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Abstract: This work addresses the issue of finding an optimal flight zone for a side-by-side tracking and following Unmanned 

Aerial Vehicle(UAV) adhering to space-restricting factors brought upon by a dynamic Vector Field Extraction (VFE) 

algorithm. The VFE algorithm demands a relatively perpendicular field of view of the UAV to the tracked vehicle, thereby 

enforcing the space-restricting factors which are distance, angle and altitude. The objective of the UAV is to perform side-by-

side tracking and following of a lightweight ground vehicle while acquiring high quality video of tufts attached to the side of 

the tracked vehicle. The recorded video is supplied to the VFE algorithm that produces the positions and deformations of the 

tufts over time as they interact with the surrounding air, resulting in an airflow model of the tracked vehicle. The present 

limitations of wind tunnel tests and computational fluid dynamics simulation suggest the use of a UAV for real world 

evaluation of the aerodynamic properties of the vehicle’s exterior. The novelty of the proposed approach is alluded to defining 

the specific flight zone restricting factors while adhering to the VFE algorithm, where as a result we were capable of 

formalizing a locally-static and a globally-dynamic geofence attached to the tracked vehicle and enclosing the UAV.  
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1. Introduction 

Efficient design and evaluation of aerodynamically 

optimized shapes and/or shells of vehicles is an 

overwhelming and demanding task that requires several 

iterations of simulating and testing under different 

conditions. Certain aerodynamic properties of bodies 

cannot be easily acquired in a wind tunnel test or 

through simulation. In order to be able to extract this 

information from the real airflow we propose to first 

attach tufts made of wool to the sides of the vehicle. 

Image analysis techniques can then be used to extract 

the positions, orientation, and deformations of the tufts 

over time. This tuft data will then be used to reconstruct 

the airflow around the vehicle, enabling comparative 

tests of various vehicle exteriors under real-world 

conditions. 

One challenge associated with such a method is 

acquiring images of the tufts without influencing the 

airflow of the vehicle. Due to this problem, it is 

insufficient to mount the camera on the vehicle itself, as 

this causes turbulence at the surface and the airflow to 

detach. Such turbulence will cause misinterpretation of 

the extracted tuft data, and consequently the disturb the 

airflow of the vehicle. The vehicle used as a testbed for 

this work can be seen in Figure 1. 

The proposed method to solve this problem is by 

using an Unmanned Aerial Vehicle. The Unmanned 

Aerial Vehicle (UAV) is equipped with necessary 

sensors and a gimbled camera, which allows it to track 

and follow the vehicle autonomously, while obtaining 

high quality video of the tufts. There should be no  

 

interaction between the generated thrust from the 

drone and the tufts attached to the vehicle, as this will 

influence the airflow around it. The video recorded 

can be used to extract relevant information from the 

tufts by means of the VFE algorithm. The use of a 

UAV in this scenario is paramount as it allows to 

traverse the real world with little restrictions, as 

compared to a ground vehicle. In this sense, the UAV 

would not be restricted to traversing on a road, rather 

it has all the space needed to accurately follow and 

track the vehicle. Moreover, other alternatives to the 

use of a UAV, such as a car, bike or otherwise, are not 

feasible due to space limitation caused by side-by-side 

tracking, in addition to the uneven road which causes 

additional unwanted vibrations. 

This paper is aimed towards finding an optimal 

flight zone for a UAV to perform side-by-side 

tracking and following of an observed vehicle, as 

adhering to several space-restricting factors inherited 

from the extraction of dynamic vector fields from tufts 

attached to a vehicle. The novelty of the proposed 

method is alluded to dynamically constructing a local 

geofence enclosing the UAV at real-time, as adhering 

to the three major space-restricting factors. Moreover, 

the geofence is designed to be static with respect to 

(w.r.t) the tracked object but dynamic w.r.t to the 

world, the coordinates of which are updated at every 

epoch as the vehicle is being actively tracked.  
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Figure 1.The lightweight testbed vehicle, seen with several tufts 

attached. 

