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1. Introduction 

Key agreement is an important primitive for building 

secure communication channels over the insecure 

networks. It allows two or more users to securely set up 

a shared secret key for their communications. The first 

practical key agreement solution is the well-known 

Diffie-Hellman protocol [7]. However, this protocol 

suffers from the man-in-the-middle attack because it 

does not provide authentication to the participants. 

Hence, the research in this field has been concentrating 

on the Authenticated Key Agreement (AKA) protocols 

that offer the authentication mechanism.  

Over the years, numerous AKA protocols have been 

proposed. However, most of them were over either 

conventional Public-Key Cryptography (PKC) [3, 10, 

12, 31] or Identity-Based Cryptography (IBC) [6, 26, 

28]. It is well recognized that conventional PKC suffers 

from the certificate management problem and IBC has 

the key escrow problem. To eliminate the key escrow 

problem, Al-Riyami and Paterson [1] brought forth 

certificateless AKA (CL-AKA) protocol by extending 

AKA protocol into certificateless PKC. In their 

proposal, every user independently generates a private 

key by combining a partial private key from a partially 

trusted authority named Key Generation Center (KGC) 

with a secret value selected by the user himself. In this 

way, CL-AKA protocol solves the key escrow problem. 

Since its advent, several CL-AKA protocols have been 

presented in recent years, e.g., [19, 27, 30, 34]. 

However, as the KGC should send partial private keys 

to users over secure channels, the application of CL-

AKA protocols in public networks may be limited. 

To fill the gap between IBC and conventional PKC, 

Gentry [9] introduced the notion of Certificate-Based 

Cryptography (CBC) in Eurocrypt’03. In CBC, each 

user generates a public/private key pair and sends the 

public key to a trusted Certificate Authority (CA) to 

request a certificate. The certificate is then pushed to 

its owner and acts as a partial decryption or signing 

key. This functionality supplies an implicit certificate 

property so that each user needs to use both his 

certificate and private key to execute some 

cryptographic operations (such as decryption and 

signing), while other users needn’t obtain a certificate 

from the CA for the authenticity of his public key. 

Therefore, CBC simplifies the certificate revocation 

problem in conventional PKC. Furthermore, CBC 

eliminates both key escrow problem (as the CA does 

not know any user’s private key) and key distribution 

problem (as the CA can send the certificates publicly). 

In recent years, CBC has aroused great interest in the 

academia and numerous certificate-based schemes 

have been proposed, including many encryption 

schemes [8, 14, 21, 23, 32, 33] and signature schemes 

[11, 13, 15, 16, 17, 20, 24]. As far as we know, there 

exist three Certificate-Based AKA (CB-AKA) 

protocols [18, 25, 29] in the literature so far. The first 

CB-AKA protocol was proposed by Wang and Cao 

[29]. Their protocol was constructed by combining 

Gentry’s certificate-based encryption scheme [9] with 

Smart’s AKA protocol [28]. However, Lim et al. [18] 

pointed out that Wang-Cao’s protocol is insecure 

against leakage of ephemeral secrets. To improve 

security, they proposed an improved CB-AKA 

protocol from Wang-Cao’s protocol and claimed that 

it has resistance to all non-trivial secret exposures. 
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However, no formal security proof is given in [18]. To 

construct a provably secure CB-AKA protocol, Luo et 

al. [25] presented a security model for CB-AKA 

protocols. They then proposed a new CB-AKA protocol 

and proved its security in the random oracle model [2]. 

The main contribution of this paper is that we 

develop a new CB-AKA protocol that withstands the 

Public Key Replacement (PKR) attack. The PKR attack 

was first introduced by Al-Riyami and Paterson [1]. It 

refers to that an adversary replaces a user’s public key 

and deceives other parties to perform cryptographic 

operations (such as ciphertext decryption, signature 

verification) using a false public key. One may think 

that this attack does not exist in CBC due to the use of 

the certificate. However, it does. As introduced above, 

CBC has an implicit certificate property so that each 

user need not be concerned about the status of other 

users’ certificates. Thus, an adversary may successfully 

launch the PKR attack against an ill-designed scheme 

or protocol in CBC setting. So far, several certificate-

based schemes have been pointed out to be insecure 

under this attack [13, 22]. We notice that all the 

previous CB-AKA protocols [18, 25, 29] didn’t 

consider the PKR attack. Our cryptanalysis shows that 

none of them is secure under this attack. Therefore, it is 

fair to say that devising a secure CB-AKA protocol 

remains an unsolved problem until now.  

In this paper, we first show that all the previous three 

CB-AKA protocols [18, 25, 29] are insecure against 

PKR attacks. To overcome the security weaknesses in 

these protocols, we design a new CB-AKA protocol 

that can provide resistance to the AKA attack. Under 

the hardness of the discrete logarithm problem, the 

computational Diffie-Hellman problem and the bilinear 

Diffie-Hellman problem, the proposed protocol is 

proven secure in the random oracle model. Compared 

with the previous CB-AKA protocols, it enjoys better 

computational performance while offering stronger 

security guarantee. 

2. Preliminaries 

2.1.  Notations 

The following notations are used throughout the paper. 

 q : A large prime number. 

 *

qZ : The field of integer numbers modulo q. 

 1 2,G G : Two cyclic groups of same order q. 

 (,)e : A bilinear pairing from G1×G1 to G2. 

 P : The generator of the group G1. 

 , , ,U U U UID PK SK Cert : A user U’s identity, public key, 

private key and certificate. 

 A, B: The initiator and the responder of the protocol; 

 KAB, KBA: The shared session keys generated by A 

and B respectively. 

 : An adversary (either a Type 1 adversary 1 or a 

Type 2 adversary 2). 

 ,

n

i j : The n-th protocol session, in which i and j are 

the initiator and the responder respectively.  

 , ,,n n

j i i jM M : The incoming message and outgoing 

message in ,

n

i j . 

 
1 1 2 3, , ,H H H H : The cryptographic hash functions. 

 kdf: The key derivation function. 

 {0,1}*: The space of arbitrary-length binary strings. 

 {0,1}l: The space of l-bit binary strings. 

 : The null symbol. 

