
720 The International Arab Journal of Information Technology, Vol. 16, No. 4, July 2019

Change Management Framework to Support UML

Diagrams Changes

Bassam Rajabi and Sai Peck Lee

Faculty of Computer Science and Information Technology, University of Malaya, Malaysia

Abstract: An effective change management technique is essential to keep track of changes and to ensure that software projects

are implemented in the most effective way. Unified Modeling Language (UML) diagrams are widely adopted in software

analysis and design. UML diagrams are divided into different perspectives in modelling a problem domain. Preserving the

consistency among these diagrams is very crucial so that they can be updated continuously to reflect software changes. In this

research, a change management framework is proposed to trace the dependency and to determine the effect of the change in

UML diagrams incrementally after each update operation. A set of 45 change impact and traceability analysis templates for

all types of change in UML diagrams elements are proposed to detect the change affected and to maintain the diagrams

consistency and integrity. The proposed framework is modeled and simulated using Coloured Petri Nets (CPNs) formal

language. UML is powerful in describing the static and dynamic aspects of systems, but remains semi-formal and lacks

techniques for models validation and verification especially if these diagrams updated continuously. Formal specifications and

mathematical foundations such as CPNs are used to automatically validate and verify the behavior of the model. A new

structure is proposed for the mutual integration between UML and CPNs modeling languages to support model changes.

Keywords: Change impact, change management, traceability analysis, unified modeling language, coloured petri nets.

Received April 16, 2016; accepted September 24, 2017

1. Introduction

Software modeling is one of the most important

activities for large-scale software development.

Software change is continuous and unavoidable due to

rapidly changing requirements across software systems.

Software change management is an essential activity in

software project life cycle to ensure that the changes are

implemented in the most effective way including

maintaining the integrity and the traceability of the

changes. Software models continues to face challenges

in coping with dynamic business environments where

requirements and goals are constantly changing at the

runtime, and thus business users are demanding

adaptive and flexible modeling techniques. A change

impact and traceability analysis technique is required to

determine the change effect and maintain the

consistency and integrity of the software product.

Change impact analysis is a critical issue in software

project management. It is a systematic approach to

understand the impacts of software changes. It is

essential to identify the parts that require retesting, to

reduce potential errors due to unknown change impacts,

and to improve overall efficiency in software

maintenance. The change impact can have local or

global concerns. Local changes are concerned with

instances; it is necessary to detect if they have indirect

impacts on other instances. Global changes are

concerned with process definitions. Traceability

analysis is important in change impact. It is an analysis

of the dependencies between and across software

artifacts and actors at all levels of the software process.

The output of traceability analysis consists of all the

components affected by the change. Change impact and

traceability analysis techniques are classified into two

categories [16]: code based techniques such as program

slicing, and model based techniques such as program

dependence graphs. Code based impact analysis

techniques require the implementation details of a

change request or a precise change implementation plan

prior to determining change impacts. Model based

impact analysis techniques identify and determine

change impacts in the earlier phase without using

program code, and make proper decisions before

considering any change implementation details.

Object-Oriented (OO) modeling language is widely

used in software analysis and design. Unified Modeling

Language (UML), which is mainly based on the object-

orientation, is powerful for describing the static and

dynamic aspects of systems, but remains semi-formal

and is lack of techniques for model validation and

verification [19]. In addition, it is difficult to keep

consistency between models presented by different

UML diagrams. Since UML diagrams can be divided

into different categories, where each category focuses

on a different perspective of a problem domain, one of

the critical issues is to keep consistency among

diagrams [15]. The use of UML diagrams in modeling

software systems leads to a large number of

interdependent diagrams. It is necessary to preserve

these diagrams’ consistency and integrity since they are

updated continuously to reflect the software model

change [12]. UML is powerful in describing the static

Change Management Framework to Support UML Diagrams Changes 721

and dynamic aspects of systems, but remains semi-

formal and lacks techniques for diagrams validation and

verification especially if these diagrams updated

continuously. Formal specifications and mathematical

foundations such as Coloured Petri Nets (CPNs) are

used to automatically validate and verify the behavior

of the model. The main advantages expected from the

integration of UML and CPNs modeling languages are:

better representation of systems complexity as well as

ease to adapt, correct, analyze, and reuse a model. This

research proposed a change management framework to

trace the dependency and to determine the effect of

change of UML diagrams elements incrementally; it is

not only a comparison between two versions from the

same diagram, also it is used to check the consistency,

impact, and traceability after creating, deleting, or

modifying any diagram element by applying the same

idea of syntax checking incrementally in CPNs models.

In addition, change impact and traceability analysis

templates are proposed for all types of change in the

UML diagrams. These templates define information

about the types of change supported for each diagram,

information on change impact, dependency between

diagrams, and rules to maintain the integrity and

consistency between diagrams. The proposed change

management framework is modeled and simulated

using CPN Tools. This research proposes a new

structure for the mutual integration between UML and

CPNs modeling languages to support model changes,

the new structure include set of rules to check and

maintain the consistency and integrity based on UML

diagrams relations. The rest of the paper is organized as

follows: In Section 2, an overview and related works of

change impact, traceability analysis, and integration

between UML and CPNs models are discussed. In

section 3, the proposed framework is explained and

discussed. In sections 4 and 5, we discuss, analyze, and

summarize the research findings and future work.

