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Abstract: Embedded real-time software must be verified for their timing correctness where knowledge about the Worst-Case 

Execution Time (WCET) is the building block of such verification. The WCET of embedded software can be estimated using 

either static analysis or measurement-based analysis. Previously, the WCET research assumes sequential code running on 

single-core platforms. However, as computation is steadily moving towards using a combination of parallel programming and 

multicore hardware, necessary research in WCET analysis should be taken into account. While focusing on the measurement-

based analysis, the aim of this research is to find the WCET of parallel embedded software by generating the test-data using 

search algorithms. In this paper, the use of a meta-heuristic optimizing search technique-Genetic Algorithm is demonstrated, 

to automatically generate such test-data. The search-based optimization used yielded the input vectors of the parallel 

embedded software that cause maximal execution times. These execution times can be either the WCET of the parallel 

embedded software or very close to it. The process was evaluated in terms of its scalability, safety and applicability. The 

generated test-data showed improvements over randomly generated data.  
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1. Introduction 

Parallel software is now increasingly used in 

embedded systems to fulfil the growing demands of 

high performance real-time applications and to 

optimally utilize the available multicore hardware [18]. 

This consequently has put special demands on the 

design and testing of Parallel Embedded Software 

(PES) [14]. Generally, the temporal testing of 

embedded systems is performed through timing 

analysis, where Worst-Case Execution Time (WCET) 

is a central parameter [26]. The worst-case bounds can 

be derived using static timing analysis [10] applied on 

software and hardware models of the system, without 

executing the program and requiring any inputs. 

However, it is very difficult to develop and analyze 

these models for parallel systems. For instance, the 

inter-thread interferences among shared resources, e.g., 

L2 caches are hard to analyze statically [28]. 

Alternatively, dynamic analysis or measurement-based 

methods can be used for better estimating the program 

execution time. Measurement-based methods execute a 

task or its parts, to measure its execution time, on the 

given hardware or simulator using a large set of inputs 

[26]. These methods provide either an evidence of the 

successful operation of the software or highlight the 

errors that cannot be detected by static analysis. 

Therefore, measurement-based methods are widely 

used in the industry and are well suited for soft real-

time systems, which is the target of this research work. 

A clear disadvantage of measurement-based 

methods is that these methods cannot guarantee safe  

(not underestimated) WCET, until a significantly large 

number of appropriate input values are exercised [1]. 

To give a reliable guarantee that the WCET has been 

encountered, the worst-case inputs1 of a task need to be 

known. Generally worst-case inputs are unknown and 

hard to derive [26], due to the extremely large input 

domain. However, if searching the worst-case inputs 

from the set of all possible inputs is considered as an 

optimization problem, a meta-heuristic optimizing 

search technique [16] such as a Genetic Algorithm 

(GA) can be utilized to automatically search the 

required data. To the best of our knowledge, there is a 

general lacking in search-based test data generation 

research for PES, as most of the research efforts of 

WCET analysis for multicore systems are focused on 

performance enhancing hardware features [12, 15, 21], 

and application [3, 17, 20] or programming models [8, 

29, 30]. Therefore, the use of meta-heuristic optimizing 

search technique to generate the worst-case inputs for 

WCET analysis of PES needs to be explored. 

The objective of this work is to use evolutionary 

testing coupled with the notion of WCET coverage to 

yield long execution times that are the WCET or close 

to it with appropriate levels of confidence. 

Evolutionary testing [24] is an iterative testing process 

that automatically searches for the test data, which 

produce long execution times. The inputs are guided 

by executing the test object dynamically and 

measuring the execution times, yielding gradually 

                                                 
1Worst-case inputs refer to such inputs of a program which produce the 
maximum execution time. 
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tighter predictions of the long execution times [24]. In 

this paper, the well-known form of evolutionary 

algorithms, i.e., a GA is used to automatically find the 

worst-case inputs of PES. The use of GA is supposed 

to search the inputs which produce long execution 

times in each generation, leading towards a data set of 

worst-case inputs. We have applied the steps of GA to 

generate test data that is ample for producing long 

execution times, which can be regarded as the suitable 

candidates for being the WCET. To stop testing, the 

WCET coverage metrics are also proposed in this 

work, which are used as the stopping criteria when a 

satisfactory level of confidence about the obtained 

estimations is encountered. 

