
The International Arab Journal of Information Technology, Vol. 16, No. 3, May 2019 415

Evolutionary Testing for Timing Analysis of

Parallel Embedded Software

Muhammad Waqar Aziz and Syed Abdul Baqi Shah

Science and Technology Unit, Umm Al-Qura University, Kingdom of Saudi Arabia

Abstract: Embedded real-time software must be verified for their timing correctness where knowledge about the Worst-Case

Execution Time (WCET) is the building block of such verification. The WCET of embedded software can be estimated using

either static analysis or measurement-based analysis. Previously, the WCET research assumes sequential code running on

single-core platforms. However, as computation is steadily moving towards using a combination of parallel programming and

multicore hardware, necessary research in WCET analysis should be taken into account. While focusing on the measurement-

based analysis, the aim of this research is to find the WCET of parallel embedded software by generating the test-data using

search algorithms. In this paper, the use of a meta-heuristic optimizing search technique-Genetic Algorithm is demonstrated,

to automatically generate such test-data. The search-based optimization used yielded the input vectors of the parallel

embedded software that cause maximal execution times. These execution times can be either the WCET of the parallel

embedded software or very close to it. The process was evaluated in terms of its scalability, safety and applicability. The

generated test-data showed improvements over randomly generated data.

Keywords: Embedded real-time software, worst-case execution-time analysis, measurement-based analysis, end-to-end

testing, genetic algorithm, parallel computing.

Received May 24, 2016; accepted February 3, 2017

1. Introduction

Parallel software is now increasingly used in

embedded systems to fulfil the growing demands of

high performance real-time applications and to

optimally utilize the available multicore hardware [18].

This consequently has put special demands on the

design and testing of Parallel Embedded Software

(PES) [14]. Generally, the temporal testing of

embedded systems is performed through timing

analysis, where Worst-Case Execution Time (WCET)

is a central parameter [26]. The worst-case bounds can

be derived using static timing analysis [10] applied on

software and hardware models of the system, without

executing the program and requiring any inputs.

However, it is very difficult to develop and analyze

these models for parallel systems. For instance, the

inter-thread interferences among shared resources, e.g.,

L2 caches are hard to analyze statically [28].

Alternatively, dynamic analysis or measurement-based

methods can be used for better estimating the program

execution time. Measurement-based methods execute a

task or its parts, to measure its execution time, on the

given hardware or simulator using a large set of inputs

[26]. These methods provide either an evidence of the

successful operation of the software or highlight the

errors that cannot be detected by static analysis.

Therefore, measurement-based methods are widely

used in the industry and are well suited for soft real-

time systems, which is the target of this research work.

A clear disadvantage of measurement-based

methods is that these methods cannot guarantee safe

(not underestimated) WCET, until a significantly large

number of appropriate input values are exercised [1].

To give a reliable guarantee that the WCET has been

encountered, the worst-case inputs1 of a task need to be

known. Generally worst-case inputs are unknown and

hard to derive [26], due to the extremely large input

domain. However, if searching the worst-case inputs

from the set of all possible inputs is considered as an

optimization problem, a meta-heuristic optimizing

search technique [16] such as a Genetic Algorithm

(GA) can be utilized to automatically search the

required data. To the best of our knowledge, there is a

general lacking in search-based test data generation

research for PES, as most of the research efforts of

WCET analysis for multicore systems are focused on

performance enhancing hardware features [12, 15, 21],

and application [3, 17, 20] or programming models [8,

29, 30]. Therefore, the use of meta-heuristic optimizing

search technique to generate the worst-case inputs for

WCET analysis of PES needs to be explored.

The objective of this work is to use evolutionary

testing coupled with the notion of WCET coverage to

yield long execution times that are the WCET or close

to it with appropriate levels of confidence.

Evolutionary testing [24] is an iterative testing process

that automatically searches for the test data, which

produce long execution times. The inputs are guided

by executing the test object dynamically and

measuring the execution times, yielding gradually

1Worst-case inputs refer to such inputs of a program which produce the
maximum execution time.