2. Related Works

In this section, approaches related to the change

management frameworks are discussed. Software

configuration management is concerned with managing

the evolving software systems. Model based techniques

identify change impacts by tracking the dependencies

of software objects and classes. Dependencies among

artifacts refer to how changes in some artifacts may

impact other artifacts [18]. Traceability and consistency

types are discussed in [7, 17] Vertical traceability refers

to the ability to trace dependent artifacts within a

model, while horizontal traceability refers to the ability

to trace artifacts between different models within the

same version. Evolutionary traceability indicates the

consistency between different versions of the same

model. In [5], an approach for performing change

impact analysis is presented to describe changeable

items (objects, attributes, and linkage) and their

relations. Horizontal and evolutionary consistency

between the UML class, sequence, and statechart

diagrams are discussed in [17]. A case study is

performed in [1] to evaluate four requirements

management tools (IBM Rational RequisitePro,

Borland CaliberRM, TopTeam Analyst, and Telelogic

DOORS) in supporting change impact and traceability

analysis. This study indicates all these tools have poor

impact analysis features. This shows that impact

analysis in current requirements management tools is

very limited and more effective methods are needed.

Decades of research efforts have produced a wide

spectrum of approaches and techniques in checking the

change impact and inconsistency among OO diagrams.

Some of these approaches can be classified into direct,

transformational, formal semantics approaches [23].

Direct approaches use the constructs of OO and Object

Constraints Language (OCL) [3, 4, 6]. Standard OCL

does not allow making changes to the model elements

to resolve them [13]. CPNs can be used for checking

and verifying UML model associated with OCL to

check whether it meets the user requirement or not [24].

Briand et al. [3] and Briand et al. [4] approach is

concerned with keeping the software models in a

consistent state and synchronized with the underlying

source code [14]. In Egyed [8, 9, 10, 11], the basic idea

of this approach is to focus on the parts that are affected

by model changes and not to validate design rules in

their entirety. Transformational approaches derive a

common notation by transforming one model to another.

The coevolution in this approach is based on

bidirectional mapping rules between architecture model

and source code. According to [20], the graph

transformation technique limited to check the structural

inconsistencies only because it detect and resolve the

inconsistencies which can be expressed as a graph

structure only. Formal approaches develop formal

semantics for the OO diagrams, while knowledge

representation approaches use description logics as a

representation language [2]. Formal approaches are

widely used in describing the behavioural of the UML

diagrams using the executable models capability

provided in CPNs. Transforming UML diagrams to

formal modelling language such as CPN models is

considered one of the most effective ways to solve the

software performance evaluation problems. The

integration between UML and CPNs approaches is

based on the combination of the best characteristics of

the CPNs and UML design methods. UML describes

the static aspects of systems, while CPNs model system

dynamics and behavioural aspects. The graphical

representation and automated analysis techniques in

CPN tools are used to aid in the understanding of

formal specifications. The transformation approaches

have certain weaknesses, such that each transformation

approach uses only a subset of the UML diagrams, and

most of these transformations are based on behavioural

UML diagrams, these approached focused only on a

722 The International Arab Journal of Information Technology, Vol. 16, No. 4, July 2019

comparison between two versions from the same model

to check if there are differences between them. To react

to changes in its environment in a quick and flexible

way, and to provide life cycle support of software

change management, a framework for managing

dynamic software changes is required. Although the

previous approaches in the related works provide the

earlier phase solution to handle software changes in

UML diagrams, these approaches are concerned with

only part of the UML diagrams (i.e., the class,

sequence, and statechart diagrams). There is a need to

handle software change and change impact

comprehensively using all UML structural, behavioural,

and interaction diagrams including the diagrams’

relations and checking the integrity and consistency

between diagrams. Also, most of these approaches are

based on the comparison between two versions of the

same diagram. Integration between UML and CPNs are

discussed in our previouse work in [21]. Improving the

effectiveness and the accuracy of the state-of-the-art in

managing OO diagrams changes is an important issue

and still much work needed to be done to provide the

flexibility, adaptability, and dynamic reaction to

changes comprehensively.

3. Proposed Change Management

Framework for OO Diagrams

In this research, a change management framework for

UML diagrams is proposed. UML diagrams are

modeled using UML structural, behavioural, and

interaction diagrams. The change in the UML diagram

is the result of creating, deleting, or modifying diagram

element. The proposed framework is a type of software

configuration management technique. Impact and

traceability analysis is important in order to identify the

parts that require retesting, and to improve the overall

efficiency in software change management techniques.

The nature of the change could be corrective or

evolutionary. Corrective changes are implemented to

correct a design error. Evolutionary changes are

required due to the redesign or reconfiguration of

processes. These changes are represented by rules to be

discussed in section 3.2. The change effect could be

local if the change in one diagram does not impact on

other diagrams, or a global change which is concerned

with relations between diagrams. The main components

for the proposed framework which are used to

determine the change effect are explained in Figure 1

which includes the detailed components for the

proposed change management framework.

3.1. Software Model

A complete model can be represented using UML

diagrams. UML 2.3 supports a variety of diagrams,

which allow the developers to model software systems

from different perspectives using UML structural,

behavioural, and interaction diagrams. UML diagrams

are interrelated; some components for one diagram may

be derived from other diagrams. For example, an

activity diagram can be used to model an operation

associated with a use case or a class diagram. Since

UML diagrams can be divided into different categories,

where each category focuses on a different perspective

of a problem domain, one of the critical issues that

needs to be addressed is the maintenance of consistency

among diagrams [25]. Structural Diagrams are used to

construct the information structure. Behavioural

Diagrams show how a system operates. Interaction

Diagrams can be considered as a subset of behavioural

diagrams.

Figure 1. Proposed change management framework steps.

Transforming UML diagrams into executable

models that are ready for analysis is significant, and

providing an automated technique that can transform

these diagrams into a mathematical model such as

CPNs avoids redundancy in writing specifications.