While applying GA, the end-to-end execution time 

of PES was considered as the fitness function. This is 

in accordance with the current industry practice of 

performing end-to-end testing and applying some 

engineering wisdom to derive the WCET. For 

automatic test-data generation, the PES was executed 

repeatedly with sets of inputs for a number of 

generations. The process started by generating k 

random input vectors initially (first generation) and 

obtaining their timing information through 

measurement. Then, the generated k random inputs 

with the timing information were used to produce the 

next k inputs (second generation) and so on. The 

number of generations was guided by the testing 

coverage metrics, proposed in this work. The 

ParMiBench benchmark suite [11] was selected as an 

example PES, the details are provided in the next 

section. The end-to-end execution time was measured 

in number of processor clock cycles. It was obtained 

by gathering the execution traces of the parallel 

program using Gem5 architecture simulator [2] as the 

execution platform. 

It is important to note that the application of meta-

heuristic search technique GA allows the classification 

of this work as a search-based test data generation 

method. Therefore, it should not be confused with 

static timing analysis methods, which use program 

flow analysis and micro-architectural modeling for 

estimating WCET of parallel programs. Consequently, 

analyzing the hardware related issues such as the 

contention effects caused due to access of shared 

hardware resources, e.g., the cache hierarchies, the 

memory bus and the memory controller, are out of the 

scope of this work. 

The layout of the paper is as follows: section 2 

provides the background of GA and of the example 

PES used for experimentation. Section 3 describes the 

process how evolutionary testing is performed using 

GA, in this work, to approach the problem of WCET 

analysis. Section 4 reports the experimental setup and 

the results obtained from the experiment. The 

evaluation of this work is provided in section 5. 

Section 6 describes related work in measurement-based 

WCET analysis of PES. Section 7 contains concluding 

remarks and directions for the future work.  

2. Background  

2.1. Genetic Algorithm 

GA uses the concept of natural evolution to reach the 

desired solution from a given huge search space. It 

mimics the process of natural selection and chooses the 

best from one generation to produce the next 

generation and attempts to reach the solution much 

faster than otherwise. In contrast to other search-based 

optimization algorithms, such as Hill Climbing and 

Simulated Annealing, GA is a global search approach 

that considers many solutions in the search space at 

once. Thus, it avoids convergence towards local 

optima. This section introduces the steps of GA, as also 

applied in this research. 

In GA jargon, individuals or chromosomes (refer to 

potential solutions in the search space) are usually 

random guesses to the solution of a problem. 

Collectively, the current set of individuals under 

consideration forms the current population. To apply 

GA, an initial population of individuals needs to be 

defined, which is then evolved across a number of 

generations. Care should be given to maintain diversity 

in the population so that premature convergence 

towards a sub-optimal solution can be prevented. The 

fitness of the individuals is a problem-dependent value 

that specifies the goodness of an individual in solving 

the problem at hand. The selection of an individual for 

the next generation depends on its fitness value, i.e., 

each individual in the population is evaluated by 

calculating its fitness. In other words, the fitness value 

is used to select the best of any generation to ‘mate’ 

them in order to produce the new generation. The 

fitness value is generated in GA through fitness 

function. A selection strategy is applied, to the 

individuals of a population in a given generation to 

decide which ones are allowed to proceed to the next 

generation. 

The evolution of the population involves the 

exchange of genetic material between the individuals 

through crossover operation. Traditionally, this is 

achieved by choosing a point along two bit strings at 

random and swapping the tails. As a result, each 

individual is evolved into two offspring which then go 

into a mutation process. Mutation is a random change 

in the genetic material of a single individual value, 

which is performed in GA to scape a local optimum. In 

this way, the mutation operation diversifies the search 

into new areas of the search space. Mutation is 

achieved by picking a bit at random and flipping its 

value. Similarly, the next generation of the population 

is chosen and the new individuals are evaluated for 

fitness. Like this, the fitness function guides the search 

to promising areas of the search space. This cycle is 



Evolutionary Testing for Timing Analysis of Parallel Embedded Software                                                                                417 

iterated, until the optimum is achieved or a stopping 

criterion is fulfilled such as some fixed number of 

fitness evaluations is exhausted.  