2. Related Work 

Typical tests regarding the investigation of the 

aerodynamic properties of any vehicle is done by means 

of a wind tunnel or Computational Fluid Dynamics 

(CFD) simulation. A general problem with such 

methods is that they do not reflect a fully realistic 

environment for testing, since the effects of side winds, 

road architecture and external disturbances are 

generally ignored. Even though wind tunnel testing has 

been widely used in the past with a significant number 

of methods for aerodynamic analysis [8] its cost 

increases significantly with respect to the quality of 

results. 

Moreover, these tests are idealized in the sense that 

they have a dominant airflow direction and little 

external turbulence. It is also observed that wind 

tunnels tend to have a ”regular” ground architecture, as 

compared to the real world’s “irregular” ground 

architecture, which is not a reflection of the real word 

conditions. This is of particular importance as certain 

aerodynamic properties are located on or near the area 

of the vehicle floor and wheels [10]. It is preferred, 

however, to use a wind tunnel to investigate the 

aerodynamics of an airplane. This is because airplanes 

fly at near Mach 1 speeds, which causes a change in the 

density of the surrounding medium, as a result the side 

winds can be considered negligible, which is not the 

case for very efficient and lightweight ground-based 

vehicles. In addition, as the outer-shell is made from 

lightweight materials, it can bend and buckle in the 

bind, altering its aerodynamics in ways that are difficult 

to model in simulation or idealized wind tunnel 

conditions. 

CFD simulations provide more realistic environment 

conditions, but come at a high computational cost and a 

reduced accuracy. This is mainly due to the underlying 

approximation nature of CFD and a relatively low data 

resolution. There are several ways to reduce the 

computational cost of the CFD, such as using a meta-

model [5]. 

Several techniques exist in literature regarding the 

tracking and following task of the UAV. Two general 

methodologies are identified, which are deterministic 

tracking and stochastic tracking [11]. Deterministic 

tracking approaches tend to reduce the problem to an 

optimization one where a cost function is chosen and 

minimized. A typical choice of cost function is the 

Sum-Of-Squared Distances (SSD) where a gradient 

descent algorithm is used to find the minimum [11].  

This is seen in [2, 4] where the authors defined an 

SSD cost function between the observation and a fixed 

template, where the task is to find the parameter which 

minimizes the cost function. An alternative 

deterministic approach would be the mean shift, where 

the cost function is defined in terms of the colour 

histogram [2]. 

Stochastic tracking approaches are often reduced to 

an estimation problem where they tend to estimate the 

state(s) of a state-space model [11]. In the early work 

presented in [6], a Kalman filter was used for 

estimation, but it was soon realized that the type of 

model used was restricted. A modification to this was 

introduced by [1] where sequential Monte Carlo 

algorithms were used instead.  

Siam and Elhelw [7] claim a novel framework 

which executes its tasks at real-time. The framework 

operates by utilizing image feature extraction and 

projective geometry. The outlier image features are 

computed and the moving targets are detected by 

using a spatial clustering algorithm. The targets are 

then tracked by using a Kalman filter with persistency 

check. 

3. Flight Zone Factors 

Gurriet and Ciarletta [3] defined their flight zone 

based on constrained geofence optimization in order to 

find a suitable controller input which prevents 

collisions. An optimal flight zone in this work will be 

defined by the bounds of a local geofence attached to 

the vehicle. A geofence is a static virtual geographic 

perimeter surrounding an object. A geofence operates 

by storing a list of Global Positioning System (GPS) 

coordinates that define the boundaries of this virtual 

fence, in addition to a maximum allowable altitude.  

The geofence relies on flight data supplied by the 

flight controller’s sensors, such as GPS and Inertial 

Measurement Unit (IMU) readings [3]. Based on the 

sensors readings and the flight dynamics, the drone’s 

position is continuously checked against the list, and 

in case of a fence breach, the pilot is notified. For this 

particular application, a geofence is an essential 

component to achieve the global objective of 

providing high quality videos of the tufts. The 

geofence aids in defining and restricting the flight 

boundaries for the UAV, which adds to the overall 

safety factor and allows for restricting the tracking and 

following problem to a defined subspace. As opposed 

to the traditional global and static geofence, this 

particular local geofence is static with respect to the 

vehicle but dynamic with respect to the real world. 