Many approaches for integrating OO modeling and

PNs/CPNs have been investigated and developed. The

transformation between UML diagrams and CPNs is

partially supported for a subset of the UML diagrams as

shown in [22]. This research focuses on the

transformation of UML diagrams from the structural,

behavioural, and interaction perspectives. This includes

the new features in the UML modeling language such

as the composite structure diagram, timing diagram,

and interaction overview diagram. In addition, a new

structure (Object Oriented Coloured Petri Nets

(OOCPN)) to include rules to maintain the consistency

Formulate the change as a

rule

(Rule Design)

New Change Integration

(Change Impact and

Traceability Analysis)

Change Control Patterns

New Change

(Rule)

Coevolution Patterns

Structural

Patterns

Behavioral

Patterns
Interaction

Patterns

Change Type Examples

Change to correct errors,

enhance functionalities,

adapt new data, and

improve efficiency

Software Model

UML

diagrams in

OOCPNs

OO Model (UML)

UML into

OOCPNs

Transformation

Rules

Versions

History and

Control

Patterns

Change Management Framework to Support UML Diagrams Changes 723

and integrity is proposed to support model changes. The

block diagram of the transformation process is shown

in Figure 2.

Figure 2. Block diagram for transforming UML diagrams to

OOCPN model.

The components of UML structural, behavioural,

and interaction diagrams are transformed to CPNs

elements based on the proposed transformation rules.

Consistency and integrity rules are checked during the

transformation process and after updating the CPNs

model.The general structure for the OOCPN model

after the transformation of UML diagrams will be as

follows: attributes and operations are transformed from

the class diagram. These attributes and operations are

used by other OOCPN model components. Classes are

organized into subpages or subnets. These subpages can

be instantiated using tokens which represent the

objects. Related subpages are grouped together

according to the package and composite structure

diagrams. Objects behavior and interaction are

described using the transformed behavioural and

interaction diagrams. The state chart diagram describes

the objects behavior by states and events. Activity

diagram describes the flow of control form activity to

activity. Sequence diagram describes the flow of

control from object to object. Each activity could have

starting and finishing time to determine the activities

sequence or execution order as described in the timing

diagram. Communication between objects is described

using sequence and communication diagrams.

Sequence diagram focuses on the times that messages

are sent. Communication diagram focuses on object

roles. A Communication model can be used to show

use case objects and the sequence of messages passed

between them.

 Definition 1: Proposed OOCPN structure:

The proposed OOCPN structure is defined by the tuple

n = (∑, Pg, P, Fp, T, SubT, A, N, C, G, E, M0, R)

where:

∑: is a finite set of non-empty types, colour sets

Pg: {pg0,.,pgn} is a set of pages, where pg0 is the main

page

P: {p1,p2, …,pn} is a finite set of places

Fp: {fp1, fp2, …,fpn} is a finite set of fusion places

T: {t1, t2, …, tn} is a finite set of transitions

SubT = {Subt1, …, Subtn} is a finite set of substitution

transitions

A: A T P ∪ P T represents a set of directed arcs

N: A T P ∪ P T is a node function

C: P ∑ is a colour function

G: is a guard function

E: is an arc expression function

M0: P → C is the initial (coloured) marking

R: {r1, …,rn} is a finite set of consistency and integrity

rules

 Definition 2: OOCPNs model Relations and Rules:

The Proposed transformation rules are used to

transform the UML diagrams’ elements to OOCPN

elements. OOCPN elements are grouped together

according to the UML diagrams’ relations as follows:

Let O be an OO software system represented by a set

of UML diagrams elements (Eo) where Eo = {E1, E2,……,

En}. Let TRo = {TR1, TR2,…TRn} be the set of

transformation rules. Let OOCPNo= {OOCPN1,

OOCPN2,… OOCPNn} be the set of equivalent OOCPN

elements of Eo. The transformation rule can defined

between {Ej, OOCPNj} as follows: ∀ Diagram element

 Eo: Ej
𝑇𝑅𝑗
⇒ OOCPNj //j is a diagram element. The

OODs are organized in OOCPNs as a set of {S, B, and

I}. Where S: are the UML Structural diagrams’

elements, B: are the UML Behavioural diagrams’

elements, and I are the UML Interaction diagrams’

elements. The OODs elements in the OOCPNs are a set

of: {S (E1,..,En), B (E1, ..,En), I(E1,.., En)}. S elements

are a set of: {CD(E1,..,En), OD (E1,..,En), PD(E1,..,En),

CoD(E1,..,En), DD(E1,..,En), CSD(E1,..,En)}. B elements

are a set of: {UCD (E1,..,En), AD (E1,..,En),

SCD(E1,..,En)}. I elements are a set of: {SD (E1,..,En),

CommD (E1,..,En), TD (E1,..,En), IOD (E1,.., En}. Where

CD: Class Diagram, OD: Object Diagram, PD:

Package Diagram, CoD: Component Diagram, DD:

Deployment Diagram, CSD: Composite Structure

Diagram, UCD: Use Case Diagram, AD: Activity

Diagram, SCD: Statechart Diagram, SD: Sequence

Diagram, CommD: Communication Diagram, TD:

Timing Diagram, and IOD: Interaction Overview

Diagram. The proposed transformation rules include

information about the following: Rules to transform

UML diagrams elements into OOCPN as discussed in

Definition 2. Consistency and integrity rule(s) to

maintain consistency and integrity during the

transformation and after updating the OOCPN model

components. These rules have the structure: If (set of

input conditions) Then (set of output conditions) Else

(set of output conditions). Consistency Rules are listed

in section 4. UML to proposed OOCPN structure

transformation rules are available online on1.