2.2. ParMiBench Benchmark Suite 

ParMiBench [11] suite is designed to evaluate the 

performance of embedded multi-core systems. It 

includes benchmarks from various domains of the 

embedded applications such as control and automation, 

networks, offices, and security. ParMiBench was 

selected as it is an open source parallel version of a 

subset of MiBench [9]-a well establish benchmark 

suite, many of whose benchmarks appear to be suitable 

candidates for WCET analysis [6]. The coarse-grained 

task decomposition, used in ParMiBench, reduces the 

synchronization and communication among threads. 

Still the benchmark is a decent representative of PES, 

especially in the scarcity of any publicly available 

application, which is both embedded and parallel. 

Conversely, considering an application that is rich in 

parallelism (if any exist for embedded system), is very 

hard to analyze even for the domain experts. 

We have selected the Stringsearch benchmark from 

the suite, which is related to searching a token (string 

placed in pattern file) from a text file. This selection is 

because string search benchmark fulfills the 

requirements needed to apply a search-based 

optimization technique: Representation (i.e., it is 

capable of being encoded to allow manipulation by the 

search algorithm) and fitness function (i.e., it allows 

the definition of a problem-specific fitness function 

that guides the search). However, the string search is 

inappropriate to be used for evolutionary testing with 

its existing data set, as it contains duplicate values. 

Since generating new pattern files from this data was 

useless, we developed a new data set (consisting of 

new pattern and text files) for Stringsearch.  

2.3. WCET Analysis Using Meta-Heuristic 

Search 

This work focuses on automatic test data generation for 

PES, which yield long execution times that are the 

WCET or close to it. In this regard, the use of a GA is 

proposed to heuristically search the inputs that will 

cause the PES to execute for the longest period of time. 

To this end, the steps of GA, as explained in the 

previous section, were applied to string search 

benchmark-an example PES. The process, displayed in 

Figure 1, is applied as follows. 

In the initialization step, an initial population was 

generated by randomly picking up 50% tokens from 

the newly created text file, while the remaining tokens 

were randomly generated. This was done to get an 

unbiased population, which genetically represents the 

solution domain. The initial population consisted of 

one hundred pattern files (individuals). The fitness of 

each individual in the initial population was evaluated 

in the end-to-end calculation step. In the first 

generation, the end-to-end time was calculated for all 

the individuals present in the initial population. 

However, in all the rest of generations, it was 

calculated for the new individuals of the next 

generation only. The end-to-end execution time was 

calculated automatically by a Java application, as 

depicted in Figure 2, using the execution traces 

obtained from the Gem5 simulator by executing the 

parallel program. The end-to-end execution time was 

considered due to the inconsistent execution 

information of the individual threads, we observed 

across several runs. 

 

 

Figure 1. GA based test data generation for timing analysis of 

parallel embedded software.  

 

Figure 2. The process of calculating the end-to-end execution time. 

As already mentioned, the execution time of the 

PES was used as a fitness value, in this work. To 

reveal longer execution times, the search attempts to 

maximize the fitness function. It means that the longer 

the end-to-end execution time, the higher would be the 

fitness of an individual to be selected for the next 

generation. As a result, the inputs with higher fitness 

values were selected in each generation, eventually 

leading towards inputs which cause long execution 

times. It is worth mentioning here that cache hits or 

misses, thread conflicts or any other parameters were 

not considered to evaluate the fitness. Because 

considering these parameters is out of scope of this 

research and is a huge research in its own, that requires 

more effort and time. In addition, Gem5 simulator does 

not provide much information about these parameters, 

which can be useful at this level. 
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During the selection step, only five individuals were 

selected, as selecting more individuals would take 

extra time in the remaining steps and also in 

calculating their fitness in the next generation. A rank 

based selection was performed by sorting the 

individuals based on their fitness values. To produce a 

new generation, a crossover was made among the top 

five selected individuals, by merging two lists of 

tokens picked up from randomly selected pattern files. 