416 The International Arab Journal of Information Technology, Vol. 16, No. 3, May 2019

tighter predictions of the long execution times [24]. In

this paper, the well-known form of evolutionary

algorithms, i.e., a GA is used to automatically find the

worst-case inputs of PES. The use of GA is supposed

to search the inputs which produce long execution

times in each generation, leading towards a data set of

worst-case inputs. We have applied the steps of GA to

generate test data that is ample for producing long

execution times, which can be regarded as the suitable

candidates for being the WCET. To stop testing, the

WCET coverage metrics are also proposed in this

work, which are used as the stopping criteria when a

satisfactory level of confidence about the obtained

estimations is encountered.

While applying GA, the end-to-end execution time

of PES was considered as the fitness function. This is

in accordance with the current industry practice of

performing end-to-end testing and applying some

engineering wisdom to derive the WCET. For

automatic test-data generation, the PES was executed

repeatedly with sets of inputs for a number of

generations. The process started by generating k

random input vectors initially (first generation) and

obtaining their timing information through

measurement. Then, the generated k random inputs

with the timing information were used to produce the

next k inputs (second generation) and so on. The

number of generations was guided by the testing

coverage metrics, proposed in this work. The

ParMiBench benchmark suite [11] was selected as an

example PES, the details are provided in the next

section. The end-to-end execution time was measured

in number of processor clock cycles. It was obtained

by gathering the execution traces of the parallel

program using Gem5 architecture simulator [2] as the

execution platform.

It is important to note that the application of meta-

heuristic search technique GA allows the classification

of this work as a search-based test data generation

method. Therefore, it should not be confused with

static timing analysis methods, which use program

flow analysis and micro-architectural modeling for

estimating WCET of parallel programs. Consequently,

analyzing the hardware related issues such as the

contention effects caused due to access of shared

hardware resources, e.g., the cache hierarchies, the

memory bus and the memory controller, are out of the

scope of this work.

The layout of the paper is as follows: section 2

provides the background of GA and of the example

PES used for experimentation. Section 3 describes the

process how evolutionary testing is performed using

GA, in this work, to approach the problem of WCET

analysis. Section 4 reports the experimental setup and

the results obtained from the experiment. The

evaluation of this work is provided in section 5.

Section 6 describes related work in measurement-based

WCET analysis of PES. Section 7 contains concluding

remarks and directions for the future work.

2. Background

2.1. Genetic Algorithm

GA uses the concept of natural evolution to reach the

desired solution from a given huge search space. It

mimics the process of natural selection and chooses the

best from one generation to produce the next

generation and attempts to reach the solution much

faster than otherwise. In contrast to other search-based

optimization algorithms, such as Hill Climbing and

Simulated Annealing, GA is a global search approach

that considers many solutions in the search space at

once. Thus, it avoids convergence towards local

optima. This section introduces the steps of GA, as also

applied in this research.

In GA jargon, individuals or chromosomes (refer to

potential solutions in the search space) are usually

random guesses to the solution of a problem.

Collectively, the current set of individuals under

consideration forms the current population. To apply

GA, an initial population of individuals needs to be

defined, which is then evolved across a number of

generations. Care should be given to maintain diversity

in the population so that premature convergence

towards a sub-optimal solution can be prevented. The

fitness of the individuals is a problem-dependent value

that specifies the goodness of an individual in solving

the problem at hand. The selection of an individual for

the next generation depends on its fitness value, i.e.,

each individual in the population is evaluated by

calculating its fitness. In other words, the fitness value

is used to select the best of any generation to ‘mate’

them in order to produce the new generation. The

fitness value is generated in GA through fitness

function. A selection strategy is applied, to the

individuals of a population in a given generation to

decide which ones are allowed to proceed to the next

generation.

The evolution of the population involves the

exchange of genetic material between the individuals

through crossover operation. Traditionally, this is

achieved by choosing a point along two bit strings at

random and swapping the tails. As a result, each

individual is evolved into two offspring which then go

into a mutation process. Mutation is a random change

in the genetic material of a single individual value,

which is performed in GA to scape a local optimum. In

this way, the mutation operation diversifies the search

into new areas of the search space. Mutation is

achieved by picking a bit at random and flipping its

value. Similarly, the next generation of the population

is chosen and the new individuals are evaluated for

fitness. Like this, the fitness function guides the search

to promising areas of the search space. This cycle is

Evolutionary Testing for Timing Analysis of Parallel Embedded Software 417

iterated, until the optimum is achieved or a stopping

criterion is fulfilled such as some fixed number of

fitness evaluations is exhausted.