1 https://docs.google.com/open?id=0BxDI0GvG3aitNF9NeGF1WFZxb1E

Structural

Diagrams
Behavioral

Diagrams
Interaction Diagrams

UML Diagrams to OOCPN Transformation

Consistency and Integrity Rules

OOCPN Model Components

Updating OOCPN Model Components

724 The International Arab Journal of Information Technology, Vol. 16, No. 4, July 2019

3.2. Consistency Rule Design

In the proposed framework, the UML structural,

behavioural, or interaction diagram elements are all

subject to change to accommodate new requirements.

The scope of a change is determined by its impact

(local or global). Each update operation is represented

as a template. Description for each template is

available online on1. New changes are represented as

rules to update diagram elements or relations

incrementally based on diagrams relations; if a change

to an element is based on other elements, those

elements must exists. Consistency and integrity rules to

maintain the consistency between UML diagrams and

their relations are proposed in section 4. These rules

are checked and applied during the change impact and

traceability analysis process. Rule conditions, actions,

and pre and post conditions are also considered. All

consistency constraints are maintained before and after

the new changes have been updated. If any one of

these constraints is not satisfied then it is rejected in

accordance with Rules 1 to 3 as formulated in Section

4. Data integrity is a critical issue and needs to be

validated against certain constraints before and after

applying a change. Integrity rules express constraints

and define the acceptable relationships between data

elements, as well as ensuring completeness. In this

research, these rules are checked incrementally after

each update operation, and any sequence of updates

that occurs must not result in a state that violates any

of the constraints. For example, the proposed rules

disallow the deletion of referenced data.

4. Components Affected by the Change

In the proposed framework, determining the UML

diagram elements affected by a change are determined

based on the object dependency graph of the diagram

objects and their relations. Control flow dependency

and other dependencies such as inheritance,

aggregation, encapsulation, polymorphism, and

dynamic binding are supported. Figure 3 shows a graph

the dependency between the UML diagrams. Any

update operation in a structural diagram will cause a

change in the behavioural and interaction diagrams.

Also the behavioural and interaction diagrams are

interdependent; if a change has happened in one of the

behavioural diagrams, then, it will affect at least one

interaction diagram and vice versa. The following

formal definitions (Definitions 1 to 3) are used to

determine the dependencies between the UML diagram

elements.

Figure 3. UML Diagrams dependency graph.

 Definition 3: Impact related elements:

Let X, Y E, where E is the set of UML diagram

elements where X ≠ Y, Y is said to be an impact related

element of X, if Y is changed then X is considered

changed (Briand, Labiche, & O’Sullivan, 2003). In the

proposed framework, this definition can be used to

determine the impact of change between any Structural

diagram’s elements (S), Behavioural diagram’s

elements (B), and Interaction diagram’s elements (I)

according to the following relations:

∀ X∈ S, Y ∈ B, Z ∈ I: X is an impact-related element

of Y and Z, If (X is updated) Then (Y and Z are

changed elements); ∀ X∈ S, Y ∈ B, Z ∈ I: Y is an

impact-related element of X and Z, If (Y is updated)

Then (X and Z are changed elements); ∀ X∈ S, Y ∈ B,

Z ∈ I: Z is an impact-related element of X and Y, If (Z

is updated) Then (X and Y are changed elements).

 Definition 4: Reflexive relation: D: is the Change

Impact (CI) dependency, A: is a UML diagram. The

reflexive relation is defined by(Lee, 1998):

A D A: A depends on itself. if A is impacted, it will

impact itself. This definition describes vertical

consistency type. The reflexive relations are: S D S, B

D B, and I D I

 Definition 5: Transitive relation:

Suppose X, Y, and Z are UML diagrams, then, the

transitive relation is defined by (Lee, 1998):

X D Y and Y D Z ⇒ X D Z This means that if X

impacts Y and Y impacts Z, then X impacts Z. In the

proposed framework, examples of the transitive

relations between S, B and I are: S D B and B D I ⇒ S

D I , S D I and I D B ⇒ S D B. For example, a change

to the class diagram will affect the activity diagram

(direct impact), and a change to the activity diagram

will affect the interaction overview diagram (direct

impact). As a result, a change to the class diagram will

affect the interaction overview diagram (indirect

impact). The change impact dependencies between the

UML structural, behavioural, and interaction diagrams

are defined using the relations between diagrams. The

UML diagram relations are used to determine and

classify all types of change in UML diagrams, and the

impact on other diagram elements. Horizontal, vertical,

and evolutionary traceability and consistency types are

supported to maintain consistency and compatibility

between the UML diagrams and their versions. The

horizontal relation between the diagram elements is

affected by a change and the change types can be

Structural Diagram

Changes

Behavioral

Diagram changes

Interaction Diagram

changes

Dependen

cy relation

Change Management Framework to Support UML Diagrams Changes 725

described formally as in Definition 6. The evolutionary

relation between the diagram versions can be described

formally as in Definition 7. The change impact is

determined for both direct and indirect change effects.

A direct effect occurs when the change to one diagram

element directly impacts the definition of another

diagram element. An indirect effect occurs when the

impacted diagram element in turn impacts other

diagram elements.

 Definition 6: Relation between UML diagram

elements and change types:

Let O be an OO software system represented by a set of

UML diagram elements (Eo) where Eo = {E1, E2,……,

En}. Let To = {t1, t2,……, tn} be the set of change types

that can be carried out on O such that for a given

change{tj, Ej}, we can define: Fimpact {tj, Ej} {E1,

E2,…,Ek}(AJILA, 1995). where k is the number of the

effected diagram elements. Where Fimpact is the impact

function, {E1, E2,…, Ek} is the set of diagram elements

effected by applying change (tj) on element (Ej). The

Fimpact can be extended to include the UML diagrams

Categories (C): S, B, and I as in the following: Fimpact

{tj, Cj} {S (E1,..,Ek), B (E1, E2,…, Ek), I(E1,..,Ek)}.

