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Abstract: The objective of this work is to present a novel evolutionary-based approach that can create and optimize powerful 

string kernels using Genetic Programming. The proposed model creates and optimizes a superior kernel, which is expressed as 

a combination of string kernels, their parameters, and corresponding weights. As a proof of concept to demonstrate the 

feasibility of the presented approach, classification performance of the newly evolved kernel versus a group of conventional 

single string kernels was evaluated using a challenging classification problem from biology domain known as theclassification 

of binder and non-binder peptides to Major Histocompatibility Complex Class II. Using 4794 strings containing 3346 binder 

and 1448 non-binder peptides, the present approach achieved Area Under Curve=0.80, while the 11 tested conventional string 

kernels have Area Under Curve ranging from 0.59 to 0.75. This significant improvement of the optimized evolved kernel over 

all other tested string kernels demonstrates the validity of this approach for enhancing Support Vector Machine classification. 

The presented approach is not exclusive for biological strings. It can be applied to solve pattern recognition problems for 

other types of strings as well as natural language processing. 
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1. Introduction 

Support Vector Machine (SVM) is a kernel-based 

supervised learning technique that has been 

successfully applied to solve various types of 

classification, clustering, and regression problems [2, 

9]. Using kernel function, SVM can efficiently extract 

and map the hidden relations among a set of labeled 

training data.  

The basic objective of SVM-based classification is 

to use kernel functions in order to transform 

overlapping classes of ambiguous data to a high-

dimensional feature space, where the data classes 

become more separable [21]. Constructing a feature 

space of a valid kernel should follow the Mercer’s 

Theorem that conserves the Gram and kernel matrices 

positive semi-definite [15]. Also, kernels must satisfy a 

number of closure properties that enable constructing 

more complicated kernels from simple kernels. 

Specific mathematical operations can be applied to aset 

of kernels to produce a new valid kernel [21]. 

There are different types of kernels that can be used 

to develop SVM including linear, string, polynomial 

and Gaussian kernel [11, 15]. String kernels are widely 

used for processing natural text and biological 

sequences. They have been successfully used to solve 

many pattern recognition problems in biological 

sequences, including Deoxyribonucleic Acid (DNA), 

Ribonucleic Acid (RNA) and protein [3, 16]. 

String kernels introduce embedding two strings in a 

high dimensional space in such a way that their relative 

distance in that space reflects their similarity. Then, the 

inner product between the embedded sequences can be 

computed easily [15]. Most string kernels involve 

counting the substrings that the two main strings have 

in common. In biological applications, finding 

sequence similarity between two sequences is a 

fundamental approach to infer functional similarities 

between these sequences [13]. 

The most important decision in developing an SVM 

is the selection of the optimal kernel function among a 

collection of different kernels. The development of 

new kernels and the optimization of their parameter is 

still a big challenge in machine learning field, where 

novel solutions are greatly needed.  

In general, two kinds of approaches are followed to 

optimize the use of different kernels for SVM: the first 

approach is to examine the available kernels one by 

one in order to find a good kernel for the problem of 

interest and this is a cumbersome method for kernel 

optimization. The second approach is to combine 

different numerical kernels using an optimization 

technique such as Genetic Programming (GP), 

Multiple Kernel Learning (MKL), and ensemble 

methods that can determine the weights for each of the 

tested kernels [1, 5, 6, 8, 10, 19]. 

There has been considerable effort to solve the 

problem of optimizing numerical kernels. However, 

less attention has been paid to investigate the use of 

evolutionary-based optimization techniques in 

improving the efficiency of string kernels. The aim of 

the present work is to explore and evaluate genetic 
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programming as an evolutionary-based approach to 

solve the problem of searching and evolving optimal 

string kernel.  

In order to test the performance of the newly 

optimized string kernels selection approach, we sought 

to test it on a rather challenging string classification 

problem. We decided to use a well-known challenging 

problem from the bioinformatics domain known as the 

classification of binding and non-binding peptides to 

the Major Histocompatibility Complex class II (MHC-

II) molecules [22]. MHC-II molecules are the key 

players of the immune system that can recognize 

specific sequence patterns in bacterial proteins. 