2.2. ParMiBench Benchmark Suite

ParMiBench [11] suite is designed to evaluate the

performance of embedded multi-core systems. It

includes benchmarks from various domains of the

embedded applications such as control and automation,

networks, offices, and security. ParMiBench was

selected as it is an open source parallel version of a

subset of MiBench [9]-a well establish benchmark

suite, many of whose benchmarks appear to be suitable

candidates for WCET analysis [6]. The coarse-grained

task decomposition, used in ParMiBench, reduces the

synchronization and communication among threads.

Still the benchmark is a decent representative of PES,

especially in the scarcity of any publicly available

application, which is both embedded and parallel.

Conversely, considering an application that is rich in

parallelism (if any exist for embedded system), is very

hard to analyze even for the domain experts.

We have selected the Stringsearch benchmark from

the suite, which is related to searching a token (string

placed in pattern file) from a text file. This selection is

because string search benchmark fulfills the

requirements needed to apply a search-based

optimization technique: Representation (i.e., it is

capable of being encoded to allow manipulation by the

search algorithm) and fitness function (i.e., it allows

the definition of a problem-specific fitness function

that guides the search). However, the string search is

inappropriate to be used for evolutionary testing with

its existing data set, as it contains duplicate values.

Since generating new pattern files from this data was

useless, we developed a new data set (consisting of

new pattern and text files) for Stringsearch.

2.3. WCET Analysis Using Meta-Heuristic

Search

This work focuses on automatic test data generation for

PES, which yield long execution times that are the

WCET or close to it. In this regard, the use of a GA is

proposed to heuristically search the inputs that will

cause the PES to execute for the longest period of time.

To this end, the steps of GA, as explained in the

previous section, were applied to string search

benchmark-an example PES. The process, displayed in

Figure 1, is applied as follows.

In the initialization step, an initial population was

generated by randomly picking up 50% tokens from

the newly created text file, while the remaining tokens

were randomly generated. This was done to get an

unbiased population, which genetically represents the

solution domain. The initial population consisted of

one hundred pattern files (individuals). The fitness of

each individual in the initial population was evaluated

in the end-to-end calculation step. In the first

generation, the end-to-end time was calculated for all

the individuals present in the initial population.

However, in all the rest of generations, it was

calculated for the new individuals of the next

generation only. The end-to-end execution time was

calculated automatically by a Java application, as

depicted in Figure 2, using the execution traces

obtained from the Gem5 simulator by executing the

parallel program. The end-to-end execution time was

considered due to the inconsistent execution

information of the individual threads, we observed

across several runs.

Figure 1. GA based test data generation for timing analysis of

parallel embedded software.

Figure 2. The process of calculating the end-to-end execution time.

As already mentioned, the execution time of the

PES was used as a fitness value, in this work. To

reveal longer execution times, the search attempts to

maximize the fitness function. It means that the longer

the end-to-end execution time, the higher would be the

fitness of an individual to be selected for the next

generation. As a result, the inputs with higher fitness

values were selected in each generation, eventually

leading towards inputs which cause long execution

times. It is worth mentioning here that cache hits or

misses, thread conflicts or any other parameters were

not considered to evaluate the fitness. Because

considering these parameters is out of scope of this

research and is a huge research in its own, that requires

more effort and time. In addition, Gem5 simulator does

not provide much information about these parameters,

which can be useful at this level.

418 The International Arab Journal of Information Technology, Vol. 16, No. 3, May 2019

During the selection step, only five individuals were

selected, as selecting more individuals would take

extra time in the remaining steps and also in

calculating their fitness in the next generation. A rank

based selection was performed by sorting the

individuals based on their fitness values. To produce a

new generation, a crossover was made among the top

five selected individuals, by merging two lists of

tokens picked up from randomly selected pattern files.

This crossover resulted in ten new individuals. In

crossover, one part of a file was concatenated with

another part of the second file, where the size of

selected parts may not be the same, e.g., 2 tokens

picked from one file were concatenated with 62 tokens

from the other file. This selection was based on cutting

one individual at a random location and concatenating

it with the remaining part of the second individual cut

at the same location. The mutation process was applied

to the results of crossover to produce and further

improve the next generation. It was done by randomly

picking a token from a pattern file and replacing its any

letter with another random character. This process was

repeated until the defined percentage of mutation was

achieved. In this way, the next generation of 10

individuals was produced. The above process was

repeated for a set of ten individuals, which was

reproduced after each generation, until the stopping

criteria were met.

