
754 The International Arab Journal of Information Technology, Vol. 16, No. 4, July 2019

A Certificate-Based AKA Protocol Secure Against

Public Key Replacement Attacks

Yang Lu, Quanling Zhang, and Jiguo Li

College of Computer and Information, Hohai University, China

Abstract: Certificate-based cryptography is a new public key cryptographic paradigm that has many appealing features since

it simultaneously solves the certificate revocation problem in conventional public key cryptography and the key escrow

problem in identity-based cryptography. Till now, three certificate-based Authenticated Key Agreement (AKA) protocols have

been proposed. However, our cryptanalysis shows that none of them is secure under the public key replacement attack. To

overcome the security weaknesses in these protocols, we develop a new certificate-based AKA protocol. In the random oracle

model, we formerly prove its security under the hardness of discrete logarithm problem, computational Diffie-Hellman

problem and bilinear Diffie-Hellman problem. Compared with the previous proposals, it enjoys lower computation overhead

while providing stronger security assurance. To the best of our knowledge, it is the first certificate-based AKA protocol that

resists the public key replacement attack in the literature so far.

Keywords: Key agreement, certificated-based cryptography, public key replacement attack, random oracle model.

Received September 15, 2015; accepted March 12, 2017

1. Introduction

Key agreement is an important primitive for building

secure communication channels over the insecure

networks. It allows two or more users to securely set up

a shared secret key for their communications. The first

practical key agreement solution is the well-known

Diffie-Hellman protocol [7]. However, this protocol

suffers from the man-in-the-middle attack because it

does not provide authentication to the participants.

Hence, the research in this field has been concentrating

on the Authenticated Key Agreement (AKA) protocols

that offer the authentication mechanism.

Over the years, numerous AKA protocols have been

proposed. However, most of them were over either

conventional Public-Key Cryptography (PKC) [3, 10,

12, 31] or Identity-Based Cryptography (IBC) [6, 26,

28]. It is well recognized that conventional PKC suffers

from the certificate management problem and IBC has

the key escrow problem. To eliminate the key escrow

problem, Al-Riyami and Paterson [1] brought forth

certificateless AKA (CL-AKA) protocol by extending

AKA protocol into certificateless PKC. In their

proposal, every user independently generates a private

key by combining a partial private key from a partially

trusted authority named Key Generation Center (KGC)

with a secret value selected by the user himself. In this

way, CL-AKA protocol solves the key escrow problem.

Since its advent, several CL-AKA protocols have been

presented in recent years, e.g., [19, 27, 30, 34].

However, as the KGC should send partial private keys

to users over secure channels, the application of CL-

AKA protocols in public networks may be limited.

To fill the gap between IBC and conventional PKC,

Gentry [9] introduced the notion of Certificate-Based

Cryptography (CBC) in Eurocrypt’03. In CBC, each

user generates a public/private key pair and sends the

public key to a trusted Certificate Authority (CA) to

request a certificate. The certificate is then pushed to

its owner and acts as a partial decryption or signing

key. This functionality supplies an implicit certificate

property so that each user needs to use both his

certificate and private key to execute some

cryptographic operations (such as decryption and

signing), while other users needn’t obtain a certificate

from the CA for the authenticity of his public key.

Therefore, CBC simplifies the certificate revocation

problem in conventional PKC. Furthermore, CBC

eliminates both key escrow problem (as the CA does

not know any user’s private key) and key distribution

problem (as the CA can send the certificates publicly).

In recent years, CBC has aroused great interest in the

academia and numerous certificate-based schemes

have been proposed, including many encryption

schemes [8, 14, 21, 23, 32, 33] and signature schemes

[11, 13, 15, 16, 17, 20, 24]. As far as we know, there

exist three Certificate-Based AKA (CB-AKA)

protocols [18, 25, 29] in the literature so far. The first

CB-AKA protocol was proposed by Wang and Cao

[29]. Their protocol was constructed by combining

Gentry’s certificate-based encryption scheme [9] with

Smart’s AKA protocol [28]. However, Lim et al. [18]

pointed out that Wang-Cao’s protocol is insecure

against leakage of ephemeral secrets. To improve

security, they proposed an improved CB-AKA

protocol from Wang-Cao’s protocol and claimed that

it has resistance to all non-trivial secret exposures.

A Certificate-Based AKA Protocol Secure Against Public Key Replacement Attacks 755

However, no formal security proof is given in [18]. To

construct a provably secure CB-AKA protocol, Luo et

al. [25] presented a security model for CB-AKA

protocols. They then proposed a new CB-AKA protocol

and proved its security in the random oracle model [2].

The main contribution of this paper is that we

develop a new CB-AKA protocol that withstands the

Public Key Replacement (PKR) attack. The PKR attack

was first introduced by Al-Riyami and Paterson [1]. It

refers to that an adversary replaces a user’s public key

and deceives other parties to perform cryptographic

operations (such as ciphertext decryption, signature

verification) using a false public key. One may think

that this attack does not exist in CBC due to the use of

the certificate. However, it does. As introduced above,

CBC has an implicit certificate property so that each

user need not be concerned about the status of other

users’ certificates. Thus, an adversary may successfully

launch the PKR attack against an ill-designed scheme

or protocol in CBC setting. So far, several certificate-

based schemes have been pointed out to be insecure

under this attack [13, 22]. We notice that all the

previous CB-AKA protocols [18, 25, 29] didn’t

consider the PKR attack. Our cryptanalysis shows that

none of them is secure under this attack. Therefore, it is

fair to say that devising a secure CB-AKA protocol

remains an unsolved problem until now.