The vehicle will be tracked and followed based on 

tufts attached to its side, which due to the nature of 
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operation of the UAV, several factors restrict and 

define the size of the flight zone. As illustrated in 

Figure 2, the three major restricting factors are: 

1. The distance between the UAV and the vehicle. 

2. The angle of recording the video. 

3. The altitude of the UAV. 

 

Figure 2. Top-view illustration of the geofence. 

3.1. Distance 

The distance factor can be further divided into two sub-

factors: 

 Minimum distance between the vehicle and the UAV 

with respect to thrust generated from the propellers. 

This is of particular importance as no interference 

from the generated thrust should interact with the 

tufts attached to the vehicle. 

 Maximum distance between the UAV and the 

vehicle with respect to recording video of the tufts. 

A modified GoPro Hero4 camera with a 9mm lens is 

used to record the high quality videos of the tufts. In 

other words, this is the maximum distance away 

from the vehicle where the camera can remain 

capturing high quality videos which are accepted by 

the dynamic vector fields extraction algorithm. 

3.2. Angle 

The angle factor can also be further divided, however 

due to symmetry, the  and angles are equal. The 

nominal placement of the drone and consequently the 

camera recording angle is perpendicular to the surface 

of the vehicle with the tufts attached. At the 

perpendicular, there is a zero degree angle between the 

camera Field Of View (FOV) and the tufts, hence it is 

in the best possible position. The zero degree angle is 

retained by taking the current position of the UAV as 

the centre of the geofence, indicated by point E in 

Figure 2. A deviation from this perpendicular could 

possibly lead the extraction algorithm to produce 

unreliable results, therefore, the maximum angle that 

the UAV can deviate from the perpendicular has to 

adhere to the limits of the extraction algorithm. 

3.3. Altitude 

Maintaining a valid range of altitude for the drone is 

mainly affected by the FOV of the camera. Within the 

virtual walls of the geofence, the FOV of the UAV 

should always include the tuft markers and the 

position marker used for tracking the vehicle. High 

altitudes lead to a potential loss of the desired FOV, 

while a low altitude will result in the unwanted ground 

effect, which in turn negatively affects the stability 

and performance of the drone. 

4. Geofence Design 

In order to design the geofence, and during the tests 

carried out to determine the values of the restricting 

factors, the cameras settings were chosen to be 2.7k 

resolution, 60 frames per second with a medium field 

of view1. The needed minimum distance between the 

UAV and the vehicle is found when there is no visible 

interaction between the generated thrust of the UAV 

and the tufts, which corresponds to the distance 𝑂𝐹̅̅ ̅̅  in 

Figure 2. 

The maximum distance corresponds to the furthest 

distance away from the vehicle where the UAV is still 

capable of capturing HQ videos that adhere to the 

extraction algorithm, all the while maintaining the 

tracking and following of the vehicle. This 

corresponds to the distance 𝑂𝐼 ̅̅ ̅̅ in Figure 2. 

The angle tests are performed to define the 

maximum value for the  and  angles seen in Figure 

2. The vehicle surface is assumed to be flat in the 

location where the tufts are attached. As previously 

stated, the nominal angle for the drone is along the 

perpendicular to the vehicle, and hence due to 

symmetry, both  and are equal. Therefore, it 

follows that the maximum deviation from the 

perpendicular 𝑂𝐹̅̅ ̅̅  where the drone can capture HQ 

video adhering to the extraction algorithm, is the 

maximum needed angle. The angle was acquired by 

hovering the drone at a fixed altitude and distance and 

varying the angle by 10 at each test. At each angle 

step, a video was recorded and checked against the 

extraction algorithm. 

A total of 60 different tests were performed to 

determine the distance, angle and altitude, indoors and 

outdoors under different weather conditions. For each 

factor and for each test a video of the tufts was 

recorded and evaluated against the VFE algorithm. 

The results of said tests are summarized in Table 1. 
 

 

                                                 
1These settings refer to the GoPro Hero 4 camera with a 

modified 9mm lens, as opposed to the standard wide-angle 

lens. 
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Table 1. Results of distance, angle and altitude tests performed to 
investigate the geofence design.  

