2=comp &

pr2=p2)|(st3=comp & pr3=p2)) : queuesoc2;

TRUE: queuesoc2;

esac;

MODULE main

VAR

s:server(qu1.queuesoc1,qu2.queuesoc2);

c1: client(qu1.queuesoc1,qu2.queuesoc2,s.state_s);

c2 : client(qu1.queuesoc1,qu2.queuesoc2,s.state_s);

c3 : client(qu1.queuesoc1,qu2.queuesoc2,s.state_s);

qu1:

Queue1(c1.state,c1.process_c,c2.state,c2.process_c,c3.

state,c3.process_c);

qu2:

Queue2(c1.state,c1.process_c,c2.state,c2.process_c,c3.

state,c3.process_c);

--

-------------SPECIFICATIONS-------------------------

--

--Condition number 1

SPEC AG(c1.state=req ->AF c1.state=comp)

SPEC AG(c2.state=req ->AF c2.state=comp)

SPEC AG(c3.state=req ->AF c3.state=comp)

LTLSPEC G(c1.state=req ->F c1.state=comp)

LTLSPEC G(c2.state=req ->F c2.state=comp)

LTLSPEC G(c3.state=req ->F c3.state=comp)

-- Condition number 5

SPEC AG AF!(s.state_s=busy)

--Condition number 6

SPEC AG((c1.state=rej& c1.process_c=p1) ->AF

c1.state=comp)

SPEC AG((c1.state=rej& c1.process_c=p2) ->AF

c1.state=comp)

SPEC AG((c2.state=rej& c2.process_c=p1) ->AF

c2.state=comp)

SPEC AG((c2.state=rej& c2.process_c=p2) ->AF

c2.state=comp)

SPEC AG((c3.state=rej& c3.process_c=p1) ->AF

c3.state=comp)

SPEC AG((c3.state=rej& c3.process_c=p2) ->AF

c3.state=comp)

-- Condition number 4

SPEC AG!(c1.state=rej& c1.process_c=p1 &

qu1.queuesoc1!=2)

SPEC AG!(c1.state=rej& c1.process_c=p2 &

qu2.queuesoc2!=2)

SPEC AG!(c2.state=rej& c2.process_c=p1 &

qu1.queuesoc1!=2)

SPEC AG!(c2.state=rej& c2.process_c=p2 &

qu2.queuesoc2!=2)

SPEC AG!(c3.state=rej& c3.process_c=p1 &

qu1.queuesoc1!=2)

SPEC AG!(c3.state=rej& c3.process_c=p2 &

qu2.queuesoc2!=2)

-- Condition number 2

SPEC AG ((c1.state=req -> AF c1.state=comp) &

(c1.state=comp -> AF c1.state=req))

SPEC AG ((c2.state=req-> AF c2.state=comp) &

(c2.state=comp -> AF c2.state=req))

SPEC AG ((c3.state=req-> AF c3.state=comp) &

(c3.state=comp -> AF c3.state=req))

--Condition number3

SPEC AG ((qu1.queuesoc1=-1 & (c1.state=req&

c1.process_c=p1))-> AX (qu1.queuesoc1=0))

SPEC AG ((qu1.queuesoc1=0 & (c1.state=req&

c1.process_c=p1))-> AX (qu1.queuesoc1=1))

SPEC AG ((qu1.queuesoc1=1 & (c1.state=req&

c1.process_c=p1))-> AX (qu1.queuesoc1=2))

SPEC AG ((qu2.queuesoc2=-1 & (c1.state=req&

c1.process_c=p2))-> AX (qu2.queuesoc2=0))

SPEC AG ((qu2.queuesoc2=0 & (c1.state=req&

c1.process_c=p2))-> AX (qu2.queuesoc2=1))

SPEC AG ((qu2.queuesoc2=1 & (c1.state=req&

c1.process_c=p2))-> AX (qu2.queuesoc2=2))

-- condition that is produced counterexample(false)

SPEC AG (qu1.queuesoc1=-1-> AX qu1.queuesoc1=

-1)