In this paper, we first show that all the previous three

CB-AKA protocols [18, 25, 29] are insecure against

PKR attacks. To overcome the security weaknesses in

these protocols, we design a new CB-AKA protocol

that can provide resistance to the AKA attack. Under

the hardness of the discrete logarithm problem, the

computational Diffie-Hellman problem and the bilinear

Diffie-Hellman problem, the proposed protocol is

proven secure in the random oracle model. Compared

with the previous CB-AKA protocols, it enjoys better

computational performance while offering stronger

security guarantee.

2. Preliminaries

2.1. Notations

The following notations are used throughout the paper.

 q : A large prime number.

 *

qZ : The field of integer numbers modulo q.

 1 2,G G : Two cyclic groups of same order q.

 (,)e : A bilinear pairing from G1×G1 to G2.

 P : The generator of the group G1.

 , , ,U U U UID PK SK Cert : A user U’s identity, public key,

private key and certificate.

 A, B: The initiator and the responder of the protocol;

 KAB, KBA: The shared session keys generated by A

and B respectively.

 : An adversary (either a Type 1 adversary 1 or a

Type 2 adversary 2).

 ,

n

i j : The n-th protocol session, in which i and j are

the initiator and the responder respectively.

 , ,,n n

j i i jM M : The incoming message and outgoing

message in ,

n

i j .


1 1 2 3, , ,H H H H : The cryptographic hash functions.

 kdf: The key derivation function.

 {0,1}*: The space of arbitrary-length binary strings.

 {0,1}l: The space of l-bit binary strings.

 : The null symbol.

2.2. Bilinear Pairing and Complexity Problems

A bilinear pairing is a map e: G1  G1  G2 that

satisfies the following properties:

 Bilinearity: For any U, V  G1 and *, qx y Z , e(xU,

yV) = e(U, V)xy.

 Non-degeneracy: There exists U, V  G1 such that

e(U, V) 
2

1G , where
2

1G denotes the identity element

in G2.

 Computability: For any U, V  G1, e(U, V) can be

efficiently computed.

The security of our protocol is based on the following

three complexity problems:

 Definition 1. the discrete logarithm (DL) problem

in G1 is, given a generator P of G1 and an element

Q  G1, to find an integer *

qx Z such that xP = Q.

 Definition 2. the computational Diffie-Hellman

(CDH) problem in G1 is, given a tuple (P, xP, yP)

 3

1()G for unknown *, qx y Z , to compute xyP.

 Definition 3. [4]. the bilinear Diffie-Hellman

(BDH) problem in (G1, G2) is, given a tuple (P, xP,

yP, zP)  4

1()G for unknown *, , qx y z Z , to compute

e(P, P)xyz.

3. Modelling CB-AKA Protocols

A CB-AKA protocol consists of four algorithms:

 Setup: This algorithm takes a security parameter k

as input and generates CA’s master key msk and a

list of public parameters params.

 User Key Gen: This algorithm takes params as

input and returns a pair of public key and private

key (PKU, SKU) for a user U with identity IDU.

 Cert Gen: This algorithm takes params, msk, and a

user U’s identity IDU and public key PKU as input

and returns a certificate CertU.

 Key Agreement: This interactive algorithm, which

involves two participants-an initiator A and a

responder B, takes params, an initiator A’s identity

756 The International Arab Journal of Information Technology, Vol. 16, No. 4, July 2019

IDA, public key PKA, private key SKA and certificate

CertA and a responder B’s identity IDB, public key

PKB, private key SKB and certificate CertB as input.

If the protocol does not fail, A and B will generate a

shared session key KAB = KBA.

3.1. Security Properties for CB-AKA Protocols

A CB-AKA protocol should satisfy the following

security properties [6, 25].

 Known-key security: Even if some of the session

keys of a given protocol are leaked, an adversary

cannot determine other session keys.

 Unknown key-share resilience: An adversary cannot

force a participant to share a session key with other

participants when it is actually sharing with a

different participant.

 Basic impersonation attacks resilience: An

adversary cannot impersonate a participant if it does

not know his/her private key.

 Key compromise impersonation resilience: Even if a

participant A’s private key is leaked, an adversary is

able to impersonate the participant A to any other

participant but cannot impersonate others to the

participant A.

 Forward secrecy: Even if the private keys of one or

more participants are leaked, an adversary cannot

determine previously established session keys. This

security property includes two types:

1. Partial forward secrecy: Even if some but not all

participants’ private keys are leaked, forward

secrecy should be preserved;

2. Perfect forward secrecy: Even if all participants’

private keys are leaked, forward secrecy should be

preserved.

 CA forward secrecy: Even if an adversary is armed

with the master key, forward secrecy should be

preserved.

 Leakage of ephemeral secrets resilience: Even if the

ephemeral secrets of a given protocol run is leaked,

an adversary cannot derive the corresponding

session key.

 Key control: An adversary cannot force the

participants to accept a pre-selected value as the

current session key.

3.2. Security Model for CB-AKA Protocols

Next, we present a security model for CB-AKA

protocols secure against PKR attacks.