Factor w.r.t Minimum Maximum 

Distance 
Propellers 4.0m n/a 

Tuft recording 0.0m* 8.0m 

Angle Tuft recording 0.0‡ 45.0 

Altitude Tuft recording 0.70/0.55/0.90< 0.87/1.8/1.25< 

Note that * indicates any value lower than the 

minimum distance set by propellers, which is ignored. ‡ 

0.0 implies that the camera POV is perpendicular to 

the vehicle’s surface. While < indicates testing on 

𝐴𝐵̅̅ ̅̅ ,𝐶𝐷̅̅ ̅̅ and point E, respectively. 

With the performed tests and the values of the 

restricting factors defined, the flight zone can be 

defined as the ABCD zone in Figure 2 where the AOB 

zone is a no-fly zone.  

To aid in constructing the geofence and to obtain the 

dimensions of all its sides, a Computer Aided Design 

(CAD) tool was used. The CAD tool allowed for a 

systematic way to draw the geofence, which in turn 

resulted in easily visualizing the flight zone, as seen in 

Figure 3. 

 

Figure 3. Visualization of the resulting flight zone after taking into 

account the restricting factors. 

In order to construct the geofence programmatically 

and define its corner coordinates in terms of GPS units, 

the dimensions of all sides were obtained and 

summarized in Table 2. Therefore, by obtaining the 

current position of the drone via its GPS unit and 

assigning this coordinate as centre point E, it follows 

that the coordinates for the points A,B,C, and D can be 

found at each epoch due to the defined distances in 

Table 2. And hence, the geofence is virtually erected 

and serves as a local and static geofence w.r.t to the 

vehicle, but dynamic w.r.t the world. 

Table 2. Geofence bounded flight zone parameters and their 
corresponding values. Refer to Figure 2 for the parameters. 

Parameter Value Parameter Value 

 and  angles 45 𝐷𝐴̅̅ ̅̅  5.38m 

𝐴𝐵̅̅ ̅̅  7.12m 𝑂𝐹̅̅ ̅̅  4.01m 

𝐵𝐶̅̅ ̅̅  5.38m 𝑂𝐼̅̅ ̅ 8.07m 

𝐶𝐷̅̅ ̅̅  14.38m 𝑂𝐸̅̅ ̅̅  6.1m 

5. Track and Follow Module 

The geofence parameters tabulated in Table 2 are 

sufficient to construct the virtual fence and update its 

coordinates at real-time. The tracking and following 

task of the UAV is pertinent for its operation, as it 

determines the position of the target vehicle via a 

synthetic fiducial marker, predicts the next likely 

location of the vehicle through a linear estimator, and 

calculates the needed drone velocity to keep up with 

the tracked vehicle. In addition it performs safety 

checks that govern the integrity of the geofence 

structure, and the safety of the operator. A high-level 

overview of the operation of the track and follow 

module can be seen in Figure 4. 

The real-time world coordinates of the drone are 

acquired via the Real-Time Kinematic (RTK) GPS 

unit onboard the drone. An ArUcomarkerattached to 

the tracked vehicle allows the drone to acquire the 

current world coordinates of the vehicle via an 

onboard HD camera. The joint rotation-translation 

matrix[R|t] containing the intrinsic and the extrinsic 

parameters of the camera, along with the radial and 

tangential distortion coefficients, transforms the 

coordinates of a 3D point to a coordinate system 

which is fixed w.r.t the camera, and hence, describes 

the motion of an object in front of the camera. 

The ‘getPositions’ submodule in Figure 3 receives 

the current position of the UAV from the RTK GPS 

unit, along with the [R|t] matrix that is updated at 

every epoch. Consequently, the estimated position of 

the tracked vehicle is updated at every time step. This 

estimated position is then received by the next 

submodule to predict the next position of the vehicle. 

After receiving the current coordinates of the UAV 

and the tracked vehicle, given sufficient knowledge of 

the system, the measuring sensor, uncertainty in the 

model, measurement errors and system noise, the 

Kalman filter can produce an optimal estimate of the 

system state, and predict the next likely position of the 

vehicle. 