Fimpact for the structural diagrams: Fimpact {tj, Sj} {CD

(E1,.., Ek), OD (E1,.., Ek), PD(E1,.., Ek), CoD(E1,.., Ek),

DD(E1,.., Ek), CSD(E1,.., Ek)}.

Fimpact for the behavioural diagrams: Fimpact {tj, Bj}

{UCD(E1,.., Ek), AD (E1,.., Ek), SCD(E1,.., Ek)}

Fimpact for the interaction diagrams: Fimpact {tj, Ij}

{SD(E1,.., Ek), CommD (E1,.., Ek), TD (E1,.., Ek), IOD

(E1,.., Ek}. This definition describes horizontal

consistency type.

 Definition 7: Relation between UML diagrams’

versions: Based on the definition of Fimpact, the

new version created from the impacted diagram

elements is

Fimpact {t’j, E’j} {E’1, E’2,…, E’k.}.

The new version from the UML diagrams Categories

(C’): S’, B’, and I’ are: {S’ (E’1, E’2,…, E’k), B’ (E’1,

E’2,…, E’k), I’(E’1, E’2,…, E’k)}. Such that: ∀ Ej Eo, If

(Ej is changed) Then (E’j is created as new version from

Ej). The new version of the structural diagrams is:

{CD’(E’1,.., E’k), OD’ (E’1,.., E’k), PD’(E’1,.., E’k),

CoD’(E’1,.., E’k), DD’(E’1,.., E’k), CSD’(E’1,.., E’k)}.

The new version of the behavioural diagrams is:

{UCD’(E’1,.., E’k), AD’ (E’1,.., E’k), SCD’(E’1,.., E’k)}.

The new version of the interaction diagrams is:

{SD’(E1,.., E’k), CommD’ (E’1,.., E’k), TD’ (E’1,.., E’k),

IOD’ (E’1,.., E’k}

This definition describes the relations between the

UML diagram versions, and the evolutionary

consistency types. Definitions 1 to 5 are considered as

change impact and dependency rules. The dependency

between a business model’s components and its impact

analysis can be supported efficiently through the

proposed change impact and traceability templates

which include the following information for each

change in the UML diagram elements: The Change

Type represents the rule. It could be creating, deleting,

or modifying a diagram element. The Change Impact

value is “LC” for the local change, “GC” if the change

affects other diagrams’ elements or “Null” if the

update operation is not allowed. The Affected

Diagrams (Dependency) is the list of the affected

diagrams. Consistency and Integrity Rules are designed

to maintain the consistency between UML diagrams

and their relations. These rules will be checked and

applied during the change impact and traceability

analysis process. The structure of the rules is provided

in Section 3.2. This research proposes the following

general consistency and integrity rules:

 Rule 1: Deleting/Modifying a referenced element

If (an update is to delete/modify a referenced element)

Then (Deleting/Modifying the referenced element is

not allowed) // a referenced element is an element

defined by another diagram. For example, diagrams’

attributes are defined by the CD.

The change impact value will be “Null”, and the

dependency value is “None”. The change impact and

dependency value for following update operations are

determined based on Rule 1:

a) Deleting the following diagram elements: A CD

attribute, operation, class, class inheritance,

association, or navigability arrow, an object in the

OD, SD, or CommD, a UCD actor or use case, and a

SCD state or event.

b) Modifying the following diagram elements: A CD

attribute name, operation name, class name,

inherited class name, navigability arrow direction,

polymorphic operation name, or interface element

name, an object name in the OD, SD, or CommD, a

PD package class name, a CoD & DD component

operation name, a CSD part/port name, a UCD actor

or use case name, a SCD state or event name, a SD

message name or a message attribute name, an IOD

activity or interaction diagram element name, and

TD task name.

 Rule 2: Creating/Deleting/Modifying a non-

referenced element

If (an update is to delete a non-referenced element)

Then (The change impact is local) A change impact

value will be “LC”, and the dependency value is

“None”. The change impact and dependency value for

following update operations are determined based on

Rule 2:

a) Creating the following diagram elements: A CD

Value, an OD instance variable or variable/message

data type, a SD note, and an order of priorities in the

TD.

b) Deleting the following diagram elements: A CD

multiplicity range, interface, polymorphic operation,

or role name, a SD message, an IOD activity or

interaction diagram element, a TD task, an OD

instance variable, a SD note, and an order of

726 The International Arab Journal of Information Technology, Vol. 16, No. 4, July 2019

priorities in the TD.

c) Modifying the following diagram elements: A PD

package name, a CoD & DD node name, an AD

start or end node name, a SCD initial or final state,

an OD instance variable or variable/message data

type, a SD note, and an order of priorities in the TD.

 Rule 3: Consistency and Integrity constraints

 Rule 3.1: The class attribute name and the

association role name cannot have the same

name [3].

 Rule 3.2: Two associations with the same

name and role name are not allowed

 Rule 3.3: No private/protected attribute or

operation can be accessed by an operation of

another class

 Rule 3.4: All diagram attributes/operations

must be defined in the CD

 Rule 3.5: A cycle is not allowed in any

directed path of aggregation links

 Rule 3.6: For any update operation, the

affected diagrams should also be updated

 Rule 3.7: A diagram element cannot update an

attribute if the attribute changeability is not

“changeable”

Change impact and traceability analysis templates are

proposed for the changes in UML diagram elements.

These templates can be applied to detect the direct or

indirect change effect for all diagrams’ elements. These

templates also describe the change impact and

traceability analysis information for UML diagrams’

elements. This information is used in the vertical and

horizontal consistency types between UML diagrams.

Algorithm 1 given below is used to find the diagram

elements’ affected by the change based on the objects

dependency graph. Data dependency is checked as pre

and post conditions for each change.