This crossover resulted in ten new individuals. In 

crossover, one part of a file was concatenated with 

another part of the second file, where the size of 

selected parts may not be the same, e.g., 2 tokens 

picked from one file were concatenated with 62 tokens 

from the other file. This selection was based on cutting 

one individual at a random location and concatenating 

it with the remaining part of the second individual cut 

at the same location. The mutation process was applied 

to the results of crossover to produce and further 

improve the next generation. It was done by randomly 

picking a token from a pattern file and replacing its any 

letter with another random character. This process was 

repeated until the defined percentage of mutation was 

achieved. In this way, the next generation of 10 

individuals was produced. The above process was 

repeated for a set of ten individuals, which was 

reproduced after each generation, until the stopping 

criteria were met. 

With the above modeled parameters, a Java 

application was developed that implemented GA in the 

experiment. The implementation of GA, as used in this 

work, is presented in Algorithm 1. The evolution 

continues until an optimum is found that solves the 

problem adequately, or a stopping condition has 

reached (e.g., a certain number of generations is 

reached). In this work, we developed coverage metrics 

to stop testing; by which one can state to a satisfactory 

level of confidence that the WCET has been covered or 

that the probability of the WCET having not been 

covered is infinitely small. The coverage metrics were 

defined in terms of: 

1. Data saturation: there is no optimization in the 

given population for a fixed number of generations 

(e.g., for 10 generations). 
2. Threshold value: an initially defined threshold value 

has reached. 
3. Best individual saturation: when the best individual 

in the population ceases to improve for a certain 

number of generations. 
4.  Number of generations: In case criterion (1) and (3) 

do not meet, the evolutionary testing would be 

stopped after a predefined number of generations. 

This number of generations was decided based on 

the time taken by the available hardware to produce 

one generation and the available time for the 

experiment.  

3. Experimentation  

3.1. Experimental Setup 

We used a state-of-the-art computer architecture 

simulator (Gem5), to model a multicore system. The 

configuration of Gem5 used in this experiment 

included four cores of ARM detailed architecture 

(ARMv7-A ISA based) with default size of L2 cache 

(2MB) and 256 MB of Memory. Gem5 was selected as 

it is a modular platform and a cycle-accurate simulator 

that provides full-system simulation to execute a 

program in the operating system environment, which is 

our research interest. In this work, ARM embedded 

Linux (AEL) was used as the guest operating system 

contained in a disk image. In addition, Gem5 supports 

several commercial Instruction Set Architectures (just 

as ARM, ALPHA), CPU types, cache levels, memory 

and other components, which make it more powerful 

than other similar simulators, such as SimpleScalar.  

Algorithm 1: Implementation of GA for generating test data to 

exercise long execution times close to WCET 

1: Max_Gen = Maximum number of generations of GA to be 

considered 

2: Num_Top_Fits = Number of top fits to be picked during 

selection 

3: For Gen:0 to Max_Gen 

 // To run a loop for a given number of generations.  

4: Step 1: Read Fitness Values Table 

 // A function call to read the fitness values and 

 // their respective input file numbers from a file 

5: Step 2: Select Num_Top_Fits Values 

 // To pick up top ‘num_top_fits’ values from the fitness 

values table  

 // Selector Function takes a table of fitness values with 

their respective pattern file numbers and uses a ‘Sorter’ method 

to perform ‘Sorting’ w.r.t. fitness value. 

 // ‘Sorter’, then returns a table of only top N values, 

specified as top fits. Sorter Function performs sorting of an 

unsorted vector string based upon the specified column. 

6: For i:0 to Num_Top_Fits 

 // Read the input files with top fitness, one by one, in a 

loop  

7: Step 3: Read respective input files  

8: End  

9: Step 4: Perform CrossOver 

            // Perform ‘Cross Over’ to produce a new generation of 

Genomes. 

 // This method performs ‘Cross Over’ amongst the top 

selected pattern files 

10: Step 5: Perform Mutation (ftn) to get a new Generation 

            // Perform ‘Mutation’ and the new generation is ready 

for use. 

11: Store the new generation to input test-data files 

            // Create a new directory to save the newly generated 

chromosomes into test-data files. 

            // Write the newly generated chromosomes into a files 

using a ‘for’ loop.   