The filter utilizes a first-order constant-velocity 

model to predict the next state of the system at the 

following time step, in addition to adjusting the belief 

that accounts for the uncertainty in the prediction. 
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Figure 4. Track and follow module operation overview. 

The next predicted position of the tracked vehicle is 

then received by the ‘get bounding box’ submodule, 

which in turn calculates the coordinates of the geofence 

vertices relative to the new position of the tracked 

vehicle at real-time. The parameters found and 

tabulated in Table 2 are also used in order to 

dynamically construct the geofence at every time step. 

As soon as the next predicted position is obtained, 

the centre point coordinates (point E) of the geofence is 

calculated first, followed by the coordinates of points 

A,B, C and D (refer to Figure 2). The submodule 

calculates the change in latitude and longitude in both 

directions based on the centre point E and its offset 

distance from the vehicle (𝑂𝐸̅̅ ̅̅ ), and returns the 

minimum and maximum of the latitude and longitude 

bounds, as seen in Equation (1). From the minimum 

and maximum bounds returned, the coordinates of the 

points can be formulated as seen in Equation (2). (The 

value of 110.57 represents the approximate distance for 

every degree longitude or latitude, and (latitudecp) 

refers to the latitude coordinates of the centre point E). 

∆ 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 =  
𝑜𝑓𝑓𝑠𝑒𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

110.57
 

∆ 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 =  
𝑜𝑓𝑓𝑠𝑒𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  cos(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝐶𝑃)

110.57
 

[

𝐴
𝐵
𝐶
𝐷

] = [

[𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑚𝑎𝑥 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑚𝑖𝑛]

[𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑚𝑎𝑥 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑚𝑎𝑥]

[𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑚𝑖𝑛 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑚𝑎𝑥]

[𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑚𝑖𝑛 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑚𝑖𝑛]

] 

Based on the acquired target position, current UAV 

position and the calculated coordinates of the geofence 

(Equation (2)), the submodule outputs the next 

commanded position of the UAV in order to remain 

within the bounds of the geofence while tracking and 

following the vehicle.  

Moreover, the ‘get velocity’ submodule calculates a 

suitable commanded velocity for the UAV based on 

the absolute distance difference to the commanded 

position supplied by the ‘get bounding box’ 

submodule. Both the commanded velocity and the 

commanded position are sent to the drone where the 

flight controller reacts based on those commands. 

In addition, several safety checks are in place in 

order to maintain the safety of the operator and/or any 

pedestrians. Furthermore, the safety check submodule 

implements a modified version of the ray casting 

algorithm to determine if the UAV breached the 

geofence. Upon a breach, the UAV is commanded to 

hover in place for five seconds and then Return To 

Launch (RTL).  

The ray casting algorithm is a method used to solve 

the point-in-polygon problem, determining whether a 

point lies inside or outside the bounds of a defined 

polygon [9]. In this particular application, the 

coordinates of the UAV are periodically checked to be 

within the bounds of the geofence. However, rather 

than just casting a ray from the UAV to check for a 

breach, the modified version of the algorithm initially 

checks that the latitude and longitude coordinates of 

the UAV against the maximum and minimum 

longitude and latitude, since these values set the 

bounds of the geofence. If the UAV coordinates 

exceed the maximum and/or minimum limit, then it is 

classified as outside the geofence and no ray casting is 

needed, otherwise, ray casting is performed. This 

modification is added to speed up the breach checks 

since the safety submodule will be running 

continuously at twice the normal frequency of the 

system. 

6. Discussions and Conclusions 

This article presented work towards obtaining an 

optimal flight zone for a side-by-side tracking UAV. 

The optimality factor was the dynamic Vector Field 

Extraction (VFE) algorithm. The algorithm is supplied 

with HQ video recordings of tufts attached to a 

tracked vehicle, upon which it extracts the vector 

fields for each tuft at each frame. 

Traditional testing methods, such as a wind tunnel 

or CFD simulations, do not reflect a true realistic 

environment due to the neglected side winds, road 

architecture and external disturbances. Moreover, the 

tracked vehicle is made from lightweight materials 

that tend to bend and buckle, which is hard to model 

in standard idealized tests. 