2.2. Bilinear Pairing and Complexity Problems 

A bilinear pairing is a map e: G1  G1  G2 that 

satisfies the following properties: 

 Bilinearity: For any U, V  G1 and *, qx y Z , e(xU, 

yV) = e(U, V)xy. 

 Non-degeneracy: There exists U, V  G1 such that 

e(U, V) 
2

1G , where
2

1G denotes the identity element 

in G2. 

 Computability: For any U, V  G1, e(U, V) can be 

efficiently computed. 

The security of our protocol is based on the following 

three complexity problems:  

 Definition 1. the discrete logarithm (DL) problem 

in G1 is, given a generator P of G1 and an element 

Q  G1, to find an integer *

qx Z such that xP = Q. 

 Definition 2. the computational Diffie-Hellman 

(CDH) problem in G1 is, given a tuple (P, xP, yP) 

 3

1( )G for unknown *, qx y Z , to compute xyP. 

 Definition 3. [4]. the bilinear Diffie-Hellman 

(BDH) problem in (G1, G2) is, given a tuple (P, xP, 

yP, zP)  4

1( )G for unknown *, , qx y z Z , to compute 

e(P, P)xyz. 

3. Modelling CB-AKA Protocols 

A CB-AKA protocol consists of four algorithms:  

 Setup: This algorithm takes a security parameter k 

as input and generates CA’s master key msk and a 

list of public parameters params.  

 User Key Gen: This algorithm takes params as 

input and returns a pair of public key and private 

key (PKU, SKU) for a user U with identity IDU. 

 Cert Gen: This algorithm takes params, msk, and a 

user U’s identity IDU and public key PKU as input 

and returns a certificate CertU.  

 Key Agreement: This interactive algorithm, which 

involves two participants-an initiator A and a 

responder B, takes params, an initiator A’s identity 
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IDA, public key PKA, private key SKA and certificate 

CertA and a responder B’s identity IDB, public key 

PKB, private key SKB and certificate CertB as input. 

If the protocol does not fail, A and B will generate a 

shared session key KAB = KBA.  

3.1. Security Properties for CB-AKA Protocols 

A CB-AKA protocol should satisfy the following 

security properties [6, 25]. 

 Known-key security: Even if some of the session 

keys of a given protocol are leaked, an adversary 

cannot determine other session keys. 

 Unknown key-share resilience: An adversary cannot 

force a participant to share a session key with other 

participants when it is actually sharing with a 

different participant. 

 Basic impersonation attacks resilience: An 

adversary cannot impersonate a participant if it does 

not know his/her private key. 

 Key compromise impersonation resilience: Even if a 

participant A’s private key is leaked, an adversary is 

able to impersonate the participant A to any other 

participant but cannot impersonate others to the 

participant A.  

 Forward secrecy: Even if the private keys of one or 

more participants are leaked, an adversary cannot 

determine previously established session keys. This 

security property includes two types:  

1. Partial forward secrecy: Even if some but not all 

participants’ private keys are leaked, forward 

secrecy should be preserved;  

2. Perfect forward secrecy: Even if all participants’ 

private keys are leaked, forward secrecy should be 

preserved.  

 CA forward secrecy: Even if an adversary is armed 

with the master key, forward secrecy should be 

preserved. 

 Leakage of ephemeral secrets resilience: Even if the 

ephemeral secrets of a given protocol run is leaked, 

an adversary cannot derive the corresponding 

session key. 

 Key control: An adversary cannot force the 

participants to accept a pre-selected value as the 

current session key. 

3.2. Security Model for CB-AKA Protocols 

Next, we present a security model for CB-AKA 

protocols secure against PKR attacks. 

In the following description, ,

n

i j is the oracle that 

represents the n-th protocol session, in which i and j are 

the initiator and the responder respectively. Let SID= 

(IDi, IDj, ,

n

i jM , ,

n

j iM ) be the session identity of ,

n

i j , 

where ,

n

j iM and ,

n

i jM denote the incoming message and 

outgoing message respectively. Two oracles ,

n

i j and 

,

m

j i  are said to have a matching conversation with 

each other if they have the same session identity SID. 

A CB-AKA protocol should be secure against two 

different adversaries [25]: Type 1 adversary 1 and 

Type 2 adversary 2. 1 models an uncertified user 

who can replace any user’s public key, but does not 

know the CA’s master key. 2 models a malicious CA 

who controls the master key, but cannot replace public 

keys. The security of CB-AKA protocols can be 

defined by the following adversarial game that is 

played between an adversary   {1, 2} and a 

challenger.  

1. Setup. The challenger simulates the algorithm Setup 

(k) to produce (msk, params) and sends params to 

.  is also given msk if it is a Type 2 adversary. 

2. Phase 1. In this phase,  can adaptively make the 

following oracle queries. 

 Create (IDi): On input an identity IDi, the 

challenger generates (SKi, PKi) and then outputs 

PKi. We assume that an identity can be responded 

by other oracles only if it has been created. 

 Replace Public Key (IDi, iPK  ): On input an identity 

IDi and a value iPK  , the challenger sets iPK  as the 

new public key of IDi. This oracle is merely queried 

by the Type 1 adversary. 

 Certificate (IDi): On input an identity IDi, the 

challenger outputs a certificate Certi. This oracle is 

merely queried by the Type 1 adversary.  

 Corrupt(IDi): On input an identity IDi, the 

challenger outputs a private key SKi.  

 Send( ,

n

i j , M): On input an oracle ,

n

i j and a 

message M, the challenger initiates a new 

session ,

n

i j if M = λ; otherwise it responds 

according to the description of the protocol. If the 

first message received by an oracle is λ, the oracle 

is called an initiator; otherwise it is a responder 

oracle.  

 Reveal( ,

n

i j ): On input an oracle ,

n

i j , the 

challenger outputs the session key held by ,

n

i j .  

3. Test.  asks a single test query on a fresh 

oracle ,

T

I J  (see Definition 4). To respond, the 

challenger selects a random bit   {0, 1}. If  = 0, 

it outputs the session key held by ,

T

I J ; otherwise, it 

outputs a random key chosen from the key space. 

4. Phase 2. As in Phase 1,  continues to issue a 

sequence of adaptive queries.  