12: Run Simulation to compute fitness 

            // Call a System Command Runner class to start the 

simulation 

13: End 
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Moreover, Gem5 is widely used by the computer 

architecture research community to run the 

simulations. We have used it to execute the 

benchmarks for collecting the time-stamped execution 

traces. 

In order to perform the WCET analysis using GA, a 

simulation needs to be executed hundreds of times, 

where each simulation takes tens of minutes to 

complete, making it too long to repeat this simulation 

sequentially. To solve this problem, we considered to 

run multiple simulations in parallel, each using a 

separate instance of Gem5 simulator. We had Xeon 

processor with twelve logical cores and enough 

memory (48GB) available in our machine to 

accommodate multiple instances of simulator running 

in parallel. Therefore, 6, 8, 10, and 12 instances of full 

system simulation were tested to run in parallel. It 

turned out that 10 instances in parallel gave better 

timing trade-off than other options. However, by 

running 10 instances of Gem5 in parallel increased the 

complexity of the experimental setup over its 

sequential execution, in terms of involved shell scripts, 

disk images and output directories.  

 

Figure 3. End-to-End execution times in different generations for 

the input pattern files with five characters long tokens. 

 

Figure 4. End-to-End execution times in different generations for 

the input pattern files with ten characters long tokens. 

3.2. Experimental Results 

To observe the effects of applying GA using visual 

representation, graphs of the calculated end-to-end 

times were plotted for each generation. In the graphs 

(Figures 3, 4, 5, and 6), the length of the execution 

time is represented on the vertical axis in terms of CPU 

ticks, whereas the ten individuals of each generation 

are represented horizontally, as shown in Figure 3. 

Following the proposed coverage metrics criteria, the 

evolution testing was performed for fifty generations. 

This was due the absence of data and best individual 

saturations. A threshold value was defined to analyze 

the improvement in the inputs over all generations. The 

improvement was measured by counting the number of 

individuals (input pattern files, in this case) taking 

greater or equal time than the defined threshold value. 

From the plotted graph (Figure 3), it can be observed 

that by using GA an overall improvement was 

achieved in the measured end-to-end time. For 

instance, in first generation there are only three 

individuals which caused the program to execute for a 

period longer than the defined threshold. In 

comparison, the number of individuals increased to 

nine in 50th generation. This increase in the number of 

individuals, after applying several generations, proved 

that the generated inputs were taking longer times. A 

sudden decrease was also observed in some of the 

values, as can be seen in Figure 3. This is due to the 

very nature of GA where results can degrade even after 

reaching to an improved position. However, an overall 

improvement is achieved across 50 generations.  

 

Figure 5. End-to-End execution times in different generations for 

the input files of Dijkstra benchmark. 

 

Figure 6. Comparison of randomly generated inputs with the inputs 

generated through GA.  

4. Evaluation 

The presented work was evaluated in terms of its 

scalability, safety, applicability, and improvements 

over the randomly generated inputs. The details are 

provided below.  
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4.1. Scalability 

In order to evaluate the scalability of the proposed 

method, the experiment was repeated for the same 

benchmark with inputs of different lengths. To this 

end, the complete process was re-performed for tokens 

with a length of 10 characters; compared to the original 

experiment where five characters long input tokens 

were used. The result produced, in different 

generations of 10 characters length token, is presented 

in Figure 4. It can be observed that the number of 

individuals increased the threshold value with the 

number of generations. Although the number of files 

slightly increased and decreased due to the nature of 

GA, an overall steady increase in the number of files 

was observed after 50 generations.  

4.2. Safety 

To evaluate the safety, the measurement-based derive 

facts were compared with the static analysis of the 

Stringsearch benchmark. For that the flow analysis of 

the Stringsearch was performed to statically analyze 

the inputs that would maximize the number of run-time 

steps of the program. The analysis focused the testing 

of particular sections of the code (e.g., loops) in order 

to trigger long execution times. One obvious reason for 

analyzing loops was that an embedded program spends 

most of its time in loops. More importantly, loop 

bound analysis is the most focused areas within the 

flow analysis research. Thus, the iterations of the 

specified loop based on the input data were tested. In 

static flow analysis, it was found that the number of 

loop steps decreased with the increase in the length of 

a token. This observation was in accordance with the 

difference felt in the ranges of the execution times for 

5 and 10 characters during the measurement-based 

experiment (see, e.g., Figures 3 and 4).  