Algorithm 1: Components Affected by the Change

Input: Diagram Name (N), Diagram Elements, Change Impact

(CI). Output: Diagrams Affected (Dependency).

Process: O: an OO software system represented by a set of UML

diagrams elements (Eo). D: CI dependency. No: set of UML

diagrams’ elements. Nj: specific element in the diagram. S:

Structural diagrams’ elements, B: Behavioural diagrams’

elements, I: Interaction diagrams’ elements

Begin If (CI is LC) Then

- Nj D Nj // Nj depends on itself. It means that if Nj is

impacted, it will impact itself.

- ∀ Nj No , If (Nj is changed) Then (N’j is created as

new version from Nj)

Else //global changes If (Nj S) Then

- ∀ X S, Y B, and Z I: X is an impact related

element of Y and Z,

If (X is updated) Then (Y, Z is a changed element)

- X’, Y’, and Z’ are created as new versions from X, Y,

and Z respectively.

Else If (Nj B) Then

- ∀ X S, Y B, Z I: X : Y is an impact related

element of X and Z, If (Y is updated) Then (X and Z is

a changed element)

- X’, Y’, and Z’ are created as new versions from X, Y,

and Z respectively.

Else (If Nj I) Then

- ∀ X S, Y B, Z I: X : Z is an impact related

element of X and Y,

- If (Z is updated) Then (Y is a changed element)

- X’, Y’, and Z’ are created as new versions from X, Y,

and Z respectively.

endif endif endif Versions update endif End

5. Proposed Change Management

Framework Modeling , Simulation, and

Analysis

Change is inevitable in the software product lifecycle.

Change impact and traceability analysis are important

activities in software maintenance process to analyze

the possible effects of software changes. A software

design is often modeled using a collection of UML

diagrams. The use of UML diagrams in modeling large-

scale systems leads to a large number of interdependent

diagrams. It is necessary to preserve the diagrams

consistency, since they are updated continuously. To

accommodate the change in the software process, a

change management framework has been proposed to

determine the change effect in the UML diagrams’

elements. The proposed framework can be applied to

detect the elements affected by the change in the

systems design modeled using UML diagrams. This

include controlling the evolution of UML diagrams by

identifying and managing the model changes, ensuring

the correctness and consistency of models, the impact

of changes, and the relationships between the model

diagrams. In this section, we will discuss the modeling

and simulation and analyzing the proposed change

management framework. CPN Tools version 3.4 [26] is

used to model and simulate the proposed OOCPN

structure and to validate the proposed change

management framework. In comparing with other

approached that discussed in the related works, the

proposed framework discussed and provided the

transformation rules between UML diagram from

different perspectives using UML structural,

behavioural, and interaction diagrams rather than a

sequence of activities. This transformation included the

consistency rules bases on the diagrams relations.

Algorithm 1 has been proposed to determine the change

impact and the dependency between the diagrams’

elements. Corrective and evolutionary changes are

supported. Figure 4. Shows the hierarchy for the change

levels in the proposed framework. The change levels

are used to determine the distances between the

changed element and the impacted elements. The

change distance is calculated according to the following

rule: If (the change in S, B, or I is local) Then (change

distance is 1) Else (change distance is 2). // the number

Change Management Framework to Support UML Diagrams Changes 727

of affected diagrams (n) by the change is n ≥ 1 to be

explained in. Change impact and traceability analysis

templates have been proposed to determine and classify

types of changes in UML diagrams and their impact on

other diagrams.

Figure 4. Change levels (traceability distance).

The diagrams consistency is checked according to

the consistency and integrity rules provided in each

template. This includes the vertical, horizontal and

evolutionary consistency types. The dependency

between UML diagrams has also been defined formally

as discussed in the Definitions 1 to 5. The proposed

framework in comparing with the state of art proposed

the incremental checking of consistency between

diagrams; we applied the same idea of incremental

syntax checking in CPN Tools.

 ∃ e(diagram element) CD: If (e is changed) Then

(all diagrams are affected) // Classes, attributes, and

operations in the class diagram are used or invoked

in all UML diagrams.

 ∃ e OD: If (e is changed) Then (all diagrams are

affected except the CD) //Objects are used in the

structural, behavioural, and interaction diagrams

 ∃ e CoD : If (e is changed) Then (DD is affected)//

CoD and DD are dependent on each other; the

change in one of them will affect the other.

 ∃ e DD: If (e is changed) Then (CoD is affected)

 ∃ e UCD: If (e is changed) Then (AD, SCD, SD,

CommD, TD, and IOD are affected) //The dynamic

behavior of the UCD is described using the AD,

SCD, SD, and CommD. The flow of control in the

AD is from activity to activity. The flow of control in

the SD and CommD is from object to object. TD and

IOD are affected indirectly by the change in the

UCD because their elements are derived from the

AD and interaction diagrams.

 ∃ e AD: If (e is changed) Then (UCD, SCD, SD,

CommD, IOD, and TD are affected) //An AD

represents the internal behavior of the CD, UCD,

and SCD. IOD and TD elements are derived from

the AD elements, in addition to interaction elements

added in the IOD. The AD shows how those

activities depend on one another.

 ∃ e SCD: If (e is changed) Then (UCD,AD, SD,

CommD, TD, and IOD are affected)// Dynamic

behavior of the SCD is described using the AD, SD,

and CommD. TD and IOD are affected indirectly by

the SCD changes because their elements are derived

from the AD and interaction diagrams.