A Certificate-Based AKA Protocol Secure Against Public Key Replacement Attacks                                                                757 

 

5. Guess. Finally,  outputs a guess bit {0,1} .  

wins the game if and only if    and the following 

restrictions are satisfied: 

1.  cannot make Reveal queries on ,

T

I J and its 

matching conversation. 

2.   cannot make a query Certificate(IDJ) if it is a 

Type 1 adversary. 

3.  cannot make a query Corrupt(IDJ) if it is a Type 2 

adversary. ’s advantage is defined to be Adv() = 

|Pr[    ]-1/2|. 

 Definition 4. an oracle
,

T

I J is said to be fresh if  

1. It has established a session key.  

2. It has not been revealed. 

3. No matching conversation of ,

T

I J has been revealed.  

4. The adversary  has never make a query Certificate 

(IDJ) if it is a Type 1 adversary. 

5.  The adversary  has never make a query Corrupt 

(IDJ) if it is a Type 2 adversary.  

 Definition 5. A CB-AKA protocol is a secure 

protocol if  

1. For any polynomial-time adversary , the advantage 

Adv() is negligible.  

2. For any two oracles ,

n

i j and ,

m

j i in the present of an 

adversary, both oracles always agree on the same 

session key that is distributed uniformly at random. 

3. Remark 1. The above definition allows the Type 1 

adversary to request both the private key and 

certificate of the participant I and the Type 2 

adversary to request the private key of the 

participant I. Therefore, it covers Basic 

impersonation attacks resilience, Key-compromise 

impersonation resilience, Partial forward secrecy and 

CA forward secrecy. Furthermore, similarly to [6], if 

a CB-AKA protocol satisfies Definition 5, it 

achieves Known-key security, Unknown key-share 

resilience and Key control. 

4. Cryptanalysis of the Previous CB-AKA 

Protocols 

In the previous three CB-AKA protocols [18, 25, 29], 

the CA’s master key and master public key are *

qs Z  

and Ppub = sP respectively. The notations {G1, G2, e, q, 

P} is defined as in section 2. In addtion, two hash 

functions and a key derivation function are defined as 

H1: G1  {0,1}*  G1, 1H  : {0,1}*G1 G1, kdf : {0,1}* 

 {0,1}l, where l  N denotes the bit-length of the 

session key. Table 1 summarizes the user parameters 

for each protocol, in which *

U qx Z and dataU 

respectively denotes a string which includes the user 

U’s identity IDU and public key PKU. 

Table 1. Parameters for user U. 

Protocols PKU SKU CertU 

Wang and Cao’s 

[29] 
xUP xU 1 ,( )pub UsH P data  

Lim et al. [18] xUP xU 1 ,( )pub UsH P data  

Luo et al. [25] xUPpub xU  1 ,U Us IDH PK  

4.1. Wang-Cao’s CB-AKA Protocol 

In Wang-Cao’s protocol [29], Alice (A) and Bob (B) 

agree on a session key as follows. 

1. Alice chooses a random value *

qa Z and sends TA = 

aP to Bob. 

2. Bob chooses a random value *

qb Z and sends TB = 

bP to Alice. 

3. Alice computes 1( , )B pub BQ H P data , and then 

1
( , )pub B BA e P PKK aQ  and

2
( , )A B Ae T SK  , 

where SA = CertA + SKAQA = (s + SKA)QA. 

4. Bob computes 1( ),A pub AQ H P data , and then 

1
( , )pub A AB e P PKK bQ  and

2
( , )B A Be T SK  , 

where SB = CertB + SKBQB = (s + SKB)QB. 

5. Alice and Bob respectively compute the shared 

session keys as 
1 2

||( B || || || )BA AAB KK kdf KA aT , 

2 1
||( || || )|| ABA BB KK kdf A B bTK . 

 Attack. Wang-Cao’s protocol is vulnerable to a 

basic impersonation attack. Assume that an 

adversary Eve has replaced Bob’s public key PKB 

with *

B pubPK P P   , where *

qZ  . She 

impersonates Bob by choosing a random 

value *

qb Z and sends TB = bP to Alice. Alice 

computes
1AK = e(Ppub + *

BPK , *

BaQ ) = *,( )BAe T Q , 

2AK  = e(TB, SA) = e(Ppub + PKA, bQA), where *

BQ = 

*

1 ,( )Bpub dataH P . It then derives the session 

key ABK =
1

||( || ||Akdf A B K
2

|| )A BK aT . Because 

Eve knows both b and , she can 

compute
1AK ,

2 1A BK K  and aTB = bTA, and thus the 

session key KAB. Therefore, it succeeds in 

impersonating Bob to establish a session key with 

Alice. 

4.2. Lim et al. [18] CB-AKA Protocol 

To resist leakage of ephemeral secret keys, Lim et al. 

[18] modified Wang-Cao’s protocol by incorporating 

SKASKBP into the session key. In their protocol, Alice 

(A) and Bob (B) compute the session key as follows: 
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1 2
( || || || || || )AB B BA AAK kdf A B aT SKK K PK ,

2 1
( |||| || || )|| B BBA A B AK kdf A B bT SKK K PK . 

 Attack. Lim et al. [18] claimed that their protocol has 

resistance to all non-trivial secret exposures. 

However, it is insecure against key compromise 

impersonation attacks. The attack is almost as same 

as the one against Wang-Cao’s protocol. The only 

difference is that Eve now is equipped with Alice’s 

private key SKA. Assume that Eve has replaced Bob’s 

public key PKB with *

BPK pubP P   , 

where *

qZ  . Then Alice will compute the session 

key KAB =
1 2

( || || ||A Akdf B K KA  *|| || )B BAaT S PKK . 

Because Eve knows SKA, she can 

compute *

BASK PK and then KAB. Therefore, Eve is 

able to impersonate Bob to establish a session with 

Alice. 

4.3. Luo et al. [25] CB-AKA Protocol 

In Luo et al. [25] protocol, Alice (A) and Bob (B) 

establish a session key as follows. 

1. Alice picks a random value *

qa Z and sends TA = aP 

to Bob. 

2. Bob picks a random value *

qb Z and sends TB = bP 

to Alice. 