4.3. Applicability 

To further demonstrate the applicability of the 

proposed method, it was also applied to another 

benchmark of ParMiBench, i.e., Dijkstra. Dijkstra 

benchmark is related to finding the shortest path 

between nodes of a graph. This application and the 

improvements in the inputs, in terms of taking more 

time, proved that the proposed method is general 

enough to apply to other PES.  

4.4. Improvements 

During the experiment performed, a significant 

improvement in the execution times was not observed 

from one generation to the next. However, there was a 

substantial difference in the execution times of the 

worst-case inputs generated by using the proposed 

method, compared to those generated randomly. This 

difference can be seen in Figure 6, where the randomly 

generated inputs are compared with the worst-case 

generated inputs obtained after 50th generation.  

5. Related Work and Discussion 

Most of WCET-analysis research is performed for 

sequential software and single-core hardware. 

Recently, research on WCET analysis of sequential 

code running on multi-core processors has been a main 

focus. The work that has been done in this area so far 

can be divided into two parts: 

1. Static hardware modeling for WCET analysis of 

multicore architectures [7, 27, 28, 31]. 

2.  Design of analyzable multi-core computers that 

favor timing predictability over performance [5, 19, 

22, 23].  

Some research on parallel applications running on 

multi-core architectures is also available. For instance, 

the problem of analyzing the timing behavior of non-

sequential software on a multi-core architecture is 

highlighted in [21]. 

In relation to this work, we found no related work to 

review, which deals with test data generation for 

parallel applications running on multi-core 

architectures using evolutionary testing. Previously, 

search-based techniques have been used to generate the 

input test-data [24, 25] and evolutionary search (more 

specifically GA) has been employed [4, 13] to find 

long execution times. In [24], a comparison between 

static analysis and evolutionary testing is presented, 

with the merits and demerits of each approach. 

However, all of these works target sequential real-time 

programs running on single core hardware. In contrast, 

we have used GA to generate test data for WCET 

analysis of parallel programs running on multi-core 

hardware. The fitness function used in this work 

considered the end-to-end time of a program, which 

was calculated from the execution times of individual 

threads (see Figure 2). This also included the overall 

thread execution and interaction time. This 

consideration has helped us to produce appropriate lists 

of tokens by using GA that maximized the fitness 

value. 

Although heuristic based algorithms, in general, do 

not guarantee to generate improved guesses, some 

improvements have been observed in our case. It is 

therefore claimed that the proposed method has a high 

probability of finding the worst-case inputs of the 

programs which lie in the subset where GA will 

improve. It is important to mention here that the 

measurement-based methods generally do not 

guarantee safety, therefore these methods should be 

complemented with static timing analysis, if safety is 

required, e.g., for hard real-time systems. However, 

finding an absolute safe bound on the execution time is 

not required for most of the real-time systems which 

are soft in their majority. Moreover, the measurement-
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based methods can guarantee safety if the appropriate 

test data is used [24]. In this work, as the worst-case 

test data has been generated, a safe upper bound on the 

WCET can be guaranteed.  

6. Conclusions 

In this paper, the worst-case execution time of parallel 

embedded software is determined by generating the 

test-data. A genetic algorithm was used to heuristically 

search the inputs from a huge search space that would 

cause the parallel program to execute for the longest 

period of time. The input vectors were evolved using 

the largest end-to-end execution time as the fitness 

function. The results of this evolutionary testing 

showed that GA has significantly improved the 

execution times of inputs, i.e., those inputs were 

generated that would lead towards the WCET of 

parallel embedded software. The measurement-based 

analysis, performed in this work, is sufficient not only 

for soft real-time systems, but also for safety-critical 

systems as a safe upper bound on the WCET is 

guaranteed due to the generation of the appropriate test 

data. The process was demonstrated by its application 

in a parallel embedded benchmark suite-ParMiBench, 

where it was evaluated in terms of its scalability, safety 

and applicability. In the future, we aim to use a real-

life, real-time application to evaluate our work. It is 

planned to consider a richer multi-objective fitness 

function in the future that might include thread 

conflicts, cache misses/hits and cache sizes. 
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