In the following description, ,

n

i j is the oracle that

represents the n-th protocol session, in which i and j are

the initiator and the responder respectively. Let SID=

(IDi, IDj, ,

n

i jM , ,

n

j iM) be the session identity of ,

n

i j ,

where ,

n

j iM and ,

n

i jM denote the incoming message and

outgoing message respectively. Two oracles ,

n

i j and

,

m

j i are said to have a matching conversation with

each other if they have the same session identity SID.

A CB-AKA protocol should be secure against two

different adversaries [25]: Type 1 adversary 1 and

Type 2 adversary 2. 1 models an uncertified user

who can replace any user’s public key, but does not

know the CA’s master key. 2 models a malicious CA

who controls the master key, but cannot replace public

keys. The security of CB-AKA protocols can be

defined by the following adversarial game that is

played between an adversary   {1, 2} and a

challenger.

1. Setup. The challenger simulates the algorithm Setup

(k) to produce (msk, params) and sends params to

.  is also given msk if it is a Type 2 adversary.

2. Phase 1. In this phase,  can adaptively make the

following oracle queries.

 Create (IDi): On input an identity IDi, the

challenger generates (SKi, PKi) and then outputs

PKi. We assume that an identity can be responded

by other oracles only if it has been created.

 Replace Public Key (IDi, iPK ): On input an identity

IDi and a value iPK  , the challenger sets iPK  as the

new public key of IDi. This oracle is merely queried

by the Type 1 adversary.

 Certificate (IDi): On input an identity IDi, the

challenger outputs a certificate Certi. This oracle is

merely queried by the Type 1 adversary.

 Corrupt(IDi): On input an identity IDi, the

challenger outputs a private key SKi.

 Send(,

n

i j , M): On input an oracle ,

n

i j and a

message M, the challenger initiates a new

session ,

n

i j if M = λ; otherwise it responds

according to the description of the protocol. If the

first message received by an oracle is λ, the oracle

is called an initiator; otherwise it is a responder

oracle.

 Reveal(,

n

i j): On input an oracle ,

n

i j , the

challenger outputs the session key held by ,

n

i j .

3. Test.  asks a single test query on a fresh

oracle ,

T

I J (see Definition 4). To respond, the

challenger selects a random bit   {0, 1}. If  = 0,

it outputs the session key held by ,

T

I J ; otherwise, it

outputs a random key chosen from the key space.

4. Phase 2. As in Phase 1,  continues to issue a

sequence of adaptive queries.

A Certificate-Based AKA Protocol Secure Against Public Key Replacement Attacks 757

5. Guess. Finally,  outputs a guess bit {0,1} . 

wins the game if and only if    and the following

restrictions are satisfied:

1.  cannot make Reveal queries on ,

T

I J and its

matching conversation.

2.  cannot make a query Certificate(IDJ) if it is a

Type 1 adversary.

3.  cannot make a query Corrupt(IDJ) if it is a Type 2

adversary. ’s advantage is defined to be Adv() =

|Pr[  ]-1/2|.

 Definition 4. an oracle
,

T

I J is said to be fresh if

1. It has established a session key.

2. It has not been revealed.

3. No matching conversation of ,

T

I J has been revealed.

4. The adversary  has never make a query Certificate

(IDJ) if it is a Type 1 adversary.

5. The adversary  has never make a query Corrupt

(IDJ) if it is a Type 2 adversary.

 Definition 5. A CB-AKA protocol is a secure

protocol if

1. For any polynomial-time adversary , the advantage

Adv() is negligible.

2. For any two oracles ,

n

i j and ,

m

j i in the present of an

adversary, both oracles always agree on the same

session key that is distributed uniformly at random.

3. Remark 1. The above definition allows the Type 1

adversary to request both the private key and

certificate of the participant I and the Type 2

adversary to request the private key of the

participant I. Therefore, it covers Basic

impersonation attacks resilience, Key-compromise

impersonation resilience, Partial forward secrecy and

CA forward secrecy. Furthermore, similarly to [6], if

a CB-AKA protocol satisfies Definition 5, it

achieves Known-key security, Unknown key-share

resilience and Key control.

4. Cryptanalysis of the Previous CB-AKA

Protocols

In the previous three CB-AKA protocols [18, 25, 29],

the CA’s master key and master public key are *

qs Z

and Ppub = sP respectively. The notations {G1, G2, e, q,

P} is defined as in section 2. In addtion, two hash

functions and a key derivation function are defined as

H1: G1  {0,1}*  G1, 1H  : {0,1}*G1 G1, kdf : {0,1}*

 {0,1}l, where l  N denotes the bit-length of the

session key. Table 1 summarizes the user parameters

for each protocol, in which *

U qx Z and dataU

respectively denotes a string which includes the user

U’s identity IDU and public key PKU.

Table 1. Parameters for user U.

Protocols PKU SKU CertU

Wang and Cao’s

[29]
xUP xU 1 ,()pub UsH P data

Lim et al. [18] xUP xU 1 ,()pub UsH P data

Luo et al. [25] xUPpub xU  1 ,U Us IDH PK

4.1. Wang-Cao’s CB-AKA Protocol

In Wang-Cao’s protocol [29], Alice (A) and Bob (B)

agree on a session key as follows.

1. Alice chooses a random value *

qa Z and sends TA =

aP to Bob.

2. Bob chooses a random value *

qb Z and sends TB =

bP to Alice.

3. Alice computes 1(,)B pub BQ H P data , and then

1
(,)pub B BA e P PKK aQ  and

2
(,)A B Ae T SK  ,

where SA = CertA + SKAQA = (s + SKA)QA.