With the above modeled parameters, a Java

application was developed that implemented GA in the

experiment. The implementation of GA, as used in this

work, is presented in Algorithm 1. The evolution

continues until an optimum is found that solves the

problem adequately, or a stopping condition has

reached (e.g., a certain number of generations is

reached). In this work, we developed coverage metrics

to stop testing; by which one can state to a satisfactory

level of confidence that the WCET has been covered or

that the probability of the WCET having not been

covered is infinitely small. The coverage metrics were

defined in terms of:

1. Data saturation: there is no optimization in the

given population for a fixed number of generations

(e.g., for 10 generations).
2. Threshold value: an initially defined threshold value

has reached.
3. Best individual saturation: when the best individual

in the population ceases to improve for a certain

number of generations.
4. Number of generations: In case criterion (1) and (3)

do not meet, the evolutionary testing would be

stopped after a predefined number of generations.

This number of generations was decided based on

the time taken by the available hardware to produce

one generation and the available time for the

experiment.

3. Experimentation

3.1. Experimental Setup

We used a state-of-the-art computer architecture

simulator (Gem5), to model a multicore system. The

configuration of Gem5 used in this experiment

included four cores of ARM detailed architecture

(ARMv7-A ISA based) with default size of L2 cache

(2MB) and 256 MB of Memory. Gem5 was selected as

it is a modular platform and a cycle-accurate simulator

that provides full-system simulation to execute a

program in the operating system environment, which is

our research interest. In this work, ARM embedded

Linux (AEL) was used as the guest operating system

contained in a disk image. In addition, Gem5 supports

several commercial Instruction Set Architectures (just

as ARM, ALPHA), CPU types, cache levels, memory

and other components, which make it more powerful

than other similar simulators, such as SimpleScalar.

Algorithm 1: Implementation of GA for generating test data to

exercise long execution times close to WCET

1: Max_Gen = Maximum number of generations of GA to be

considered

2: Num_Top_Fits = Number of top fits to be picked during

selection

3: For Gen:0 to Max_Gen

 // To run a loop for a given number of generations.

4: Step 1: Read Fitness Values Table

 // A function call to read the fitness values and

 // their respective input file numbers from a file

5: Step 2: Select Num_Top_Fits Values

 // To pick up top ‘num_top_fits’ values from the fitness

values table

 // Selector Function takes a table of fitness values with

their respective pattern file numbers and uses a ‘Sorter’ method

to perform ‘Sorting’ w.r.t. fitness value.

 // ‘Sorter’, then returns a table of only top N values,

specified as top fits. Sorter Function performs sorting of an

unsorted vector string based upon the specified column.

6: For i:0 to Num_Top_Fits

 // Read the input files with top fitness, one by one, in a

loop

7: Step 3: Read respective input files

8: End

9: Step 4: Perform CrossOver

 // Perform ‘Cross Over’ to produce a new generation of

Genomes.

 // This method performs ‘Cross Over’ amongst the top

selected pattern files

10: Step 5: Perform Mutation (ftn) to get a new Generation

 // Perform ‘Mutation’ and the new generation is ready

for use.

11: Store the new generation to input test-data files

 // Create a new directory to save the newly generated

chromosomes into test-data files.

 // Write the newly generated chromosomes into a files

using a ‘for’ loop.

12: Run Simulation to compute fitness

 // Call a System Command Runner class to start the

simulation

13: End

Evolutionary Testing for Timing Analysis of Parallel Embedded Software 419

Moreover, Gem5 is widely used by the computer

architecture research community to run the

simulations. We have used it to execute the

benchmarks for collecting the time-stamped execution

traces.

In order to perform the WCET analysis using GA, a

simulation needs to be executed hundreds of times,

where each simulation takes tens of minutes to

complete, making it too long to repeat this simulation

sequentially. To solve this problem, we considered to

run multiple simulations in parallel, each using a

separate instance of Gem5 simulator. We had Xeon

processor with twelve logical cores and enough

memory (48GB) available in our machine to

accommodate multiple instances of simulator running

in parallel. Therefore, 6, 8, 10, and 12 instances of full

system simulation were tested to run in parallel. It

turned out that 10 instances in parallel gave better

timing trade-off than other options. However, by

running 10 instances of Gem5 in parallel increased the

complexity of the experimental setup over its

sequential execution, in terms of involved shell scripts,

disk images and output directories.