3. Alice respetively computes
1AK ,( )B Ae T S ,

2AK = 

e(PKB, QB)a and
3

|| || ||B A BA A B aT SKK PK , where 

SA = SKACertA = SKAsQA and 1( , )B B BQ IDH PK .  

4. Bob respetively computes
1

( , )B A Be T SK  , 
2BK = 

e(PKA, QA)b and
3

|| || ||A B AB A B bT SKK PK , where 

SB = SKBCertB = SKBsQB and 1 ,( )A A AQ IDH PK . 

5. Alice and Bob compute respectively the shared 

session keys as 

1 2 3
( || || || || )AB A B A A AK kdf T K KT K ,

2 1 3
( || || || || )BA A B B B BK kdf T K KT K . 

 Attack. Luo et al.’s [25] protocol is vulnerable to a 

key compromise impersonation attack. Assume that 

Eve has replaced Bob’s public key PKB 

with *

BPK P and also corrupts Alice’s private key 

SKA, where *

qZ  . She impersonates Bob by 

choosing a random value *

qb Z and sends TB = bP to 

Alice. Alice computes 

1
,( )BA ATK Se ,

2

* *( , )A B

a

BK PK Qe = *,( )BAe T Q ,

3

*|| || ||A B A BA B aT SKK PK = || || AA B bT
*|| A BK PKS  , 

where * *

1( , )B B BIDQ H PK . It then obtains the 

session key
1 2 3

( || || || || )AB A B A A AK kdf T K KT K . 

Because Eve knows b,  and SKA, she can 

compute
1AK ~

3AK and then KAB. Therefore, Eve can 

impersonate Bob to establish a session with Alice. 

5. The Proposed CB-AKA Protocol 

5.1. Description of the Protocol 

Our protocol consists of the following four algorithms: 

 Setup: Given a security parameter k and {G1, G2, e, 

q, P} as defined in Section 2, the CA randomly 

chooses *

qs Z as its master key msk and computes 

Ppub = sP. It then chooses three hash functions H1: 

{0,1}*  G1  G1, H2: {0,1}* × {0,1}* × G1 

× *

qZ  *

qZ , H3: {0,1}* × {0,1}* × 6

1G ×G2 × 3

1G  

{0,1}k and publishes params = {k, G1, G2, e, q, P, 

Ppub, H1, H2, H3}. 

 User Key Gen: Given the public parameters 

params, a user U randomly chooses *

U qx Z as his 

private key SKU and computes his public key PKU = 

xUP. 

 Cert Gen: Given the public parameters params, the 

master key msk = s and a user U’s identity IDU and 

public key PKU, the CA computes QU = H1(IDU, 

PKU) and then the user U’s certificate CertU = sQU.  

 Key Agreement: Participants A and B run the 

protocol in the following steps: 

1. A randomly chooses *

qa Z , computes AR aP  

and 2( , , , )A A B A AW H ID ID Cert SK P , sends (IDA, 

RA, WA) to B.  

2. Once receiving (IDA, RA, WA), B randomly 

chooses *

qb Z , computes 
BR bP  and 

BW = 2H ( AID , BID , BCert , BSK ) P , 

sends ( , , )B B BID R W to A. 

3. A respectively computes  

1
( , )A B B pub AK e R Q aP Cert   , 

2 2 ( , , , )A A B A B A A BK SK PK H ID ID Cert SK W   , 

3A B A BK aPK SK R  and
4A BK aR . 

B respectively computes  

1
( , )B A A pub BK e R Q bP Cert   ,

2 2 ( , , , )B B A A B B B AK SK PK H ID ID Cert SK W   , 

3B A B AK bPK SK R  and
4B AK bR . 

4. A and B could respectively compute their shared 

session key as 

3( , , , , , , , ,AB A B A B A B A BK H ID ID PK PK R R W W  

1 2 3 4
, , , )A A A AK K K K , 

3( , , , , , , , ,BA A B A B A B A BK H ID ID PK PK R R W W

1 2 3 4
, , , )B B B BK K K K . 

 

 

http://dict.youdao.com/w/negotiate/
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5.2. Security Analysis  

 Lemma 1. Assuming that H1 ~ H3 are three random 

oracles and 1 is a Type 1 adversary who can break 

our protocol with advantage . Then there must exist 

an algorithm  to solve the BDH problem with 

advantage
3

2

c s Hq q q
   , 

where
cq ,

3Hq and
sq denote the maximal number of 

1’s queries to the oracle Create, 1’s queries to the 

random oracle H3 and sessions that each participant 

may participate in respectively. 

 Proof. Assuming that is given a BDH problem 

instance (P, aP, bP, cP). To compute ( , )abce P P ,  

interacts with 1 as follows: 

In the setup phase,  sets pubP aP and sends the public 

parameters params = {k, q, e, G1, G2, P, Ppub, H1, H2, 

H3} to 1, where H1 ~ H3 are random oracles. 

Furthermore, it randomly picks three distinct indices I, 

J [1,
cq ] and T [1,

sq ]. 

During the query-answer phase,  responds 1’s 

queries as below: 

H1( iID ,
iPK ): maintains a list L1 consisting of 

tuples ( , , )i i iID u Q . On receiving such a query,  

answers
iQ if ( , , )i i iID u Q is on L1. Else if i JID ID , it 

sets iQ = bP , puts a new tuple ( , , )i iID Q in L1 and 

returns
iQ . Otherwise, it randomly chooses *

i qu Z , 

computes i iQ u P , puts a new tuple ( , , )i i iID u Q in L1 

and returns iQ .  

H2( iID , jID ,
iCert , iSK ): maintains a list L2 of 

tuples ( iID , jID , iCert , iSK , ,

n

i jw , ,

n

i jW ). On receiving 

such a query, it answers ,

n

i jw if ( iID , jID ,
iCert , iSK , 

,

n

i jw , ,

n

i jW ) is in L2. Otherwise, it randomly chooses 

,

n

i jw *

qZ , computes , ,

n n

i j i jW w P , puts a new tuple 

( iID , jID , iCert , iSK , ,

n

i jw , ,

n

i jW ) in L2 and returns ,

n

i jw . 

