
The International Arab Journal of Information Technology, Vol. 16, No. 4, July 2019 617

Improving Energy Efficiency and Impairing

Environmental Impacts on Cloud Centers by

Transforming Virtual Machine into Self-Adaptive

Resource Container

Siva Shanmugam1 and Sriman Iyengar2
1Assistant Professor, School of Computer Science, India

2Information Technology, Sreenidhi Institute of Science and Technology, India

Abstract: Enterprises are seeking on-demand computing models that can be employed with better utilization and reduced

operational cost by remitting up to the users' needs; this brings up zero charges as zero demand exhibits because user

demands are vary drastically over time. To reinforce dynamic resource provision, service providers have to maintain more

computational resources than needed. Meanwhile, the IT sector has more apprehensions about the impact on the environment

due to an increase in carbon dioxide emissions, higher electricity consumption and a growth in the electronic wastes from

electronic components. Most of the research works focus primarily on the expertise required for providing the needed

resources and not care on resource utilized which brings unsustainability. To achieve sustainable computing, unwanted

installation of contemporary computational resources should be rolled up and better sharing options should be made

available. This paper proposes new virtualization techniques which engage cloud services exclusively between host and guest

operating environments. By doing so, this mechanism stands as the best crossover with other working engines and provide

open service to execute any type of applications on it. Finally, the combination of cloud service and virtualization enables

container features with efficient utilization factor. Most probably, a proper combination of these resources solves any

computational issues so these two resource mechanism’s always standing on the top of the change. This experiment analysis

aims to compare the performance of container with virtual machine based container in an adopted infrastructure via cloud

simulator. And the result of better efficiency metrics attained by virtual based container were explored and plotted.

Keywords: Container as a service, green cloud computing, energy efficiency, resource utilization.

Received December 2, 2016; accepted March 26, 2017

1. Introduction

In the recent past, Internet becomes a significant locus

to humans because all their requirements were fitted in

it. The services running on internet have customers

from all the corners; starting from communication mail

to computational yell. In order to provide flaw less

services, a computational setup need to be established

for all corners which is highly impossible due to cost

effective [12]. So IT renders services by duplicating

the existing resource to get access on user environment

under the name of virtualization started in 1960

onwards. In a short span of time virtualization attained

several revolutions like Para and Full hardware

assisted virtualization, where entire hardware resource

isolated from single real machine to multiple

environments.

In the mid of 1960-1970, the use of bandwidth,

network traffic, demand on computational resource,

extended infrastructure management is very low due to

less customer connectivity to internet. Report [9] says

only 1% of users around the globe were connected

with internet during 1995-2000 Figure 1. Later, usage

started increasing due to more user connectivity to

internet to 75% (2015-2020*) leaving many

challenging problems like bandwidth, congestion and

other demands etc., So improvisation is required in

terms of what type of resources provided to the users

and how we are providing those resources (i.e.,)

handling the resources as well deployment models.

Figure 1. Internet users strategy.

618 The International Arab Journal of Information Technology, Vol. 16, No. 4, July 2019

2. Sense of Sustainable Computing

Earlier computing services are used to share the stored

data between the systems over a private network

(distributed system). Technology development in due

course and need of demands changed this scenario as

pay per use of computational resource services to the

end users. This transformation is represented in Figure

2. After this number of hosting servers were crowded

on provider side leading to more energy consumption

and dissipation of CO2. This stand as insecure to the IT

sectors and to bring inevitability they introduce new

methodologies on server consolidation named as

container.

Figure 2. Traditional computing to modern computing.

3. Related Work

Several researchers investigated container and

proposed algorithms to make container compatible

with their application. Some of their works and the

downside of containers are presented below.

Liu et al. [10] introduced container cluster system

for solving scientific tool installation problems through

Docker organization. He et al. [6] used to keep tools

image in Docker host for later availability to Docker

enabled machines to avoid bottleneck on installing

tools from single machine. Zhang et al. [15] presented

MPI library for containers which allow needed

middleware tools to run on different containers.