4. Bob computes 1(),A pub AQ H P data , and then

1
(,)pub A AB e P PKK bQ  and

2
(,)B A Be T SK  ,

where SB = CertB + SKBQB = (s + SKB)QB.

5. Alice and Bob respectively compute the shared

session keys as
1 2

||(B || || ||)BA AAB KK kdf KA aT ,

2 1
||(|| ||)|| ABA BB KK kdf A B bTK .

 Attack. Wang-Cao’s protocol is vulnerable to a

basic impersonation attack. Assume that an

adversary Eve has replaced Bob’s public key PKB

with *

B pubPK P P   , where *

qZ  . She

impersonates Bob by choosing a random

value *

qb Z and sends TB = bP to Alice. Alice

computes
1AK = e(Ppub + *

BPK , *

BaQ) = *,()BAe T Q ,

2AK = e(TB, SA) = e(Ppub + PKA, bQA), where *

BQ =

*

1 ,()Bpub dataH P . It then derives the session

key ABK =
1

||(|| ||Akdf A B K
2

||)A BK aT . Because

Eve knows both b and , she can

compute
1AK ,

2 1A BK K and aTB = bTA, and thus the

session key KAB. Therefore, it succeeds in

impersonating Bob to establish a session key with

Alice.

4.2. Lim et al. [18] CB-AKA Protocol

To resist leakage of ephemeral secret keys, Lim et al.

[18] modified Wang-Cao’s protocol by incorporating

SKASKBP into the session key. In their protocol, Alice

(A) and Bob (B) compute the session key as follows:

758 The International Arab Journal of Information Technology, Vol. 16, No. 4, July 2019

1 2
(|| || || || ||)AB B BA AAK kdf A B aT SKK K PK ,

2 1
(|||| || ||)|| B BBA A B AK kdf A B bT SKK K PK .

 Attack. Lim et al. [18] claimed that their protocol has

resistance to all non-trivial secret exposures.

However, it is insecure against key compromise

impersonation attacks. The attack is almost as same

as the one against Wang-Cao’s protocol. The only

difference is that Eve now is equipped with Alice’s

private key SKA. Assume that Eve has replaced Bob’s

public key PKB with *

BPK pubP P   ,

where *

qZ  . Then Alice will compute the session

key KAB =
1 2

(|| || ||A Akdf B K KA *|| ||)B BAaT S PKK .

Because Eve knows SKA, she can

compute *

BASK PK and then KAB. Therefore, Eve is

able to impersonate Bob to establish a session with

Alice.

4.3. Luo et al. [25] CB-AKA Protocol

In Luo et al. [25] protocol, Alice (A) and Bob (B)

establish a session key as follows.

1. Alice picks a random value *

qa Z and sends TA = aP

to Bob.

2. Bob picks a random value *

qb Z and sends TB = bP

to Alice.

3. Alice respetively computes
1AK ,()B Ae T S ,

2AK =

e(PKB, QB)a and
3

|| || ||B A BA A B aT SKK PK , where

SA = SKACertA = SKAsQA and 1(,)B B BQ IDH PK .

4. Bob respetively computes
1

(,)B A Be T SK  ,
2BK =

e(PKA, QA)b and
3

|| || ||A B AB A B bT SKK PK , where

SB = SKBCertB = SKBsQB and 1 ,()A A AQ IDH PK .

5. Alice and Bob compute respectively the shared

session keys as

1 2 3
(|| || || ||)AB A B A A AK kdf T K KT K ,

2 1 3
(|| || || ||)BA A B B B BK kdf T K KT K .

 Attack. Luo et al.’s [25] protocol is vulnerable to a

key compromise impersonation attack. Assume that

Eve has replaced Bob’s public key PKB

with *

BPK P and also corrupts Alice’s private key

SKA, where *

qZ  . She impersonates Bob by

choosing a random value *

qb Z and sends TB = bP to

Alice. Alice computes

1
,()BA ATK Se ,

2

* *(,)A B

a

BK PK Qe = *,()BAe T Q ,

3

*|| || ||A B A BA B aT SKK PK = || || AA B bT
*|| A BK PKS ,

where * *

1(,)B B BIDQ H PK . It then obtains the

session key
1 2 3

(|| || || ||)AB A B A A AK kdf T K KT K .

Because Eve knows b,  and SKA, she can

compute
1AK ~

3AK and then KAB. Therefore, Eve can

impersonate Bob to establish a session with Alice.

5. The Proposed CB-AKA Protocol

5.1. Description of the Protocol

Our protocol consists of the following four algorithms:

 Setup: Given a security parameter k and {G1, G2, e,

q, P} as defined in Section 2, the CA randomly

chooses *

qs Z as its master key msk and computes

Ppub = sP. It then chooses three hash functions H1:

{0,1}*  G1  G1, H2: {0,1}* × {0,1}* × G1

× *

qZ  *

qZ , H3: {0,1}* × {0,1}* × 6

1G ×G2 × 3

1G 

{0,1}k and publishes params = {k, G1, G2, e, q, P,

Ppub, H1, H2, H3}.

 User Key Gen: Given the public parameters

params, a user U randomly chooses *

U qx Z as his

private key SKU and computes his public key PKU =

xUP.

 Cert Gen: Given the public parameters params, the

master key msk = s and a user U’s identity IDU and

public key PKU, the CA computes QU = H1(IDU,

PKU) and then the user U’s certificate CertU = sQU.