H3(
A

iID , B

iID , A

iPK , B

iPK , A

iR , B

iR , A

iW , B

iW ,
1i

K , 

2i
K ,

3i
K ,

4i
K ): maintains a list 3L consisting of tuples 

( A

iID , B

iID , A

iPK , B

iPK , A

iR , B

iR , A

iW , B

iW ,
1i

K ,
2i

K , 

3i
K ,

4i
K , ih ), where the superscript “A” and “B” 

respectively denote the message sender and the 

message receiver. On receiving such a query, if 

( A

iID , B

iID , A

iPK , B

iPK , A

iR , B

iR , A

iW  , B

iW ,
1i

K ,
2i

K , 

3i
K ,

4i
K , ih ) is on 3L , it returns ih as the answer. 

Otherwise,  does as below: 

1. If there exists a tuple ( ,

n

i j , IDi, IDj, PKi, PKj, 

,

n

i jw , ,

n

i jr , ,

n

i jW , ,

n

j iW , ,

n

i jR , ,

n

j iR , ,

n

i jK ) on the list
sL  

(maintained by the oracle Send) such that ,

n

i jK ≠⊥ , 

i JID ID and  

 ,

n

i j is an initiator and A

i iID ID , B

i jID ID , A

iPK  

=
iPK , B

iPK = jPK , A

iR = ,R n

i j , B

iR = ,

n

j iR , ,

A n

i i jW W  

, B

iW = ,

n

j iW ,
1 , ,( , )n n

i j i j i j pub iK e R Q r P Cert   ,
2i

K = 

,2 ( , , , ) n

i j i j i i j iSK PK ID ID Ce t K WH r S ,
3i

K = 

,

n

i j jr PK  ,

n

i j iSK R  ,
4 , ,

n n

i i j j iK r R , or 

 ,

n

i j is a responder and A

i jID ID , B

i iID ID  , A

iPK  

= jPK , B

iPK = iPK , A

iR = ,

n

j iR , B

iR = ,

n

i jR , A

iW ,

n

j iW ,

B

iW = ,

n

i jW ,
1 , ,( , )n n

i j i j i j pub iK e R Q r P Cert   , 
2i

K   

,2 ( , , , ) n

i j i j i i i jSK PK ID ID Ce t K WH r S ,
3i

K   

,

n

i j jr PK  ,

n

i j iSK R  ,
4 , ,

n n

i i j j iK r R  , 

then checks whether
4, ,( , ) ( , )n n

i j j i ie R R e K P holds. If 

it holds,  sets ,

n

i i jh K , puts a new tuple ( A

iID , B

iID , 

A

iPK , B

iPK , A

iR , B

iR , A

iW , B

iW ,
1i

K ,
2i

K ,
3i

K ,
4i

K , ih ) 

in
3L and returns

ih as the answer. Else, it randomly 

chooses {0,1}k

ih  , puts a new tuple ( A

iID , B

iID , A

iPK , 
B

iPK , A

iR , B

iR , A

iW , B

iW ,
1i

K ,
2i

K ,
3i

K ,
4i

K , ih ) in the 

list 3L and returns ih . 

2. Else if there is a tuple ( ,

n

i j , IDi, IDj, PKi, PKj, 

,

n

i jw , ,

n

i jr , ,

n

i jW , ,

n

j iW , ,

n

i jR , ,

n

j iR , ,

n

i jK ) on sL such that 

,

n

i jK ≠⊥ , i JID ID and  

 ,

n

i j is an initiator and A

i iID ID , B

i jID ID , A

iPK  

= iPK , B

iPK = jPK , A

iR = ,

n

i jR , B

iR = ,

n

j iR , ,

A n

i i jW W  

, B

iW  = ,

n

j iW ,
1i

K  = , ,( , )n n

j i j i j pub ie R Q r P Cert  ,
2i

K   

,2 ( , , , ) n

i j i j i i i jSK PK ID ID Ce t K WH r S ,
3i

K 

,

n

i j jr PK  ,

n

i j iSK R ,
4 , ,

n n

i i j j iK r R , or 

 ,

n

i j is a responder and A

i jID ID , B

i iID ID  , A

iPK  

= jPK , B

iPK = iPK , A

iR = ,

n

j iR , B

iR = ,R n

i j , A

iW ,

n

j iW ,

B

iW = ,

n

i jW ,
1 , ,( , )n n

i j i j i j pub iK e R Q r P Cert   ,
2i

K   

,2 ( , , , ) n

i j i j i i i jSK PK ID ID Ce t K WH r S ,
3i

K 

,

n

i j jr PK  ,

n

i j iSK R  ,
4 , ,

n n

i i j j iK r R  , 

then sets ih = ,

n

i jK , puts a new tuple ( A

iID , B

iID , A

iPK , 

B

iPK , A

iR , B

iR , A

iW , B

iW ,
1i

K ,
2i

K , 
3i

K ,
4i

K , ih ) in the 

list 3L and returns ih . 
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3. Otherwise, randomly chooses {0,1}k

ih  , puts a 

new tuple ( A

iID , B

iID , A

iPK , B

iPK , A

iR , B

iR , A

iW , 
B

iW ,
1i

K ,
2i

K ,
3i

K ,
4i

K ,
ih ) in 

3L and returns
ih . 

Create ( IDi):  maintains a list Luser consisting of tuples 

(IDi,SKi,PKi). On receiving such a query, returns PKi 

if (IDi,SKi,PKi) is already in Luser. Otherwise, 

itrandomly chooses *

i qx Z as a private key
iSK , 

computes a public key PKi=xiP, puts a new tuple 

(IDi,SKi,PKi) in Luser and then returns PKi. 

Certificate (IDi): On receiving such a query, aborts 

if IDi=IDJ. Otherwise, it simulates a query H1(IDi,PKi) 

to get a tuple ( , , )i i iID u Q , computes Certi= uiPPub and 

then outputs Certi. 

Corrupt (IDi): On receiving such a query, looks up 

the corresponding tuple (IDi,SKi,PKi) in Luser and 

returns SKi. 

Replace Public Key(
iID , iPK  ): On receiving such a 

query, looks up the corresponding tuple (IDi,SKi,PKi) 

in Luser and replaces the tuple with ( , , )i iID PK . 