Whenever particular middleware tools requested by

user on different container it automatically share the

MPI files based on library content [11]. Celesti et al.

[2] used container for IOT enabled devices to measure

the performance and feasibility of applications inside

the container. He used two types of container, for same

sort applications runs on a container and another one is

for user spaced request. Varghese performed several

validation procedures on container and comes with

bench mark [13] procedures to comply container for

different applications.

Gerlach et al. [5] proposed a framework for

container based libraries, which make applications to

run parallel on Containers as well as automatically

update the software patches available inside the

containers. Abdelbaky et al. [1] develops a framework

called C-port which bring transparency on deploying

applications and also support ease migration between

containers. Huang and Knottenbelt [7], once again

developed one more library framework to support

automation and parallelism in containers. Dhakate and

Anand [3] introduced a new concept called Container

As Service (CAAS), which apply container service

inside the Virtual Machine (VM), so we can create

virtual machines in an iterative manner. When

comparing to other methodologies, this service based

container may give better performance metrics.

4. Virtualization-Ancestry of Container

Virtual machines provide a sharing of hardware

resources on guest OS through hypervisor irrespective

of applications. We can create any number of guest OS

on single host OS [9]. Instead of creating several

guests OS, IT practice to have single host OS named as

container, where all the applications are dumped on

top. Even though it is a different layered working

structure, applications run by virtualizing the

resources. It requires additional binary libraries on host

system to achieve isolations [14].

5. Problem Evaluation

Container is nothing but OS level virtualization

initiating all the applications with single OS and along

with additional middleware tools and MPI library files

to validate. The problems identified by using

containers on cloud are follows

 When a complexity trend started to execute on

single host OS, then it’s over burden to the system

and it never support abundance of users. Sharing

common middleware tools are not feasible and it

requires varieties of intermediate tools to support

but which is not feasible to run on common OS. Due

to diverse of user’s with diverse of requirements

containers can’t support rather than public cloud.

To overcome these drawbacks and improve VM

functionalities on utilization factors, a hybrid model of

light weight VM instance has been proposed and

shown in Figure 3.

6. Proposed Model

A comparative of VM and container is shown in Figure

3, a difference of running on guest OS and host OS is

clearly shown.

In Our proposed system, we included IAAS concept

and PAAS concept in between host OS and Guest OS.

By this, we are providing new behavioral functionality

to virtualization life era.

Improving Energy Efficiency and Impairing Environmental Impacts on Cloud ... 619

 Isolation of application environments at any time

with any VM is possible.

 Sharing common middleware requisites between

instances and their users is possible.

7. Design Model

The overall working model of proposed system is

shown in Figure 4. The proposed model is targeted to

achieve adaptive container that support VM instance

with splitting of processor based on application

requirement. The detailed working structure was

follows.

7.1. Host Status Monitor Module

Based on application size and SLA agreement,

physical machines are split into consecutive virtual
machines. In order to avoid system imbalance,

application which depresses the performance of VM or

VM which running with less executional power is to be

identified and capacity should be extended. This

process is done here and carried by maintaining

threshold value on both host as well as VM instance

while initiated.

Figure 3. Proposed model of extended virtualization.

Figure 4. Architecture design of self adaptive virtualization.

Table 1. Description of symbols used in system model.

Symbol Description Symbol Description

KW

Kilowatts used to measure

Electricity
Inst Instances

VM Virtual Machine BW Band Width

P Power consumption exis Existing

Core CPU core req Requesting

MW Middle Ware Tools IAAS
Infrastructure As A

Service

Console
Requested and needed

Software packages
PAAS Platform As A Service

VMimage Kernel image depicted on VM Usersadd
Allotting resources to new

users

Wimage
Working Image(working

Platform)
Wimage

Working Image(working

Platform)

VMCL
Virtual Machine Container

List
PM Physical Machine

7.1.1. Overloaded Host/ Destination Watcher

Heuristic approaches are developed to predict resource

requirement to do execution [4], but it requires

dynamic configuration and additional tools but our

system made ease as follows, when computational

resource demand of particular VM crosses the

threshold level, then host id and user id are noted by

overloaded watcher and started to extend the support of

infrastructure service to save the execution without any

outwits. If host is completely occupied and no more

resources are available to create new VM’sthen

universal searching of suitable VM with user ID to be

performed.