 Key Agreement: Participants A and B run the

protocol in the following steps:

1. A randomly chooses *

qa Z , computes AR aP

and 2(, , ,)A A B A AW H ID ID Cert SK P , sends (IDA,

RA, WA) to B.

2. Once receiving (IDA, RA, WA), B randomly

chooses *

qb Z , computes
BR bP and

BW = 2H (AID , BID , BCert , BSK) P ,

sends (, ,)B B BID R W to A.

3. A respectively computes

1
(,)A B B pub AK e R Q aP Cert   ,

2 2 (, , ,)A A B A B A A BK SK PK H ID ID Cert SK W  ,

3A B A BK aPK SK R  and
4A BK aR .

B respectively computes

1
(,)B A A pub BK e R Q bP Cert   ,

2 2 (, , ,)B B A A B B B AK SK PK H ID ID Cert SK W  ,

3B A B AK bPK SK R  and
4B AK bR .

4. A and B could respectively compute their shared

session key as

3(, , , , , , , ,AB A B A B A B A BK H ID ID PK PK R R W W

1 2 3 4
, , ,)A A A AK K K K ,

3(, , , , , , , ,BA A B A B A B A BK H ID ID PK PK R R W W

1 2 3 4
, , ,)B B B BK K K K .

http://dict.youdao.com/w/negotiate/

A Certificate-Based AKA Protocol Secure Against Public Key Replacement Attacks 759

5.2. Security Analysis

 Lemma 1. Assuming that H1 ~ H3 are three random

oracles and 1 is a Type 1 adversary who can break

our protocol with advantage . Then there must exist

an algorithm  to solve the BDH problem with

advantage
3

2

c s Hq q q
   ,

where
cq ,

3Hq and
sq denote the maximal number of

1’s queries to the oracle Create, 1’s queries to the

random oracle H3 and sessions that each participant

may participate in respectively.

 Proof. Assuming that is given a BDH problem

instance (P, aP, bP, cP). To compute (,)abce P P , 

interacts with 1 as follows:

In the setup phase,  sets pubP aP and sends the public

parameters params = {k, q, e, G1, G2, P, Ppub, H1, H2,

H3} to 1, where H1 ~ H3 are random oracles.

Furthermore, it randomly picks three distinct indices I,

J [1,
cq] and T [1,

sq].

During the query-answer phase,  responds 1’s

queries as below:

H1(iID ,
iPK): maintains a list L1 consisting of

tuples (, ,)i i iID u Q . On receiving such a query, 

answers
iQ if (, ,)i i iID u Q is on L1. Else if i JID ID , it

sets iQ = bP , puts a new tuple (, ,)i iID Q in L1 and

returns
iQ . Otherwise, it randomly chooses *

i qu Z ,

computes i iQ u P , puts a new tuple (, ,)i i iID u Q in L1

and returns iQ .

H2(iID , jID ,
iCert , iSK): maintains a list L2 of

tuples (iID , jID , iCert , iSK , ,

n

i jw , ,

n

i jW). On receiving

such a query, it answers ,

n

i jw if (iID , jID ,
iCert , iSK ,

,

n

i jw , ,

n

i jW) is in L2. Otherwise, it randomly chooses

,

n

i jw *

qZ , computes , ,

n n

i j i jW w P , puts a new tuple

(iID , jID , iCert , iSK , ,

n

i jw , ,

n

i jW) in L2 and returns ,

n

i jw .

H3(
A

iID , B

iID , A

iPK , B

iPK , A

iR , B

iR , A

iW , B

iW ,
1i

K ,

2i
K ,

3i
K ,

4i
K): maintains a list 3L consisting of tuples

(A

iID , B

iID , A

iPK , B

iPK , A

iR , B

iR , A

iW , B

iW ,
1i

K ,
2i

K ,

3i
K ,

4i
K , ih), where the superscript “A” and “B”

respectively denote the message sender and the

message receiver. On receiving such a query, if

(A

iID , B

iID , A

iPK , B

iPK , A

iR , B

iR , A

iW , B

iW ,
1i

K ,
2i

K ,

3i
K ,

4i
K , ih) is on 3L , it returns ih as the answer.

Otherwise,  does as below:

1. If there exists a tuple (,

n

i j , IDi, IDj, PKi, PKj,

,

n

i jw , ,

n

i jr , ,

n

i jW , ,

n

j iW , ,

n

i jR , ,

n

j iR , ,

n

i jK) on the list
sL

(maintained by the oracle Send) such that ,

n

i jK ≠⊥ ,

i JID ID and

 ,

n

i j is an initiator and A

i iID ID , B

i jID ID , A

iPK

=
iPK , B

iPK = jPK , A

iR = ,R n

i j , B

iR = ,

n

j iR , ,

A n

i i jW W

, B

iW = ,

n

j iW ,
1 , ,(,)n n

i j i j i j pub iK e R Q r P Cert   ,
2i

K =

,2 (, , ,) n

i j i j i i j iSK PK ID ID Ce t K WH r S ,
3i

K =

,

n

i j jr PK ,

n

i j iSK R ,
4 , ,

n n

i i j j iK r R , or

 ,

n

i j is a responder and A

i jID ID , B

i iID ID , A

iPK

= jPK , B

iPK = iPK , A

iR = ,

n

j iR , B

iR = ,

n

i jR , A

iW ,

n

j iW ,

B

iW = ,

n

i jW ,
1 , ,(,)n n

i j i j i j pub iK e R Q r P Cert   ,
2i

K 

,2 (, , ,) n

i j i j i i i jSK PK ID ID Ce t K WH r S ,
3i

K 

,

n

i j jr PK ,

n

i j iSK R ,
4 , ,

n n

i i j j iK r R ,

then checks whether
4, ,(,) (,)n n

i j j i ie R R e K P holds. If

it holds,  sets ,

n

i i jh K , puts a new tuple (A

iID , B

iID ,

A

iPK , B

iPK , A

iR , B

iR , A

iW , B

iW ,
1i

K ,
2i

K ,
3i

K ,
4i

K , ih)