Send( ,

n

i j , M): maintains a list
sL consisting of 

tuples ( ,

n

i j , IDi, IDj, PKi, PKj, ,

n

i jw , ,

n

i jr , ,

n

i jW , ,

n

j iW , ,

n

i jR , 

,

n

j iR , ,

n

i jK ), where the superscript “n” denotes the n-th 

protocol session. On receiving a query Send( ,

n

i j , M) 

(if M = (M1, M2)  λ, sets ,

n

j iR = M1, ,

n

j iW  = M2), 

returns , ,( , )n n

i j i jR W as the answer if a tuple ( ,

n

i j , IDi, 

IDj, PKi, PKj, ,

n

i jw , ,

n

i jr , ,

n

i jW , ,

n

j iW , ,

n

i jR , ,

n

j iR , ,

n

i jK ) is 

already in sL . Otherwise,  obtains a tuple ( iID , jID , 

iCert , iSK , ,

n

i jw , ,

n

i jW ) in
2L  (after querying H2( iID , 

jID , 
iCert , iSK ) if necessary) and does as follows: 

1. If , ,

n T

i j I J  , sets , ,

n n

i j i jK r  , ,

n

i jR cP  , ,

n

j iR  = 

M1 and ,

n

j iW = M2. It then puts a new tuple ( ,

n

i j , IDi, 

IDj, PKi, PKj, ,

n

i jw , ,

n

i jr , ,

n

i jW , ,

n

j iW , ,

n

i jR , ,

n

j iR , ,

n

i jK ) 

in sL and returns , ,( , )n n

i j i jR W . 

2. Otherwise,  randomly chooses , {0,1}n k

i jK  , 

*

,

n

i j qr Z  , sets , ,

n n

i j i jR r P , ,

n

j iR = M1 and ,

n

j iW = M2. It 

then puts a new tuple ( ,

n

i j , IDi, IDj, PKi, PKj, ,

n

i jw , 

,

n

i jr , ,

n

i jW , ,

n

j iW , ,

n

i jR , ,

n

j iR , ,

n

i jK ) in sL and returns 

, ,( , )n n

i j i jR W . 

Reveal( ,

n

i j ): On receiving such a query, first looks 

up a tuple ( ,

n

i j , IDi, IDj, PKi, PKj, ,

n

i jw , ,

n

i jr , ,

n

i jW , 

,

n

j iW , ,

n

i jR , ,

n

j iR , ,

n

i jK ) in sL . If ,

n

i jK ≠ , returns ,

n

i jK to 

1. Otherwise,  looks up a tuple ( , , )i i iID SK PK  

in
userL and does as follows:  

1. If , ,

n T

i j I J  or ,

n

i j is a matching session of
,

T

I J , 

aborts. 

2. Else if
i JID ID , 

 ,

n

i j is an initiator and a tuple ( A

iID , B

iID , A

iPK , 

B

iPK , A

iR , B

iR , A

iW , B

iW ,
1i

K ,
2i

K ,
3i

K ,
4i

K ,
ih ) can 

be found in
3L such that

iID = A

iID , jID = B

iID ,
iPK = 

A

iPK , jPK = B

iPK , ,

n

i jR = A

iR , ,

n

j iR = B

iR , A

,

n

i j iW W  

, ,

n

j iW  = B

iW ,
1 , ,= ( , )n n

i j i j i j pub iK e R Q r P Cert   , 
2
=iK  

2 ,+ ( , , , )j

n

i j i i i j iSK PK ID Cert SK WH ID ,
3 ,

n

i i j jK r PK

,

n

i j iSK R ,
4i

K  = , ,

n n

i j j ir R , or  

 ,

n

i j is a responder and a tuple ( A

iID , B

iID , A

iPK , 

B

iPK , A

iR , B

iR , A

iW , B

iW ,
1i

K ,
2i

K ,
3i

K ,
4i

K ,
ih ) can 

be found in
3L such that jID = A

iID ,
iID = B

iID , jPK = 

A

iPK , iPK = B

iPK , ,

n

j iR = A

iR , ,

n

i jR = B

iR , ,

n A

j i iW W  

, ,

n

i jW  = B

iW ,
1 , ,= ( , )n n

i j i j i j pub iK e R Q r P Cert  ,
2
=iK  

,2+ ( , , , ) n

i j i j i i j iHSK PK ID ID Cert SK W ,
3i

K  ,

n

i j jr PK  

,

n

i j iSK R  ,
4i

K  = , ,

n n

i j j ir R ,  

Then checks whether
1 ,( ,n

i j i jK e R Q  ,

n

i j pubr P   

)iCert holds. If it holds,  sets ,

n

i jK ih and 

returns ,

n

i jK .  

3. Else if i JID ID , 

 ,

n

i j is an initiator and a tuple ( A

iID , B

iID , A

iPK , 

B

iPK , A

iR , B

iR , A

iW , B

iW ,
1i

K ,
2i

K ,
3i

K ,
4i

K , ih ) can 

be found in
3L such that

iID = A

iID , jID = B

iID , iPK = 

A

iPK , jPK = B

iPK , ,

n

i jR = A

iR , ,

n

j iR = B

iR , A

,

n

i j iW W  

, ,

n

j iW  = B

iW ,
1i

K = , ,( , )n n

j i j i j pub ie R Q r P Cert  , 
2
=iK  

,2+ ( , , , ) n

i j i j i i j iHSK PK ID ID Cert SK W ,
3 ,

n

i i j jK r PK  

,

n

i j iSK R ,
4 , ,

n n

i i j j iK r R , sets ,

n

i jK = ih and returns 

,

n

i jK . 

 ,

n

i j is a responder and a tuple ( A

iID , B

iID , A

iPK , 

B

iPK , A

iR , B

iR , A

iW , B

iW ,
1i

K ,
2i

K ,
3i

K ,
4i

K , ih ) exists 

in 3L such that jID = A

iID , jID = B

iID , jPK  = A

iPK , 

iPK = B

iPK , ,

n

j iR = A

iR , ,

n

i jR = B

iR , A

,

n

j i iW W , ,

n

i jW = 

B

iW ,
1i

K = , ,( , )n n

j i j i j pub ie R Q r P Cert  , 

2
=iK i jSK PK  

,2+ ( , , , ) n

i j i i j iID ID Cert SK WH ,
3 ,

n

i i j jK r PK
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,

n

i j iSK R , 
4 , ,

n n

i i j j iK r R , sets
,

n

i jK =
ih and returns 

,

n

i jK . 