7.1.2. Under Loaded Host/ Destination Watcher

During the task execution, when a particular PM

engaged with less task then particular host Id, VM id

are noted and forwarded to under loaded watcher. This

help to carry the process of: it starts to shut down the

possible instances by sharing among under loaded

machines and over loaded applications are migrated to

these instances.

7.2. Instance Consolidation Mechanism

Before engaging the task on particular VM,

computational status of VM with threshold value is

considered as key extinct to accept new tasks. Another

consolidation mechanism is like; if two VM instances

are running with the same environment and both are in

under loaded threshold condition then automatic

consolidation among the instance will be carried.

7.3. Resource Brokerage

This is very significant work in our proposed model,

new VM’s are created by considering the middleware

tools and environmental platform from the user

request. Then resource brokerage will serves the

request by recording all the requirements with user id,

host id, VM id and nature of application setup going to

take place. And during execution any new supporting

Application Application

Host OS

Hypervisor

Server

IAAS

PAAS

Application Application

Application

Applic

ation

Applic

ation
Appli

cation

Container

Host OS

Server

VS

Hypervisor

Host OS

Server

Application

Guest OS

Application

G
ue

st
O

S

YES

NO

Getting

additional

Middleware by

PAAS

Image

Existed

or

New

Create new

image with

needed library

Hosted on single

guest OS with

multi users

IAAS/PAA

S Service

Checking for

any resource &

environment

Isolation

On need of new

Image / new

environment

Sharing

common

things

among

guest users

Additional

service

Change of

VM on

demand

requirement

Autonomic

Elasticity

VM

Assigned

User

Requirements

Job

Script

Application

Execution

Application

Deployment

620 The International Arab Journal of Information Technology, Vol. 16, No. 4, July 2019

resource required by customer, then request brokerage

will arrange through PAAS.

8. The System Model

Initially, we start our model with Server Power

consumption Minimization model, for that

identification of general electrical consumption service

was given by

Amps = (kW *1000)/ (volts*1.73)

Overall power consumption for each server in data

center are formulated by

𝑃(𝑠) = 𝐶𝑜𝑛𝑟𝑒𝑞 + ∑ (𝑃𝑛𝑉𝑀)𝑉𝑀
𝑛=1

But overall power consumed in each VM is

determinedby number of CPU core utilized for a time

P(VM)=(CPUcore)∑(
Core

UT
+

Core

ID
+

Core

SL
,-∞<x<∞)

Virtual Machine Formation Model:

Converting VM as Instances based on the kernel image

depicted Console MW

𝑉𝑀(𝐼𝑛𝑠𝑡) = ∑ 𝑐𝑜𝑛𝑠𝑜𝑙𝑒𝑀𝑊 ∋ (𝑉𝑀𝐼𝑚𝑎𝑔𝑒 ≡ 𝑉𝑀𝐼𝑚𝑎𝑔𝑒)

 1 − 𝑛
𝑛
𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒=1

VM’s are acting like an instance so middleware tool as

well working images are instantly created instantly

with the support of PAAS environment

VM(Inst)≈ PAASsup∀ VM(Inst) ∀IAASsup

𝑟𝑥𝑦 = ∑(((𝑥 − �̅�)(𝑦 − �̅�))/((𝑥 − �̅�)(𝑦 − �̅�))2))

𝑛

𝑖−1

Equation (6) is obtained from Pearson correlation

analysis. Based on this, user request and physical

machines are correlated and task assigned.