Proteins of bacteria are usually chopped down by 

immune system into short strings (peptides). These 

peptides are divided into two classes: those that are 

able to bind to MHC-II molecules and hence they can 

stimulate immune response whereas the second class 

that are unable to bind to MHC-II molecules cannot 

stimulate immune system [12]. Classification of binder 

and non-binder peptides to MHC-II is a well-known 

challenging classification problem that has been 

addressed by many machine learning methods [12]. 

2. Research Methodology  

2.1. Optimization Process  

The optimization process of the GP starts with a 

collection of potential kernels. Then, creates new 

potential solutions through the use of the genetic 

operators: crossover and mutation. These potential 

solutions are selected on the basis of their quality as 

solutions to the problem using a fitness function. GP 

uses this process iteratively to generate new collections 

of potential solutions until some stopping criterion is 

met. Once GP optimization is finished, the resulted 

evolved kernel is embedded in SVM for solving 

classification problem. Figure 1 illustrates the general 

diagram of the optimization process. The optimization 

process goes through the following steps: 

 

 

 

 

 

 

Figure 1. A block diagram of the optimization process. 

Constructing a set of candidate solutions in a semi-

random manner, where each solution is represented as 

a tree structure. The terminal nodes of the trees are 

selected from a set of predefined string kernels with 

the corresponding parameters. Other terminal nodes 

are allowed to hold numeric values that represent the 

weights of the importance of the different kernels. The 

non-terminal nodes contain the possible mathematical 

operations on the kernels that preserve Mercer theorem 

and closure properties. 

An example of a GP potential solution expressed as: 

a1
.k1(x1)+a2

.k2(x2)+...+an
.kn(xn) 

Where ai is a weight adjusted during the evolution of 

the solution, xi represent a corresponding parameter set 

to the kernel ki, which is also optimized using the GP. 

Another example of GP potential solution expressed as 

more general mathematical expression is: 

a1 ∙ k1(x1)+ a2 ∙ e(k2((x2))) ×  a3 ∙ k3(x3) 

For the implementation of GP, we used the GPLAB 

[17] library under Matlab environment. A Summary of 

the single kernels used in this work and their mapping 

formula is shown in Table 1. These kernels are 

implemented in Shogun toolbox [18].  

1. Applying the GP operations to the candidate 

solutions to produce new candidate solutions. The 

effect of these operations will influence the 

contribution of the different kernels, their weights of 

importance and their corresponding parameters. 

2. Selecting the partial optimal candidate solutions 

based on the fitness function in Equation (1). This 

fitness involves testing the candidate solution using 

SVM.  

The fitness of the solution is measured according to the 

following Equation: 

Fitness=Sensitivity×Specificity 

The sensitivity and specificity are defined as: 
 

Sensitivity =
TP

TP+FN
 

Specificity =
TN

TN + FP
 

 

Where TP, TN, FP, and FN are True Positive, True 

Negative, False Positive and False Negative, 

respectively. 

4. The set of candidate solutions, which leads to better 

classifications is allowed to survive for another GP 

generations. 

5. In order to terminate the optimization process, the 

convergence of the optimization process was 

monitored by examining the average fitness values. 

2.2. String Dataset  

To evaluate the proposed approach, we tested it on a 

benchmark dataset of peptide strings that are labeled 

either as binder or non-binder to MHC-II. This 

particular model is still among the most challenging 

classification problems in bioinformatics. 
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Table 1. Summary of string kernels used in this work. 

Kernel 

name 
Formula 

Spectrum 
kp (s, t) =  〈∅p(s), ∅p(t)〉 = ∑ ∅u

p(s)u∈Σp ∅u
p(t),  

∅u
p(s) =  |{(v1 , v2) ∶ s =  v1uv2}|, u ∈ Σp 

Weighted 

Spectrum 
kp (s, t) =  ∑ β

p
∅p(s)∅p(t)

P

p=1

 

Fixed 

degree 

kp (s, t) =  〈∅p(s), ∅p(t)〉  =  ∑ ∅u
p(s)

u∈Σ
p

∅u
p(t), 

∅u
p(s) = |{i ∶ u =  s(i)}|, u ∈  Σp 

Polynomia

l 
kp (s, t) = (∑ I(si = ti) +  c

L

i=0
)d 

Locality 

improved 

kp (s, t) =  (∑ winp(s, t)

N

p=1

)d2 

winp(s, t) =  ( ∑ wjmatchp+j(s, t)

+l

j= −l

)d1 

Local 

Alignment 

kLA (s, t) =  ∑ ki(s, t)