in
3L and returns

ih as the answer. Else, it randomly

chooses {0,1}k

ih  , puts a new tuple (A

iID , B

iID , A

iPK ,
B

iPK , A

iR , B

iR , A

iW , B

iW ,
1i

K ,
2i

K ,
3i

K ,
4i

K , ih) in the

list 3L and returns ih .

2. Else if there is a tuple (,

n

i j , IDi, IDj, PKi, PKj,

,

n

i jw , ,

n

i jr , ,

n

i jW , ,

n

j iW , ,

n

i jR , ,

n

j iR , ,

n

i jK) on sL such that

,

n

i jK ≠⊥ , i JID ID and

 ,

n

i j is an initiator and A

i iID ID , B

i jID ID , A

iPK

= iPK , B

iPK = jPK , A

iR = ,

n

i jR , B

iR = ,

n

j iR , ,

A n

i i jW W

, B

iW = ,

n

j iW ,
1i

K = , ,(,)n n

j i j i j pub ie R Q r P Cert  ,
2i

K 

,2 (, , ,) n

i j i j i i i jSK PK ID ID Ce t K WH r S ,
3i

K 

,

n

i j jr PK ,

n

i j iSK R ,
4 , ,

n n

i i j j iK r R , or

 ,

n

i j is a responder and A

i jID ID , B

i iID ID , A

iPK

= jPK , B

iPK = iPK , A

iR = ,

n

j iR , B

iR = ,R n

i j , A

iW ,

n

j iW ,

B

iW = ,

n

i jW ,
1 , ,(,)n n

i j i j i j pub iK e R Q r P Cert   ,
2i

K 

,2 (, , ,) n

i j i j i i i jSK PK ID ID Ce t K WH r S ,
3i

K 

,

n

i j jr PK ,

n

i j iSK R ,
4 , ,

n n

i i j j iK r R ,

then sets ih = ,

n

i jK , puts a new tuple (A

iID , B

iID , A

iPK ,

B

iPK , A

iR , B

iR , A

iW , B

iW ,
1i

K ,
2i

K ,
3i

K ,
4i

K , ih) in the

list 3L and returns ih .

760 The International Arab Journal of Information Technology, Vol. 16, No. 4, July 2019

3. Otherwise, randomly chooses {0,1}k

ih  , puts a

new tuple (A

iID , B

iID , A

iPK , B

iPK , A

iR , B

iR , A

iW ,
B

iW ,
1i

K ,
2i

K ,
3i

K ,
4i

K ,
ih) in

3L and returns
ih .

Create (IDi):  maintains a list Luser consisting of tuples

(IDi,SKi,PKi). On receiving such a query, returns PKi

if (IDi,SKi,PKi) is already in Luser. Otherwise,

itrandomly chooses *

i qx Z as a private key
iSK ,

computes a public key PKi=xiP, puts a new tuple

(IDi,SKi,PKi) in Luser and then returns PKi.

Certificate (IDi): On receiving such a query, aborts

if IDi=IDJ. Otherwise, it simulates a query H1(IDi,PKi)

to get a tuple (, ,)i i iID u Q , computes Certi= uiPPub and

then outputs Certi.

Corrupt (IDi): On receiving such a query, looks up

the corresponding tuple (IDi,SKi,PKi) in Luser and

returns SKi.

Replace Public Key(
iID , iPK ): On receiving such a

query, looks up the corresponding tuple (IDi,SKi,PKi)

in Luser and replaces the tuple with (, ,)i iID PK .

Send(,

n

i j , M): maintains a list
sL consisting of

tuples (,

n

i j , IDi, IDj, PKi, PKj, ,

n

i jw , ,

n

i jr , ,

n

i jW , ,

n

j iW , ,

n

i jR ,

,

n

j iR , ,

n

i jK), where the superscript “n” denotes the n-th

protocol session. On receiving a query Send(,

n

i j , M)

(if M = (M1, M2)  λ, sets ,

n

j iR = M1, ,

n

j iW = M2),

returns , ,(,)n n

i j i jR W as the answer if a tuple (,

n

i j , IDi,

IDj, PKi, PKj, ,

n

i jw , ,

n

i jr , ,

n

i jW , ,

n

j iW , ,

n

i jR , ,

n

j iR , ,

n

i jK) is

already in sL . Otherwise,  obtains a tuple (iID , jID ,

iCert , iSK , ,

n

i jw , ,

n

i jW) in
2L (after querying H2(iID ,

jID ,
iCert , iSK) if necessary) and does as follows:

1. If , ,

n T

i j I J  , sets , ,

n n

i j i jK r  , ,

n

i jR cP , ,

n

j iR =

M1 and ,

n

j iW = M2. It then puts a new tuple (,

n

i j , IDi,

IDj, PKi, PKj, ,

n

i jw , ,

n

i jr , ,

n

i jW , ,

n

j iW , ,

n

i jR , ,

n

j iR , ,

n

i jK)

in sL and returns , ,(,)n n

i j i jR W .