Figure 3. End-to-End execution times in different generations for

the input pattern files with five characters long tokens.

Figure 4. End-to-End execution times in different generations for

the input pattern files with ten characters long tokens.

3.2. Experimental Results

To observe the effects of applying GA using visual

representation, graphs of the calculated end-to-end

times were plotted for each generation. In the graphs

(Figures 3, 4, 5, and 6), the length of the execution

time is represented on the vertical axis in terms of CPU

ticks, whereas the ten individuals of each generation

are represented horizontally, as shown in Figure 3.

Following the proposed coverage metrics criteria, the

evolution testing was performed for fifty generations.

This was due the absence of data and best individual

saturations. A threshold value was defined to analyze

the improvement in the inputs over all generations. The

improvement was measured by counting the number of

individuals (input pattern files, in this case) taking

greater or equal time than the defined threshold value.

From the plotted graph (Figure 3), it can be observed

that by using GA an overall improvement was

achieved in the measured end-to-end time. For

instance, in first generation there are only three

individuals which caused the program to execute for a

period longer than the defined threshold. In

comparison, the number of individuals increased to

nine in 50th generation. This increase in the number of

individuals, after applying several generations, proved

that the generated inputs were taking longer times. A

sudden decrease was also observed in some of the

values, as can be seen in Figure 3. This is due to the

very nature of GA where results can degrade even after

reaching to an improved position. However, an overall

improvement is achieved across 50 generations.

Figure 5. End-to-End execution times in different generations for

the input files of Dijkstra benchmark.

Figure 6. Comparison of randomly generated inputs with the inputs

generated through GA.

4. Evaluation

The presented work was evaluated in terms of its

scalability, safety, applicability, and improvements

over the randomly generated inputs. The details are

provided below.

420 The International Arab Journal of Information Technology, Vol. 16, No. 3, May 2019

4.1. Scalability

In order to evaluate the scalability of the proposed

method, the experiment was repeated for the same

benchmark with inputs of different lengths. To this

end, the complete process was re-performed for tokens

with a length of 10 characters; compared to the original

experiment where five characters long input tokens

were used. The result produced, in different

generations of 10 characters length token, is presented

in Figure 4. It can be observed that the number of

individuals increased the threshold value with the

number of generations. Although the number of files

slightly increased and decreased due to the nature of

GA, an overall steady increase in the number of files

was observed after 50 generations.

4.2. Safety

To evaluate the safety, the measurement-based derive

facts were compared with the static analysis of the

Stringsearch benchmark. For that the flow analysis of

the Stringsearch was performed to statically analyze

the inputs that would maximize the number of run-time

steps of the program. The analysis focused the testing

of particular sections of the code (e.g., loops) in order

to trigger long execution times. One obvious reason for

analyzing loops was that an embedded program spends

most of its time in loops. More importantly, loop

bound analysis is the most focused areas within the

flow analysis research. Thus, the iterations of the

specified loop based on the input data were tested. In

static flow analysis, it was found that the number of

loop steps decreased with the increase in the length of

a token. This observation was in accordance with the

difference felt in the ranges of the execution times for

5 and 10 characters during the measurement-based

experiment (see, e.g., Figures 3 and 4).

4.3. Applicability

To further demonstrate the applicability of the

proposed method, it was also applied to another

benchmark of ParMiBench, i.e., Dijkstra. Dijkstra

benchmark is related to finding the shortest path

between nodes of a graph. This application and the

improvements in the inputs, in terms of taking more

time, proved that the proposed method is general

enough to apply to other PES.

4.4. Improvements

During the experiment performed, a significant

improvement in the execution times was not observed

from one generation to the next. However, there was a

substantial difference in the execution times of the

worst-case inputs generated by using the proposed

method, compared to those generated randomly. This

difference can be seen in Figure 6, where the randomly

generated inputs are compared with the worst-case

generated inputs obtained after 50th generation.

5. Related Work and Discussion

Most of WCET-analysis research is performed for

sequential software and single-core hardware.

Recently, research on WCET analysis of sequential

code running on multi-core processors has been a main

focus. The work that has been done in this area so far

can be divided into two parts:

1. Static hardware modeling for WCET analysis of

multicore architectures [7, 27, 28, 31].

2. Design of analyzable multi-core computers that

favor timing predictability over performance [5, 19,

22, 23].