 ∃ e SD: If (e is changed) Then (UCD, AD, SCD,

CommD, and IOD are affected)

 ∃ e CommD: If (e is changed) Then (UCD, AD,

SCD, SD, and IOD are affected)

 ∃ e PD, CSD, IOD, and TD: If (e is changed) Then

(No diagrams are affected)

The proposed change management framework trace the

dependency and to determine the effect of change of

UML diagrams elements incrementally; it is used to

check the consistency, impact, and traceability after

creating, deleting, or modifying any diagram element

by applying the same idea of syntax checking

incrementally in CPNs. also a comparison between two

versions from the same diagram is supported. Figure 5

shows a complete example for modeling a change type:

adding a new CD operation and its consistency rule

this include the change history and version (File

Update substitution transition). In all steps, initial

token are provided for all nodes in order to trace the

simulation process through transferring these tokens

from the input to output places. In CPN-Tool, all the

CPN models can be translated to Java code using the

“Export to Java code” provided in the Net tool box.

Figure 7 summarizes the distribution of the proposed

templates and the transformation rules on the UML

diagrams categories. 22 templates are proposed for the

structural diagrams, 18 templates are proposed for the

behavioral diagrams, and 13 templates are proposed for

the interaction diagrams. Some of these templates are

shared between some diagrams based on diagrams

relations. For example, the same template is proposed

for the activity diagram and sequence diagram iteration

/loop changes. Information about the number of

affected diagrams by updating each UML diagram and

the number of update operation supported is

summarized in Figure 8. Self, direct, and indirect

dependencies are considered. The proposed framework

can be implemented for actual deployments in any

system modelled using OO diagrams, such as those in

large universities, industrial factories, large or small

companies, social networking systems to provide

software model analysis and design. UML diagram is

used to model the social network systems, dealing with

changes in UML diagrams will also help in enhancing

the social media software’s change management.

Figure 6 summarize the number of transformation rules

proposed for each diagram.

Change Levels

B
S

I

B I I B

Level

1

Level 2 S S

728 The International Arab Journal of Information Technology, Vol. 16, No. 4, July 2019

Figure 5. Adding new class diagram operation.

Figure 6. Number of transformation rules for each diagram.

Figure 7. Number of proposed templates (Series 1) and

transformation rules (Series 2) for each diagrams category.

Figure 8. Number of update operations supported and number of

diagrams affected by updating each UML diagrams.

6. Conclusions

As software evolves, analysis and design models need

be modified, accordingly. To cope with changes in the

software process, in this research, a novel approach for

a change management framework was proposed to

manipulate the change effect in the UML diagrams’

elements. In this framework, UML diagrams are

modelled from different perspectives using UML

structural, behavioural, and interaction diagrams. The

proposed framework can be applied to detect the

diagram elements affected by a change in a system

design modelled using UML diagrams by utilizing the

proposed templates. This framework can be used to

control the change of UML diagrams by identifying and

managing the model changes, ensuring the correctness

and consistency of the models, identifying the impact

of changes based on the relationships between

diagrams, and analyzing the performance. The

proposed templates determine and classify the types of

changes in UML diagrams and their impact on other

diagrams. The consistency between diagrams is

checked according to the consistency and integrity rules

provided in each template. This includes the vertical,

horizontal, and evolutionary consistency types. An

algorithm has been proposed to find out all the possibly

affected elements if these changes happened based on

the proposed consistency and integrity rules. CPNs

Tools toolboxes are used to model and simulate the

proposed framework. The future work of this research

is to develop a change management patterns for all

templates and transformation rules provided in this

research.

References

[1] Abma B., Evaluation of Requirements

Management Tools With Support for Traceability-

Based Change Impact Analysis, Master’s Thesis,

#1 CDconsistLists

(classesList1,
oprdefinitionlst1,

allattributes1)

allclassopratr1

RedundencyMsg

oprerationsListstrAtr

oprdefinitionlst1

classesList1classesList

classesListstrAtr

classesList

(classesList,strAtr)

(allclassesnoconst,CDconsistLists,

ODconsistlist,ADconsistlists,
SCDconsistlists,SDconsistlists,
allupdates)

(allclassesnoconst,CDconsistLists,

ODconsistlist,ADconsistlists,
SCDconsistlists,SDconsistlists,
allupdates)

allclassopratr1

oprerationsList

ins_Opr
oprerationsList
 strAtr

strAtr

#1 oprdefinition

oprdefinition

(classesList1,

oprdefinitionlst1,
allattributes1)

allclassopratr1

[mem
oprerationsList
strAtr]

[classesList=

classesList1]

ClassOprAtr

STRING

ClassesList

STRING

ClassesList

In
ClassAtrName

Out
AllClassesList

In
AllClassesList

empty
AttributesList

STRING

OprDefinition

ClassOprAtr

AllClassOprAtr

In Out

In

20

7
2 3 3 2

8
14

6 7
1 2 3

C
D

O
D

P
D

C
o

D

D
D

C
sD

U
C

D

A
D

SC
D SD IO
D TD

C
o

m
m

D

0

20

40

Structural
Diagrams

Behavioura
l diagrams

Interaction
Diagrams

Series1 22 18 13

Series2 37 28 13

CD OD PD
CoD
and
DD

CSD UCD AD SCD SD
Com
mD

IOD TD

No of Update
Operations

41 9 5 13 6 12 17 18 23 17 3 5

No of Affected
Diagrams

13 12 1 2 1 7 7 7 6 6 1 1

0
10
20
30
40
50
60

Change Management Framework to Support UML Diagrams Changes 729

University of Twente, 2009.

[2] Bolloju N., Schneider C., and Sugumaran V., “A

Knowledge-Based System for Improving The

Consistency Between Object Models and Use

Case Narratives,” Expert Systems with

Applications, vol. 39, no. 10, pp. 9398-9410,

2012.

[3] Briand L., Labiche Y., and O'sullivan L., “Impact

Analysis and Change Management of UML

Models,” in Proceedings of International

Conference on Software Maintenance,

Amsterdam, pp. 256-265, 2003.