4. Otherwise, chooses a random , {0,1}n k

i jK  and 

returns ,

n

i jK to 1. 

In the test phase, 1 asks a Test query. If 1 does not 

query on the oracle
,

T

I J , then aborts. Otherwise, it 

outputs a random string {0,1}kx . 

In the guess phase, 1 returns a guess. Clearly, if 1 

can succeed with non-negligible advantage  , there 

must exist a tuple (
,

T

I J ,
IID ,

JID ,
IPK ,

JPK ,
,

T

I Jw ,⊥ , 

,

T

I JW , ,

T

J IW , cP , ,

T

J IR ,⊥ ) in sL . According to the above 

simulation, if ,

T

I J is an initiator, then a tuple 

( A

iID , B

iID , A

iPK , B

iPK , A

iR , B

iR , A

iW , B

iW ,
1i

K ,
2i

K , 

3i
K ,

4i
K ,

ih ) can be found in
3L such that A

iR  ,

T

I JR   

cP , B

iR = ,

T

J IR = M1 (if M is the received message, then 

M1 = ,

T

J IR ); else if ,

T

I J is a responder, then a tuple 

( A

iID , B

iID , A

iPK , B

iPK , A

iR , B

iR , A

iW , B

iW ,
1i

K ,
2i

K , 

3i
K ,

4i
K , ih ) can be found in

3L such that ,

B T

i I JR R   

cP , A

iR = ,

T

J IR = M1 (if M is the received message, then 

M1 = ,

T

J IR ). For both cases, we have that
1i

K   

1( , )J pub Ie Q PM c Cert  . It is easy to deduce that 

1i
K = 1( , )Ie bP acPM u aP   

= 1 1( , ) ( , ) ( , ) ( , )abc

I Ie P P e bP u aP e acP e uM aPM   

=
4 1( , ) ( , ) ( , ) ( , )abc

I i Ie P P e bP u aP e MK aP e u aP , 

where Iu can be retrieved from the tuple I I I( , , )ID u Q in 

the list L1. As  can compute Z = ( , )Ie bP u aP  

4 1( , ) ( , )i Ie K aP e u aPM , it can return
1
/iK Z as the 

solution to the given BDH problem. 

We now derive’s advantage in solving the BDH 

problem. From the above simulation,  fails if any of 

the following events occurs:  

1. E1: 1 does not ,

T

I J as the target oracle. 

2. E2: 1 makes a query Certificate( JID )  

3. E3: 1 makes a query Reveal( ,

T

I J ). We clearly have 

that Pr[E1]  21/( )c sq q as I, J  [1, cq ] and T  

[1, sq ]. In addition, as E1 implies E2  E3, we 

have that Pr [E1  E2  E3] 
3

2
1

c s Hq q q
. 

As  selects the correct tuple from
3L with 

probability
3

1/ Hq , its advantage in solving the given 

BDH problem is
3

2

c s Hq q q
   . 

 Lemma 2. Assuming that H1 ~ H3 are three random 

oracles and 2 is a Type 2 adversary who can break 

our proposed protocol with advantage  . Then 

there exists an algorithm to solve the CDH 

problem with advantage
3

2

c s Hq q q
   , 

where
cq ,

3Hq and
sq denote the maximal number of 

2’s queries to the oracle Create, 2’s queries to 

the random oracle H3 and sessions that each 

participant may participate in respectively. 

 Proof. As suming that is given a CDH problem 

instance ( , , )P aP bP . To compute abP , it interacts 

with 2 as follows: 

In the setup phase, chooses a random *

qs Z , 

computes pubP sP  and then sends params = {k, q, e, 

G1, G2, P, Ppub, H1, H2, H3} and msk = s to 2, where 

H1 ~ H3 are random oracles.Furthermore, it randomly 

picks three distinct indices I, J [1,
cq ] and T [1,

sq ]. 

During the query-answer phase, responds 2’s 

queries as below: 

H1( iID , iPK ): maintains a list L1 consisting of 

tuples ( , , )i i iID u Q . On receiving such a query, 

answers iQ if ( , , )i i iID u Q is already in L1. Otherwise, 

picks a random *

i qu Z , computes i iQ u P , puts a 

new tuple ( , , )i i iID u u P in L1 and returns iQ .  

Create(
iID ): answers this query as it does in 

Lemma 1, the only difference is that, if i JID ID , it 

sets the private key iSK  , iPK aP , puts a new 

tuple ( , , )i iID PK in userL and returns iPK .  

Corrupt( iID ): On receiving such a query, aborts 

if IDi=IDJ; otherwise, searches for the 

corresponding tuple ( , , )i i iID SK PK in userL and returns 

iSK . 

Send( ,

n

i j , M): answers this query as it does in 

Lemma 1, the only difference is that, if , ,

n T

i j I J  , it 

sets , ,

n n

i j i jK r  , ,

n

i jR bP , ,

n

j iR = M1 and ,

n

j iW = M2, 

puts a new tuple ( ,

n

i j , IDi, IDj, PKi, 

PKj, ,

n

i jw , ,

n

i jr , ,

n

i jW , ,

n

j iW , ,

n

i jR , ,

n

j iR , ,

n

i jK ) in sL and 

returns , ,( , )n n

i j i jR W . 
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answers 2’s queries to the oracles H2, H3 and 

Reveal as it does in Lemma 1 and we do not elaborate 

on them here. 

At the test phase, 2 asks a Test query. If 2 does 

not query on ,

T

I J , then aborts. Otherwise, it outputs 

a random string {0,1}kx . 