Some research on parallel applications running on

multi-core architectures is also available. For instance,

the problem of analyzing the timing behavior of non-

sequential software on a multi-core architecture is

highlighted in [21].

In relation to this work, we found no related work to

review, which deals with test data generation for

parallel applications running on multi-core

architectures using evolutionary testing. Previously,

search-based techniques have been used to generate the

input test-data [24, 25] and evolutionary search (more

specifically GA) has been employed [4, 13] to find

long execution times. In [24], a comparison between

static analysis and evolutionary testing is presented,

with the merits and demerits of each approach.

However, all of these works target sequential real-time

programs running on single core hardware. In contrast,

we have used GA to generate test data for WCET

analysis of parallel programs running on multi-core

hardware. The fitness function used in this work

considered the end-to-end time of a program, which

was calculated from the execution times of individual

threads (see Figure 2). This also included the overall

thread execution and interaction time. This

consideration has helped us to produce appropriate lists

of tokens by using GA that maximized the fitness

value.

Although heuristic based algorithms, in general, do

not guarantee to generate improved guesses, some

improvements have been observed in our case. It is

therefore claimed that the proposed method has a high

probability of finding the worst-case inputs of the

programs which lie in the subset where GA will

improve. It is important to mention here that the

measurement-based methods generally do not

guarantee safety, therefore these methods should be

complemented with static timing analysis, if safety is

required, e.g., for hard real-time systems. However,

finding an absolute safe bound on the execution time is

not required for most of the real-time systems which

are soft in their majority. Moreover, the measurement-

Evolutionary Testing for Timing Analysis of Parallel Embedded Software 421

based methods can guarantee safety if the appropriate

test data is used [24]. In this work, as the worst-case

test data has been generated, a safe upper bound on the

WCET can be guaranteed.

6. Conclusions

In this paper, the worst-case execution time of parallel

embedded software is determined by generating the

test-data. A genetic algorithm was used to heuristically

search the inputs from a huge search space that would

cause the parallel program to execute for the longest

period of time. The input vectors were evolved using

the largest end-to-end execution time as the fitness

function. The results of this evolutionary testing

showed that GA has significantly improved the

execution times of inputs, i.e., those inputs were

generated that would lead towards the WCET of

parallel embedded software. The measurement-based

analysis, performed in this work, is sufficient not only

for soft real-time systems, but also for safety-critical

systems as a safe upper bound on the WCET is

guaranteed due to the generation of the appropriate test

data. The process was demonstrated by its application

in a parallel embedded benchmark suite-ParMiBench,

where it was evaluated in terms of its scalability, safety

and applicability. In the future, we aim to use a real-

life, real-time application to evaluate our work. It is

planned to consider a richer multi-objective fitness

function in the future that might include thread

conflicts, cache misses/hits and cache sizes.

References

[1] Betts A., Bernat G., Kirner R., Puschner P., and

Wenzel I., “WCET Coverage For Pipelines,”

Real Time Systems Research Group-University

of York and Institute of Computer Engineering-

Vienna University of Technology, Technical

Report, 2006.

[2] Binkert N., Beckmann B., Black G., Reinhardt

S., Saidi A., Basu A., Hestness J., Hower D.,

Krishna T., Sardashti S., Sen R., Sewell K.,

Shoaib M., Vaish N., Hill M., and Wood D.,

“The Gem5 Simulator,” ACM SIGARCH

Computer Architecture News, vol. 39, no. 2, pp.

1-7, 2011.

[3] Ding Y. and Zhang W., “Multicore-Aware Code

Co-Positioning to Reduce WCET on Dual-Core

Processors with Shared Instruction Caches,”

Journal of Computing Science and Engineering,

vol. 6, no. 1, pp. 12-25, 2012.

[4] Gross H., “An Evaluation of Dynamic,

Optimisation-Based Worst-Case Execution Time

Analysis,” in Proceedings of the International

Conference on Information Technology:

Prospects and Challenges in the 21st Century,

Kathmandu, 2003.

[5] Guan N., Stigge M., Yi W., and Yu G., “Cache-

Aware Scheduling and Analysis for Multicores,”

in Proceedings of the 17th ACM International

Conference on Embedded Software, Grenoble,

pp. 245-254, 2009.