[4] Briand L., Labiche Y., and Yue T., “Automated

Traceability Analysis for UML Model

Refinements,” Information and Software

Technology, vol. 51, no. 2, pp. 512-527, 2009.

[5] Chen C., She C., and Tang J., “An Object-Based,

Attribute-Oriented Approach for Software Change

Impact Analysis,” in Proceedings of IEEE

International Conference on Industrial

Engineering and Engineering Management,

Singapore, pp. 577-581, 2007.

[6] Dang D. and Gogolla M., “An OCL-Based

Framework for Model Transformations,” Journal

of Science Computer Science and Communication

Engineering, vol. 32, no. 1, 2016.

[7] De Lucia A., Fasano F., and Oliveto R.,

“Traceability Management for Impact Analysis,”

in Proceedings of Frontiers of Software

Maintenance, Beijing, pp. 21-30, 2008.

[8] Egyed A., “Instant Consistency Checking For The

UML,” in Proceedings of the 28th International

Conference on Software Engineering, 2006.

[9] Egyed A., “Fixing Inconsistencies In UML

Design Models,” in Proceedings of 29th

International Conference on Software

Engineering, Minneapolis, pp. 292-301, 2007.

[10] Egyed A., “Uml/Analyzer: A Tool for The Instant

Consistency Checking of Uml Models,” in

Proceedings of 29th International Conference on

Software Engineering, Minneapolis, pp. 793-796,

2007.

[11] Egyed A., “Automatically Detecting and Tracking

Inconsistencies in Software Design Models,”

IEEE Transactions on Software Engineering, vol.

37, no. 2, pp. 188-204, 2011.

[12] Kchaou D., Bouassida N., and Ben-Abdallah H.,

“Managing The Impact of UML Design Changes

On Their Consistency and Quality,” Arabian

Journal for Science and Engineering, vol. 41, no.

8, pp. 2863-2881, 2016.

[13] Khalil A. and Dingel J., “Supporting the

Evolution of UML Models in Model Driven

Software Development: A Survey,” Technical

Report, 2013.

[14] Lehnert S., “A Review of Software Change

Impact Analysis,” Technical Report, Ilmenau

University of Technology, 2011.

[15] Lucas F., Molina F., and Toval A., “A Systematic

Review of UML Model Consistency

Management,” Information and Software

Technology, vol. 51, no. 12, pp. 1631-1645, 2009.

[16] Mahmood Z. and Mahmood R., “Category,

Strategy and Validation of Software Change

Impact Analysis,” International Journal of

Engineering and Computer Science, vol. 4, no. 4,

pp. 11126-11128, 2015.

[17] Mens T., Van Der Straeten, R., and Simmonds, J.,

“A Framework for Managing Consistency of

Evolving UML Models,” Software Evolution with

UML and XML, pp. 1-31, 2005.

[18] Mohan K., Xu P., Cao L., and Ramesh B.,

“Improving Change Management in Software

Development: Integrating Traceability and

Software Configuration Management,” Decision

Support Systems, vol. 45, no. 4, pp. 922-936,

2008.

[19] Niepostyn, S., “The Sufficient Criteria for

Consistent Modelling of the Use Case Realization

Diagrams with a New Functional-Structure-

Behaviour Uml Diagram,” Przegląd

Elektrotechniczny Sigma NOT, vol. 2, pp. 31-35,

2015.

[20] Puissant J., Resolving Inconsistencies in Model-

Driven Engineering using Automated Planning,

PhD Thesis, Universit de Mons, 2012.

[21] Rajabi B. and Lee S., “A Study of The Software

Tools Capabilities in Translating UML Models to

PN Models,” International Journal of Intelligent

Information Technology Application, vol. 2, no. 5,

pp. 224-228, 2009.

[22] Rajabi B. and Lee S., “Consistent Integration

Between Object Oriented and Coloured Petri Nets

Models,” The International Arab Journal of

Information Technology, vol. 11, no. 4, pp. 406-

415, 2014.

[23] Sapna P. and Mohanty H., “Ensuring Consistency

in Relational Repository of UML Models,” in

Proceedings of 10th International Conference on

Information Technology, Orissa, pp. 217-222,

2007.

[24] Sharaff A., “A Methodology for Validation of

OCL Constraints Using Coloured Petri Nets,”

International Journal of Scientific and

Engineering Research, vol. 4, no. 1, 2013.

[25] Shinkawa Y., “Inter-Model Consistency in Uml

Based on Cpn Formalism,” in Proceedings of 13th

Asia Pacific Software Engineering Conference,

Kanpur, pp. 411-418, 2006.

[26] Westergaard M. and Verbeek H., CPN Tools.

Available from: http://cpntools.org/ Last Visited,

2013.

http://cpntools.org/

730 The International Arab Journal of Information Technology, Vol. 16, No. 4, July 2019

Bassam Rajabi received his PhD

degree in Software Engineering from

University of Malaya, Malaysia.

From 2001 to 2004, he was a

Research and Teaching Assistant

with the Computer Science

Department, Alquds University-

Palestine. He was a Lecturer and Dean Assistant for

Administrative Affairs from 2005 to 2017 with Wajdi

University College of Technology-Palestine. Currently,

he is the dean of Ibrahimieh Community College. His

areas of interest are Software Design and Modeling

Techniques.

Sai Peck Lee is a professor at the

Department of Software Engineering,

University of Malaya. She obtained

her Ph.D. degree in Computer

Science from Université Paris 1

Panthéon-Sorbonne. Her current

research interests include Object-

Oriented Techniques and CASE tools, Software Reuse,

Requirements Engineering and software quality. She is

a member of IEEE and currently in several experts

review panels, both locally and internationally.