Uvm,J,S=Wimage∀𝑐𝑜𝑛𝑠𝑜𝑙𝑒𝑀𝑊∀CPUcore⊂IAASsup

Uinst = (CPUcore<BW)≟exis(Wimage*𝑐𝑜𝑛𝑠𝑜𝑙𝑒𝑀𝑊)

exis(Wimage .𝑐𝑜𝑛𝑠𝑜𝑙𝑒𝑀𝑊)≢req(Wimage∗𝑐𝑜𝑛𝑠𝑜𝑙𝑒𝑀𝑊)

VMnewInst=req(Wimage∗𝑐𝑜𝑛𝑠𝑜𝑙𝑒𝑀𝑊)∀CPUcore⊂IAASsup

Usersadd=∑CPUcore>VM(inst)∀(Wimage*𝑐𝑜𝑛𝑠𝑜𝑙𝑒𝑀𝑊)

Instance measured with parameters like overloaded and

under loaded by the terms of kernel image, Bandwidth,

memory, Middleware tool. If resource availability is

not able to continue the application then server

consolidation or new VM instance will be created.

VMconsol=∑ CPUcore<M(inst)||CPUcore≍VM(inst)

9. Algorithm Formulation

In this section, we briefly discuss the algorithms

implemented in the mechanisms of ’Resource

Brokerage’, ‘Host Status monitor’ and ‘Instance

Consolidation’ of proposed framework.
The algorithm first checks if the CPU work-load

history of VM instances and hosts are adequate by

using correlation analysis. In a case that the workload

history is not available, it simply uses VM creation

process. If the workload history is available, then

perform threshold verification and accommodate with

the VMs and update host id, user id on host status

monitor. If no hosts are found, then new instance are

created.

Algorathim 1: Resource Balancing Process

Input:Resprovisioner,

Output:VM creator &update VM container List.

for eachactive host(VM id, User id)

changein MW tools &Comreq,

do(IAAS || PAAS)extends upto (Hostutilthreshold)

UpdateVMC List

end

VM Creation Process

Input: VM Container List

Output: Selected VM from VMCL

getUreq

while(Ureq ≡ VMexisting)

doAssign user ID ⇇(Host Id, VM Id)

Update VMCL

Elsealert → Resprovisioner

Update → VMCL(Host Id, VM id, User id)

newVM≡Ureq is formed

thenassign user ID ⇇(Host Id, VM ID).

activateVM creator Modules

end

Overload ⁄ Under load Destination Selector

Input: over/ under loaded Host List, active host,

Output: Destination (host Id,VM id),

VM to migrate list

for eachactive host

SortCPU utilization

If(Resource Utilization>Threshold capacity)

follow VM Container List. Remove (VM)

Search Host←underloaded

assign new destination id →resource provisioner

Activate VM creator module

Update (VM id, User id) →VMC List.

end

The formulation and working of these algorithms will

ensures an added innovative process on virtualization

process i.e., performing VM process based on user

request, without creating guest OS, correlated OS for

correlating customers. In the same time any customer

request new software module packages to support their

application during mid of execution also, Platform As

A Service (PAAS) make possible on this. Extracting

the features on containers is nightmare. During

computational demands, container goes suitable

resource searching to carry the application, if capable

resource not available means then new execution

environment with all middleware should be created.

This is not preferable for time initiative based

businesses. In case of self-adaptive VM’s, on top of

Host OS Infrastructure As A Service (IAAS) is

attached, which provide resource support without

disturbing the application execution and splitting of

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Improving Energy Efficiency and Impairing Environmental Impacts on Cloud ... 621

application based on available instance is possible

which avoid new environments entries. All these

process are governed by Host monitor and destination

watcher, so all the intermediate communications and

demand request are recorded and no chance for

misleading between the systems occurrences. Next we

see the experimental evaluation of above mention

algorithms with the help ofcloudsim and Docker

Cloud.