The flight zone is restricted by three factors, 

distance, angle and altitude. For each of the factors 

countless tests were performed in order to determine 

(1) 

(2) 
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the minimum and maximum distance between the UAV 

and the vehicle, the maximum angle of recording the 

tufts and the maximum allowable altitude of the UAV. 

Upon defining these factors and finding their values, 

the static geofence could be created and its coordinates 

updated at every time step. 

To construct the geofence, the longitude and latitude 

([long,lat]) coordinates of the UAV are acquired via the 

RTK GPS unit on-board. These coordinates represent 

the centre point of the flight zone, point E in Figure 2. 

The coordinates of the corresponding points (A, B, C, 

and D) are then calculated in real-time based on a 

trapezoidal geometric equation, with a total execution 

time of 1.1ms for an average of 20 runs. Due to the 

relatively low execution time, the geofence is updated 

at the operating frequency of the flight controller at 

250Hz. The algorithm is run on-board a dedicated 

companion PC on the UAV and connected physically to 

a dedicated flight controller. 

The visualized geofence based on the calculated 

coordinates can be seen in Figure 5. The difference 

between the true values and the measured ones can be 

seen in Table 3. The error values are generally low with 

a maximum error of 0.82m in the distance between the 

centre point of the geofence and the vehicle (𝐸𝑂̅̅ ̅̅ ). Even 

though it is comparatively higher than the other errors, 

its effect on the overall geofence structure is minimal 

since an offset of 0.82m along the axis perpendicular to 

the vehicle, still allows the UAV to remain within the 

bounds of the geofence. Overall, with distance errors 

ranging between 0.27-0.82 m, the integrity of the 

structure of the geofence still holds and its purpose of 

keeping the UAV within its bounds is not affected. 

 
Figure 5. Visualized geofence enclosing the flight zone based on the 

[long,lat] coordinates of the UAV at the centre-point of the flight 

zone. (point E in Figure 2). 

Moreover, the functionality of the marker detection 

was evaluated by calculating the reprojection error, 

which is the RMS error between the points in the real 

image and the points projected, based on the cameras 

intrinsic and extrinsic properties. The reported error of 

0.89 pixels was deemed acceptable. The distance and 

angle factors are of grave importance for marker 

detection and the maximum for both was 8.0m and 45◦. 

The variance of the marker detection algorithm was 

tested by placing a marker and the camera in fixed 

locations and observe the output for 50 detections. The 

maximum reported variance was 0.0232. 

Table 3. Ground truth and measured values of the various sides of 

the flight zone, in addition to the percentage error. 

Distance 
Ground 

truth(meters) 

Measured 

value(meters) 

Percentage 

error(%) 

𝐴𝐵̅̅ ̅̅  7.12 7.66 7.58 

𝐵𝐶̅̅ ̅̅  5.38 5.11 5.01 

𝐶𝐷̅̅ ̅̅  14.38 15.55 8.14 

𝐷𝐴̅̅ ̅̅  5.38 5.06 5.95 

𝑂𝐸̅̅ ̅̅  6.1 5.28 13.44 

The possible sources of error are the position output 

of the marker detection algorithm used in tracking the 

vehicle, in addition to the geographic trapezoidal 

geometric equations that calculate the coordinates of 

points A, B, C, and D based on point E (coordinates of 

UAV). 

The error caused by the marker detection is 

propagated to the geographic calculations since the 

reference point of the calculations is based on that 

acquired distance. In addition, the occlusion of the 

marker during a flight sends a null value to the 

modules down the pipeline, causing the submodules to 

crash intermittently. Moreover, errors could be caused 

by the spherical Earth model used in the calculations 

and the assumption that each degree corresponds to 

approximately 110 km, in addition to assuming an 

average Earth radius of 6371 km. 

However, even with a maximum error of 13.5% the 

geofence structure is not affected and performs as 

expected with regards to keeping the UAV within its 

bounds. In the case of a fence breach, the UAV is 

autonomously commanded to hover at its current 

altitude and position for 10 seconds then safely land. 
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