2. Otherwise,  randomly chooses , {0,1}n k

i jK  ,

*

,

n

i j qr Z , sets , ,

n n

i j i jR r P , ,

n

j iR = M1 and ,

n

j iW = M2. It

then puts a new tuple (,

n

i j , IDi, IDj, PKi, PKj, ,

n

i jw ,

,

n

i jr , ,

n

i jW , ,

n

j iW , ,

n

i jR , ,

n

j iR , ,

n

i jK) in sL and returns

, ,(,)n n

i j i jR W .

Reveal(,

n

i j): On receiving such a query, first looks

up a tuple (,

n

i j , IDi, IDj, PKi, PKj, ,

n

i jw , ,

n

i jr , ,

n

i jW ,

,

n

j iW , ,

n

i jR , ,

n

j iR , ,

n

i jK) in sL . If ,

n

i jK ≠ , returns ,

n

i jK to

1. Otherwise,  looks up a tuple (, ,)i i iID SK PK

in
userL and does as follows:

1. If , ,

n T

i j I J  or ,

n

i j is a matching session of
,

T

I J ,

aborts.

2. Else if
i JID ID ,

 ,

n

i j is an initiator and a tuple (A

iID , B

iID , A

iPK ,

B

iPK , A

iR , B

iR , A

iW , B

iW ,
1i

K ,
2i

K ,
3i

K ,
4i

K ,
ih) can

be found in
3L such that

iID = A

iID , jID = B

iID ,
iPK =

A

iPK , jPK = B

iPK , ,

n

i jR = A

iR , ,

n

j iR = B

iR , A

,

n

i j iW W

, ,

n

j iW = B

iW ,
1 , ,= (,)n n

i j i j i j pub iK e R Q r P Cert  ,
2
=iK

2 ,+ (, , ,)j

n

i j i i i j iSK PK ID Cert SK WH ID ,
3 ,

n

i i j jK r PK

,

n

i j iSK R ,
4i

K = , ,

n n

i j j ir R , or

 ,

n

i j is a responder and a tuple (A

iID , B

iID , A

iPK ,

B

iPK , A

iR , B

iR , A

iW , B

iW ,
1i

K ,
2i

K ,
3i

K ,
4i

K ,
ih) can

be found in
3L such that jID = A

iID ,
iID = B

iID , jPK =

A

iPK , iPK = B

iPK , ,

n

j iR = A

iR , ,

n

i jR = B

iR , ,

n A

j i iW W

, ,

n

i jW = B

iW ,
1 , ,= (,)n n

i j i j i j pub iK e R Q r P Cert  ,
2
=iK

,2+ (, , ,) n

i j i j i i j iHSK PK ID ID Cert SK W ,
3i

K  ,

n

i j jr PK

,

n

i j iSK R ,
4i

K = , ,

n n

i j j ir R ,

Then checks whether
1 ,(,n

i j i jK e R Q  ,

n

i j pubr P 

)iCert holds. If it holds,  sets ,

n

i jK ih and

returns ,

n

i jK .

3. Else if i JID ID ,

 ,

n

i j is an initiator and a tuple (A

iID , B

iID , A

iPK ,

B

iPK , A

iR , B

iR , A

iW , B

iW ,
1i

K ,
2i

K ,
3i

K ,
4i

K , ih) can

be found in
3L such that

iID = A

iID , jID = B

iID , iPK =

A

iPK , jPK = B

iPK , ,

n

i jR = A

iR , ,

n

j iR = B

iR , A

,

n

i j iW W

, ,

n

j iW = B

iW ,
1i

K = , ,(,)n n

j i j i j pub ie R Q r P Cert  ,
2
=iK

,2+ (, , ,) n

i j i j i i j iHSK PK ID ID Cert SK W ,
3 ,

n

i i j jK r PK

,

n

i j iSK R ,
4 , ,

n n

i i j j iK r R , sets ,

n

i jK = ih and returns

,

n

i jK .

 ,

n

i j is a responder and a tuple (A

iID , B

iID , A

iPK ,

B

iPK , A

iR , B

iR , A

iW , B

iW ,
1i

K ,
2i

K ,
3i

K ,
4i

K , ih) exists

in 3L such that jID = A

iID , jID = B

iID , jPK = A

iPK ,

iPK = B

iPK , ,

n

j iR = A

iR , ,

n

i jR = B

iR , A

,

n

j i iW W , ,

n

i jW =

B

iW ,
1i

K = , ,(,)n n

j i j i j pub ie R Q r P Cert  ,

2
=iK i jSK PK

,2+ (, , ,) n

i j i i j iID ID Cert SK WH ,
3 ,

n

i i j jK r PK

A Certificate-Based AKA Protocol Secure Against Public Key Replacement Attacks 761

,

n

i j iSK R ,
4 , ,

n n

i i j j iK r R , sets
,

n

i jK =
ih and returns

,

n

i jK .

4. Otherwise, chooses a random , {0,1}n k

i jK  and

returns ,

n

i jK to 1.

In the test phase, 1 asks a Test query. If 1 does not

query on the oracle
,

T

I J , then aborts. Otherwise, it

outputs a random string {0,1}kx .