10. Experimental Setup

In this section, we validated the performance of

containers as well as self-adaptive virtual machines.

The entire setup was created on cloudsim as well on

top of Docker cloud. The feasibility ratio like

execution time, and VM utilized was measured by

considering certain set of in-distinguished tasks

assigned on self-adaptive VM and Docker enabled

systems. From the parameters, number of VM or

container utilized helps to predict resource utilization

percentage and from execution time we can predict the

performance capability of particular system and long-

time of task completion leads to continuous running of

servers, which results more carbon emission. The

overall experimental setup was shown in Table 2, here

we categorised task on basis of platform related

matching jobs and non-matching jobs. We followed

three different types of environment, in that different

nature of task are assigned to measure the feasibility of

self-adaptive virtual machines.

From the table, we got results shown in Figure 6

like number of VM assigned for matching and non-

matching jobs with time taken to complete the task

assigned.

11. Result Discussion

By referring Figure 5, we come to conclusion that,

time taken by container to execute task assigned was

two times greater than self-adaptive VM’s.43 platform

engines are in lag for just 100 population strength.

From the utilization strategy it was resembled as If we

increase the population count, surely containers will

take more operating engines than self-adaptive VM. If

complexities of system increases, which also increase

unwanted burden on container results, slow down the

utilization factor and increases server running time

leads to heavy carbon emission.

Figure 5. Performance comparison chart.

12. Conclusions

Our paper introduced new hybrid model to improve

performance of VM’s and proved progress better than

containers. By increasing server utilization on

execution environment, active server time ratio will

automatically reduce and helps to tackle the issue of

energy efficiency which also helps to reduce carbon

footprints. Three set of simulations were carried and

experimental results are pointing to improvement on

performance of VM’sas well as utilization factor. This

paper claim better way to improve utilization by:

reducing overloaded VM’s, rapid processing of

assigned task and reduction of overall energy

consumption by consolidating under loaded servers. In

future we plan to go for improvements on VM

placements in adaptive manner.

a) Server#1 response status.

b) Server#2 response status.

c) Server#3 response status.

Figure 6. Comparative end results of container and self adaptive

container on various servers.

#Server1 Execution

Server2 Execution

Server3 Execution

622 The International Arab Journal of Information Technology, Vol. 16, No. 4, July 2019

Table 2. Overall Experimental setup with sample task assigned.

Server

Type

CPU[3GHZ]

with 35000

MIPS

Memory

(GB)

JOB

Count

Task Assigned

(similar and

Dissimilar)

Types of job assigned*

#1 4 cores 64 5 30 (15&15) SQL and Java based

application, Web
application; Hadoop

based Jobs, Self-

developed App on cloud
Dockers, and Online-

form Processing jobs.

#2 8 cores 128 15 78(20 & 58)

#3 16 cores 256 40 248(180&68)

References

[1] Abdelbaky M., Diaz-Montes J., Parashar M.,

Unuvar M., and Steinder M., “Docker Containers

Across Multiple Clouds and Data Canters,” in

Proceedings of IEEE/ACM 8th International

Conference on Utility and Cloud Computing,

Limassol, pp. 368-371, 2015.

[2] Celesti A., Mulfari D., Fazio M., Villari M., and

Puliafito A., “Exploringcontainer Virtualization

in IoT Clouds,” in Proceedings of IEEE

International Conference on Smart

Computing, MO, pp. 1-6, 2016.

[3] Dhakate S. and Anand G., “Distributed Cloud

Monitoring Using Docker As Next Generation

Container Virtualization Technology,” in

Proceedings of Annual IEEE India Conference,

New Delhi, pp. 1-5, 2015.

[4] Gao K., Wang Q., and Xi L., “Reduct Algorithm

Based Execution Times Prediction in Knowledge

Discovery Cloud Computing Environment,” The

International Arab Journal of Information

Technology, vol. 11, no. 3, pp. 268-275, 2014.