In the guess phase, 2 outputs a guess. If 2 can 

succeed with non-negligible advantage , then a tuple 

( ,

T

I J ,
IID ,

JID ,
IPK ,

JPK , ,

T

I Jw ,⊥ , ,

T

I JW , ,

T

J IW , bP , 

,

T

J IR ,⊥ ) can be found in
sL . If ,

T

I J is an initiator, then a 

tuple ( A

iID , B

iID , A

iPK , B

iPK , A

iR , B

iR , A

iW , B

iW ,
1i

K , 

2i
K ,

3i
K ,

4i
K , ih ) can be found in

3L such that B

iPK = 

JPK = aP , A

iR = ,

T

I JR = bP ; else if ,

T

I J is a responder 

and a tuple ( A

iID , B

iID , A

iPK , B

iPK , A

iR , B

iR , A

iW , B

iW , 

1i
K ,

2i
K ,

3i
K , 

4i
K , ih ) can be found in

3L such that 

A

i JPK PK aP  , B

iR = ,

T

I JR = bP . For both cases, 

returns
3 ,

T

i I J IK SK R  as a solution to the given CDH 

problem, where
ISK  can be retrieved from the tuple 

( , , )I I IID SK PK in
userL . It is easy to deduce that 

3 ,

T

i I J IabP K SK R  because
3i

K = , ,

T T

I J J I J Ir PK SK R . 

As in the proof of Lemma 1, we can derive that ’s 

advantage is bounded by
3

2

c s Hq q q
   . 

 Lemma 3. For any two oracles ,

n

i j and ,

m

j i in the 

present of an adversary, both oracles always agree 

on the same session key that is distributed uniformly. 

 Proof. According to the specification of our 

protocol, it is easy to see that if two oracles ,

n

i j and 

,

m

j i are matching, then they have the same session 

key. Since *, qa b Z are randomly selected during the 

protocol execution, the session key can be viewed as 

the output of the hash function H3 on a random input. 

Thus, the session key is uniformly distributed 

accordinging to the properties of hash functions. 

5.3. Further Security Considerations 

Since our CB-AKA protocol is proven secure under 

Definition 5, it satisfies Basic impersonation attacks 

resilience, Key-compromise impersonation resilience, 

Partial forward secrecy, CA forward secrecy, Known-

key security, Unknown key-share resilience and Key 

control. Below, we further prove that it achieves Perfect 

forward secrecy and Leakage of ephemeral secrets 

resilience. 

 Lemma 4. Our proposed protocol has the property of 

Perfect forward secrecy. 

 Proof. Assuming that participants A and B have 

established a session key K and both of their private 

keys have been leaked. Let a andb be the ephemeral 

secret keys used to establish their session key. To 

calculate the session key, an adversary who knows 

ASK and
BSK must compute the value of 

4AK   

BaR   

abP or
4

=B AK bR abP from
AR aP and

BR bP . 

However, it is difficult to compute abP without 

knowing the values a and b unless the adversary can 

solve the CDH problem. Thus, the proposed 

protocol possesses the property of Perfect forward 

secrecy. 

 Lemma 5. Our proposed protocol has the property 

of Leakage of ephemeral secrets resilience. 

 Proof. The leakage of ephemeral secrets cannot 

enable an adversary to determine the session key. 

In particular, an adversary obtains the ephemeral 

secrets a and b in any session between A and B, but 

it cannot calculate
2AK = SKAPKB + H2(IDA, IDB, 

CertA, SKA)WB or
2BK = SKBPKA + H2(IDA, IDB, 

CertB, SKB)WA. As
2 2A BK K = SKBSKAP + H2(IDA, 

IDB, CertB, SKB) H2(IDA, IDB, CertA, SKA)P, the 

adversary must obtain at least one private key. 

Given PKA = SKAP or PKB = SKBP, the adversary 

can not obtain SKA or SKB unless it can solve the 

DL problem. Thus, the adversary can not calculate 

the session key. 

5.4. Comparison 

We compare our protocol with the previous three CB-

AKA protocols. Four operations are considered in the 

comparison: bilinear pairing, exponentiation in G2, 

multiplication in G1 and hash. For simplicity, these 

operations are denoted by Bp, Exp, Mul and Ha 

respectively. Without considering pre-computation, the 

details of the compared protocols are listed in Table 2, 

in which the “PKR attack” column indicates whether 

the protocol is secure against PKR attacks. 

Table 2. Comparison of the certificate-based AKA protocols. 

Protocols 
Key Agreement Cost 

PKR attack 
Bp Exp Mul Ha 

[29] 2 0 3 1 no 

[18] 2 0 4 1 no 

[25] 2 1 3 1 no 

Ours 1 0 8 2 yes 

The efficiency of a pairing-based protocol lies on 

the selected curve. In [5], Boyen provides the relative 

time for the atomic cryptographic operations when 

instantiated in 80 bits super-singular curves (SS/80) 

and 80 bits MNT curves (MNT/80). In Table 3, we 

review some related data.  
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Table 3. Relative time of the cryptographic operations. 

Curves 

Relative time 

(1 unit = 1 multiplication in G1) 

Mul Exp Bp 

MNT/80 1 36 150 

SS/80 1 4 20 

Table 4. Time complexity of the CB-AKA protocols. 

Protocols Relative time in MNT/80 Relative time in SS/80 

[29] 303 43 

[18] 304 44 

[25] 339 47 

Ours 158 28 

 

To make a much clearer comparison, Table 4 gives 

the concrete values of the computation cost and the 

communication cost for the compared protocols. As 

usually, we ignore the costs of the hash operations as 

the hash operation is more efficient than the 

multiplication in G1. From Table 4, we can see that our 

protocol enjoys obvious advantage in the computation 

efficiency. Most importantly, our protocol can provide 

stronger security guarantee as it can resist the PKR 

attack while others can not.  

6. Conclusions 

In this paper, we show that the previous CB-AKA 

protocols are insecure against PKR attacks. To improve 

security, we propose a new CB-AKA protocol and 

prove it to be secure against PKR attacks in the random 

oracle model. Compared with the previous protocols, 

the new protocol enjoys better computation efficiency 

while offering stronger security guarantee. The security 

of our protocol can only be achieved in the random 

oracle model. Therefore, it would be interesting to 

construct a secure CB-AKA protocol without random 

oracles. Furthermore, another interesting problem is to 

design a CB-AKA protocol without bilinear pairings. 
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