[6] Gustafsson J., Betts A., Ermedahl A., and Lisper

B., “The Mälardalen WCET Benchmarks: Past,

Present and Future,” in Proceedings of 10th

Workshop on Worst-Case Execution Time

Analysis, Brussels, 2010.

[7] Gustavsson A., Ermedahl A., Lisper B., and

Pettersson P., “Towards WCET analysis of

Multicore Architectures Using Uppaal,” in

Proceedings of the 10th International Workshop

on Worst-Case Execution Time Analysis,

Dagstuhl, pp. 101-112, 2010.

[8] Gustavsson A., Gustafsson J., and Lisper B.,

“Toward Static Timing Analysis of Parallel

Software,” in Proceedings of 12th International

Workshop on Worst-Case Execution Time

Analysis, Dagstuhl, 2012.

[9] Guthaus M., Ringenberg J., Ernst D., Austin T.,

Mudge T., and Brown R., “Mibench: A Free,

Commercially Representative Embedded

Benchmark Suite,” in Proceedings of the 4th

Annual IEEE International Workshop on

Workload Characterization, Austin, pp. 3-14,

2001.

[10] Heckmann R. and Ferdinand C., “Worst-Case

Execution Time Prediction By Static Program

Analysis,” in Proceedings of 18th International

Parallel and Distributed Processing Symposium,

Santa Fe, pp. 26-30, 2004.

[11] Iqbal S., Liang Y., and Grahn H., “ParMibench-

an Open-Source Benchmark for Embedded

Multiprocessor Systems,” IEEE Computer

Architecture Letters, vol. 9, no. 2, pp. 45-48,

2010.

[12] Kästner D., Schlickling M., Pister M., Cullmann

C., Gebhard G., Heckmann R., and Ferdinand C.,

“Meeting Real-Time Requirements with Multi-

Core Processors,” in Proceedings of

International Conference on Computer Safety,

Reliability and Security, Berlin, pp. 117-131,

2012.

[13] Khan U. and Bate I., “WCET Analysis of

Modern Processors Using Multi-Criteria

Optimization,” in Proceedings of 1st

International Symposium on Search Based

Software Engineering, Windsor, pp. 103-112,

2009.

[14] Koziolek H., Becker S., Happe J., Tuma P., and

Gooijer T., “Towards Software Performance

Engineering for Multicore and Manycore

Systems,” ACM SIGMETRICS Performance

Evaluation Review, vol. 41, no. 3, pp. 2-11, 2014.

[15] Liang Y., Ding H., Mitra T., Roychoudhury A.,

Li Y., and Suhendra V., “Timing Analysis of

422 The International Arab Journal of Information Technology, Vol. 16, No. 3, May 2019

Concurrent Programs Running on Shared Cache

Multi-Cores,” Real-Time Systems, vol. 48, no. 6,

pp. 638-680, 2012.

[16] Mansour N., Awad M., and El-Fakih K.,

“Incremental Genetic Algorithm,” The

International Arab Journal of Information

Technology, vol. 3, no. 1, pp. 42-47, 2006.

[17] Ozaktas H., Rochange C., and Sainrat P.,

“Automatic WCET Analysis of Real-Time

Parallel Applications,” in Proceedings of 13th

Workshop on Worst-Case Execution Time

Analysis, Paris, pp. 11-20, 2013.

[18] Pinho L., Quinones E., Bertogna M., Marongiu

A., Carlos J., Scordino C., and Ramponi M., “P-

Socrates: A Parallel Software Framework for

Time-Critical Many-Core Systems,” in

Proceedings of 17th Euromicro Conference on

Digital System Design, Verona, pp. 214-221,

2014.

[19] Pitter C. and Schoeberl M., “A Real-Time Java

Chip-Multiprocessor,” ACM Transactions on

Embedded Computing Systems, vol. 10, no. 1,

2010.

[20] Potop-Butucaru D. and Puaut I., “Integrated

Worst-Case Response Time Evaluation of

Multicore Non-Preemptive Applications,” PhD

Dissertation, Institut National de Recherche en

Informatique et en Automatique, 2013.

[21] Rochange C., Bonenfant A., Sainrat P., Gerdes

M., Wolf J., Ungerer T., Petrov Z., and Mikulu

F., “WCET Analysis of A Parallel 3D Multigrid

Solver Executed on the Merasa Multi-Core,” in

Proceedings of OASIcs-OpenAccess Series in

Informatics, Schloss Dagstuhl-Leibniz-Zentrum

fuer Informatik, Dagstuhl, pp. 90-100, 2010.