[5] Gerlach W., Tang W., Keegan K., Harrison T.,

Wilke A., Bischof J., D'Souza M., Devoid S.,

Murphy-Olson D., Desai N., and Meyer F.,

“Skyport:Container-Based Execution

Environment Management for Multi-Cloud

Scientific Workflows,” in Proceedings of 5th

International Workshop on Data-Intensive

Computing in the Clouds, New Orleans, pp. 25-

32, 2014.

[6] He S., Guo L., Guo Y., Wu C., Ghanem M., and

Han R., “Elastic Application Container: A

Lightweight Approach For Cloud Resource

Provisioning,” in Proceedings of 26th

International Conference on Advanced

Information Networking and Applications,

Fukuoka, pp. 15-22, 2012.

[7] Huang W. and Knottenbelt W., “Self Adaptive

Containers: Interoperability Extensions and

Cloud Integration,” in Proceedings of 14th

International Conference on Scalable Computing

and Communications and its Associated

Workshops, Bali, pp. 433-440, 2014.

[8] Internet Usage and Social Media Statistics,

www.internetlivestats.com, Last Visited, 2016.

[9] Kamarainen T., Shan Y., Siekkinen M., and Yla-

Jaaski A., “Virtual Machines vs. Containers in

Cloud Gaming Systems,” in Proceedings of

International Workshop on Network and Systems

Support for Games, Zagreb, pp. 1-6, 2015.

[10] Liu K., Aida K., Yokoyama S., and Masatani Y.,

“Flexible Container-Based Computing Platform

on Cloud for Scientific Workflows,” in

Proceedings of International Conference on

Cloud Computing Research and Innovations,

Singapore, pp. 56-63, 2016.

[11] Mohamed M., Belaid D., and Tata S., “Self-

Managed Micro-containers for Service-Based

Applications in Cloud,” in Proceedings of

Workshops on Enabling Technologies:

Infrastructure for Collaborative

Enterprises, Hammamet, pp. 140-145, 2013.

[12] Shanmugam S. and Iyengar N., “Effort of Load

Balancer to Achieve Green Cloud Computing: A

Review,” International Journal of Multimedia

and Ubiquitous Engineering, vol. 11, no. 3, pp.

317-332, 2015.

[13] Varghese B., Subba L., Thai L., and Barker A.,

“Container-Based Cloud Virtual Machine

Benchmarking,” in Proceedings of IEEE

International Conference on Cloud Engineering,

Berlin, pp. 192-201, 2016.

[14] Xu X., Yu H., and Pei X., “A Novel Resource

Scheduling Approach in Container Based

Clouds,” in Proceedings of IEEE 17th

International Conference on Computational

Science and Engineering, Chengdu, pp. 257-264,

2014.

[15] Zhang J., Lu X., and Panda D., “High

Performance MPI Library for Container-Based

HPC Cloud on Infini Band Clusters,” in

Proceedings of 45th International Conference on

Parallel Processing, Philadelphia, pp. 268-277,

2016.

Improving Energy Efficiency and Impairing Environmental Impacts on Cloud ... 623

Siva Shanmugam (born 1987),

working as an Asst.Prof.& Research

Scholar at SCOPE, VIT University,

Vellore, TN, India. He has had 6

years of teaching experience and

currently doing his PhD research on

Green Cloud computing.His interest

includes Distributed Systems, Web Security, Sensor

Networks, Mobile and Internet Computing.

Sriman Iyengar (born 1961) is

currently Senior Professor at the

School of ComputerScience &Eng.

VITUniversity, Vellore-632014,

TN,India. His interests include

Intelligent Computing, Networks

and Security applications &Cloud

Computing. He authored several textbooks and

published nearly 250 research articles in Scopus

indexed journals. He served as Keynote

Speaker/Invited/plenary Speaker for many

International conferences. He handled different

projects along with his students.He is member of CSI,

ISTE, ACM and many.