N

i=0

 

k(n)(s, t) =  kconst. (kalign. kgap)(n−1) . kalign. kconst 

kconst(s, t) =  1 

kalign(s, t) =  {(0, if |s| ≠ 1 ⋁ |s| ≠ 1 ) , (eβ∗S(s,t), otherwise)} 

kgap(s, t) =  eβ(g(|s|)+ g(|t|)) 

Weighted 

Degree 

Position 
k(s, t) =  ∑ ww 

d

w=1

∑ I (uw,i(s) =  uw,i(s)) 

N−d

i=1

 

Mismatch 

k(k,m)(s, t) =  〈∅(k,m)(s), ∅(k,m)(t)〉 

∅(k,m)(s) =  ∑ ∅(k,m)(α)

k−mers α in s

 

∅(k,m)(α) =  (∅β(α))β∈Ak 

TOP 
k(s, t) =  v(s, θ)v(t, θ) 

v(s, θ) = log(P(y =  +1|s, θ)) log (P(y =  −1|s, θ)) 

Salzberg 

k(s, t) =  (∑ winp(Ss, St)

N

p=1

)d2 

winp(Ss, St) =  ( ∑ wjmatchp+j(Ss, St)

+l

j= −l

)d1 

sp(x)

= log
P(xp at pos. p in Truedata|xp−1 at pos. p − 1 in Truedata)

P(xp at pos. p in Alldata|xp−1 at pos. p − 1 in Alldata)
 

In fact, the different conventional string kernels 

showed a relatively poor performance in solving this 

problem. The peptide dataset for the MHC-II 

benchmark was obtained from the NetMHCII 2.2 

server(www.cbs.dtu.dk/suppl/immunology/NetMHCII-

2.0.php).The data used in our experiments is 

DRB1*0101 datasets. We use 4794 sequences, divided 

into 1448 non-binder sequences, and 3346 binder 

sequence. 

3. Validation 

In order to compare the performance of the evolved 

kernel versus the conventional string kernel, the 

following performance measures were calculated for 

each kernel: specificity Equation (2), sensitivity, 

Equation (3), accuracy Equation (4), Positive 

Predictive Value (PPV) (Equation 5), Negative 

Predictive Value (NPV) Equation (6), and fitness 

Equation (1). The Receiver Operating Characteristic 

(ROC) curve, which plots the true positives 

(sensitivity) vs. false positives  

(1-specificity), was used to calculate the Area Under 

the Curve (AUC).  

Accuracy =
TP+TN

TP+TN+FP+FN
 

PPV =
TP

TP + FP
 

NPV =
TN

TP + FN
 

4. Experimental Results 

To test the performance of the different single kernels 

versus the evolved GP kernel, a k=3-fold cross 

validation was performed with the data being shuffled 

each fold. The whole 3-fold cross-validation 

experiment was repeated 5 times on equal size of 

binder and non-binder data to ensure a good coverage. 

Each experiment consisted of a population of 150 

kernels that were sufficient for exploring the search 

space. 

Table 2. Performance comparison of conventional string kernels 
versus the newly evolved kernel. 

Kernel Spec. Sens. Acc.  PPV   NPV  Fitness  

Spectrum 67.53   66.17  66.66  67.09   66.85  45.86  

Weighted-Spectrum 69.66   67.11  67.95  68.92   68.39  46.67  

Salzberg 87.74   20.19  52.36  62.26   53.96  17.89  

Local-alignment 65.61   65.29  65.39  65.54   65.45  42.77  

Fixed-degree 61.56   61.31  61.41  61.51   61.44  38.07  

TOP 54.38   58.73  56.89  56.35   56.55  32.48  

Locality-improved 91.78   26.37  55.51  76.45   59.06  24.87  

Match-word 66.16   64.63  65.17  65.66   65.40  42.08  

Polymatch 68.38   69.03  68.84  68.61   68.70  46.64  

Weighted-degree 66.69   67.47  67.23  66.99   67.08  44.76  

Wdpos-mismatch 72.68   60.75 65.12  69.89   66.72  43.42  

New evolved kernel 76.95   72.20 73.51  75.89   74.57  56.05  

During the GP optimization experiments, the best 

results were obtained when using crossover and 

mutation ratios of 80% and 20%, respectively. We also 

noticed that the average fitness value converges after 

50 GP generations. The average performance measures 

of each experiment were calculated and a comparison 

between the GP kernel and the single kernels were 

performed (Table 2).  