[22] Rosen J., Andrei A., Eles P., and Peng Z., “Bus

Access Optimization for Predictable

Implementation Of Real-Time Applications on

Multiprocessor Systems-on-Chip,” in

Proceedings of 28th IEEE International Real-

Time Systems Symposium, Tucson, pp. 49-60,

2007.

[23] Ungerer T., Cazorla F., Casse H., Uhrig S.,

Guliashvili I., Houston M., Kluge F., Metzlaff S.,

Mische J., Sainrat P., Bernat G., Petrov Z.,

Rochange C., Quinones E., and Gerdes M.,

“Merasa: Multicore Execution of Hard Real-

Time Applications Supporting Analyzability,”

IEEE Micro, vol. 30, no. 5, pp. 66-75, 2010.

[24] Wegener J. and Mueller F., “A Comparison of

Static Analysis and Evolutionary Testing for the

Verification of Timing Constraints,” Real-Time

Systems, vol. 21, no. 3, pp. 241-268, 2001.

[25] Wegener J., Sthamer H., Jones B., and Eyres D.,

“Testing Real-Time Systems Using Genetic

Algorithms,” Software Quality Journal, vol. 6,

no. 2, pp. 127-135, 1997.

[26] Wilhelm R., Engblom J., Ermedahl A., Holsti N.,

Thesing S., Whalley D., Bernat G., Ferdinand C.,

Heckmann R., Mitra T., Mueller F., Puaut I.,

Puschner P., Staschulat J., and Stenstrom P.,

“The Worst-Case Execution-Time Problem-

Overview of Methods and Survey of Tools,”

ACM Transactions on Embedded Computing

Systems, vol. 7, no. 3, 2008.

[27] Wu L. and Zhang W., “Bounding Worst-Case

Execution Time for Multicore Processors

Through Model Checking,” in Proceedings of

16th IEEE Real-Time and Embedded Technology

and Applications Symposium, Stockholm, pp. 17-

20, 2010.

[28] Yan J. and Zhang W., “WCET Analysis for

Multi-Core Processors with Shared L2

Instruction Caches,” IEEE Real-Time and

Embedded Technology and Applications

Symposium, pp. 80-89, 2008.

[29] Yip E., Roop P., Biglari-Abhari M., and Girault

A., “Programming and Timing Analysis of

Parallel Programs on Multicores,” in Proceedings

of 13th International Conference on Application

of Concurrency to System Design, Barcelona, pp.

160-169, 2013.

[30] Yip E., Roop P., and Biglari-Abhari M.,

“Predictable Parallel Programming Using PRET-

C,” Report, University of Auckland, Faculty of

Engineering, 2010.

[31] Zhang W. and Yan J., “Accurately Estimating

Worst-Case Execution Time For Multi-Core

Processors With Shared Direct-Mapped

Instruction Caches,” in Proceedings of 15th IEEE

International Conference on Embedded and

Real-Time Computing Systems and Applications,

Beijing, pp. 455-463, 2009.

Evolutionary Testing for Timing Analysis of Parallel Embedded Software 423

 Muhammad Waqar Aziz is an

Assistant Professor in Umm Al-

Qura University, Makkah, Saudi

Arabia. He received his Ph.D

(Computer Science) from Universiti

Teknologi Malaysia, Malaysia in

2013, MS-Software Engineering

from City University of Science and Technology,

Pakistan in 2009 and MSc- Computer Science from

University of Peshawar, Pakistan in 2001. Previously,

he has almost eight years of teaching experience as

Lecturer at Institute of Management Studies,

University of Peshawar. He published more than 20

research articles in indexed and well reputed journals

and Conference Proceedings. The research areas of his

interest are Embedded Real-Time Software modeling,

verification and development and smart environment

development.

 Syed Abdul Baqi Shah is a

Lecturer at Science and Technology

Unit, Umm Al Qura University,

Makkah, Saudi Arabia. He received

a B.S. degree in Electronic

Engineering from International

Islamic University, Islamabad,

Pakistan in 2007. He completed his MS in Information

and Mechatronics from Gwnangju Institute of Science

and Technology, Republic of Korea in 2010. His

research interests include timing analysis of real-time

systems and applications, as well as design and

implementation of low-power embedded system.