The evolved kernel generated in this work 

outperforms all the tested single kernels in accuracy, 

sensitivity and specificity, fitness, and AUC. 

Once the newly evolved kernel was constructed, it 

was possible to perform the ROC analysis and 

calculate the area under the curve for further 

comparing the performance of the different kernels. 

It is worth mentioning that ROC analysis involved 

studying the sensitivity and specificity under different 

cut-off values. The ROC scores were calculated using 

the closest Euclidean distance between each sample 

and the SVM hyperplane. The best cut-off value for 

each experiment was considered in calculate new 

values for sensitivity, specificity and the area under the 

ROC as depicted in Figure 1. A summary of the area 

under the curve for each kernel is illustrated in Table 3. 

(4) 

(5) 

(6) 

http://www.cbs.dtu.dk/suppl/immunology/NetMHCII-2.0.php
http://www.cbs.dtu.dk/suppl/immunology/NetMHCII-2.0.php
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Table 3. The area under curve for the conventional 
string kernels versus the newly evolved kernel. 

Kernel AUC 

Spectrum 71.60 

Weighted-Spectrum 74.80 

Salzberg 59.50 

Local-alignment 69.90 

Fixed-degree 65.80 

TOP 59.00 

Locality-improved 68.30 

Match-word 70.20 

Polymatch 75.00 

Weighted-degree 73.00 

Wdpos-mismatch 69.70 

Newly evolved kernel 80.40 

5. Discussion and Conclusions 

Currently, a large collection of string kernels is 

available for developing SVM classifiers. However, 

the major challenge is to select an optimal kernel for 

the problem of interest. Several interesting 

optimization approaches have been suggested to tackle 

this problem. In fact, most of the recent efforts were 

directed to the problems of numerical kernels and little 

attention has been paid to explore the power of 

evolutionary approaches in the field of string kernels 

[20]. 

In the present work, we have explored and evaluated 

a novel approach that uses GP to generate a superior 

evolved kernel form a set of conventional string 

kernels. The experimental results showed that the 

evolved kernel, when embedded with SVM, is capable 

of outperforming all the tested single kernels. Our 

model has the potential to discover new string kernels 

that can lead to better classification results. In addition, 

it allows interpreting the results to better understand 

the problem. 

 

   

a) Spectrum kernel.         b) Fixed degree kernel.         c) Weighted degree kernel. 

   
        d) Locally improved kernel. e) Matched word kernel. f) Polymatch kernel. 

   
g) Weighted Spectrum kernel. h) TOP kernel.           i) Salzberg kernel. 

   
j) Wdpos mismatch kernel. k) Local alignment kernel.         l) New evolved kernel. 

 
Figure 2. ROC curves of the conventional string kernels (a-k) versus the newly evolved kernel
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In order to establish a proof of concept, we started 

with a group of 11 string kernels (Table 1) that were 

available at the time of developing the approach. 

However, we believe that including more string kernels 

will not only substantiate our approach, but it will 

enhance the classification performance since GP will 

start with a larger number and more diverse initial 

solutions.  

Our evolved kernel reached an AUC of 80.4 for 

solving the MHC-II classification problem. However, 

some recently published reports showed a comparable 

or even a slightly better AUC for this specific problem 

using single string kernels [4, 7]. It is important to 

recall that the objective of using the MHC-II data in 

our work was to demonstrate the hypothesis that the 

evolved combined kernel generated by GP is superior 

to single string kernels and not to compare it with 

recently developed tools that were dedicated to the 

MHC-II prediction problem. Furthermore, it is worth 

mentioning that the improvements reported in these 

recent works were not solely dependent on the used 

string kernel. Nevertheless, enhancement of data 

encoding and employment of hybrid machine learning 

tools were in fact behind the improved performance 

[14]. 

The selection of the MHC-II problem was made 

because it has been considered a challenging string 

classification problem. However, the present approach 

can be applied to other problems of string nature such 

as text data and natural language processing. 

In conclusion, we demonstrate that GP evolutionary 

approach is a good methodology to generate and 

optimize an enhanced evolve kernel from a collection 

of single string kernels so as to improve the 

performance of SVM classification  
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