In the guess phase, 1 returns a guess. Clearly, if 1

can succeed with non-negligible advantage  , there

must exist a tuple (
,

T

I J ,
IID ,

JID ,
IPK ,

JPK ,
,

T

I Jw ,⊥ ,

,

T

I JW , ,

T

J IW , cP , ,

T

J IR ,⊥) in sL . According to the above

simulation, if ,

T

I J is an initiator, then a tuple

(A

iID , B

iID , A

iPK , B

iPK , A

iR , B

iR , A

iW , B

iW ,
1i

K ,
2i

K ,

3i
K ,

4i
K ,

ih) can be found in
3L such that A

iR  ,

T

I JR 

cP , B

iR = ,

T

J IR = M1 (if M is the received message, then

M1 = ,

T

J IR); else if ,

T

I J is a responder, then a tuple

(A

iID , B

iID , A

iPK , B

iPK , A

iR , B

iR , A

iW , B

iW ,
1i

K ,
2i

K ,

3i
K ,

4i
K , ih) can be found in

3L such that ,

B T

i I JR R 

cP , A

iR = ,

T

J IR = M1 (if M is the received message, then

M1 = ,

T

J IR). For both cases, we have that
1i

K 

1(,)J pub Ie Q PM c Cert  . It is easy to deduce that

1i
K = 1(,)Ie bP acPM u aP 

= 1 1(,) (,) (,) (,)abc

I Ie P P e bP u aP e acP e uM aPM

=
4 1(,) (,) (,) (,)abc

I i Ie P P e bP u aP e MK aP e u aP ,

where Iu can be retrieved from the tuple I I I(, ,)ID u Q in

the list L1. As  can compute Z = (,)Ie bP u aP

4 1(,) (,)i Ie K aP e u aPM , it can return
1
/iK Z as the

solution to the given BDH problem.

We now derive’s advantage in solving the BDH

problem. From the above simulation,  fails if any of

the following events occurs:

1. E1: 1 does not ,

T

I J as the target oracle.

2. E2: 1 makes a query Certificate(JID)

3. E3: 1 makes a query Reveal(,

T

I J). We clearly have

that Pr[E1]  21/()c sq q as I, J  [1, cq] and T 

[1, sq]. In addition, as E1 implies E2  E3, we

have that Pr [E1  E2  E3] 
3

2
1

c s Hq q q
.

As  selects the correct tuple from
3L with

probability
3

1/ Hq , its advantage in solving the given

BDH problem is
3

2

c s Hq q q
   .

 Lemma 2. Assuming that H1 ~ H3 are three random

oracles and 2 is a Type 2 adversary who can break

our proposed protocol with advantage  . Then

there exists an algorithm to solve the CDH

problem with advantage
3

2

c s Hq q q
   ,

where
cq ,

3Hq and
sq denote the maximal number of

2’s queries to the oracle Create, 2’s queries to

the random oracle H3 and sessions that each

participant may participate in respectively.

 Proof. As suming that is given a CDH problem

instance (, ,)P aP bP . To compute abP , it interacts

with 2 as follows:

In the setup phase, chooses a random *

qs Z ,

computes pubP sP and then sends params = {k, q, e,

G1, G2, P, Ppub, H1, H2, H3} and msk = s to 2, where

H1 ~ H3 are random oracles.Furthermore, it randomly

picks three distinct indices I, J [1,
cq] and T [1,

sq].

During the query-answer phase, responds 2’s

queries as below:

H1(iID , iPK): maintains a list L1 consisting of

tuples (, ,)i i iID u Q . On receiving such a query,

answers iQ if (, ,)i i iID u Q is already in L1. Otherwise,

picks a random *

i qu Z , computes i iQ u P , puts a

new tuple (, ,)i i iID u u P in L1 and returns iQ .

Create(
iID): answers this query as it does in

Lemma 1, the only difference is that, if i JID ID , it

sets the private key iSK  , iPK aP , puts a new

tuple (, ,)i iID PK in userL and returns iPK .

Corrupt(iID): On receiving such a query, aborts

if IDi=IDJ; otherwise, searches for the

corresponding tuple (, ,)i i iID SK PK in userL and returns

iSK .

Send(,

n

i j , M): answers this query as it does in

Lemma 1, the only difference is that, if , ,

n T

i j I J  , it

sets , ,

n n

i j i jK r  , ,

n

i jR bP , ,

n

j iR = M1 and ,

n

j iW = M2,

puts a new tuple (,

n

i j , IDi, IDj, PKi,

PKj, ,

n

i jw , ,

n

i jr , ,

n

i jW , ,

n

j iW , ,

n

i jR , ,

n

j iR , ,

n

i jK) in sL and

returns , ,(,)n n

i j i jR W .

762 The International Arab Journal of Information Technology, Vol. 16, No. 4, July 2019

answers 2’s queries to the oracles H2, H3 and

Reveal as it does in Lemma 1 and we do not elaborate

on them here.

At the test phase, 2 asks a Test query. If 2 does

not query on ,

T

I J , then aborts. Otherwise, it outputs

a random string {0,1}kx .

In the guess phase, 2 outputs a guess. If 2 can

succeed with non-negligible advantage , then a tuple

(,

T

I J ,
IID ,

JID ,
IPK ,

JPK , ,

T

I Jw ,⊥ , ,

T

I JW , ,

T

J IW , bP ,

,

T

J IR ,⊥) can be found in
sL . If ,

T

I J is an initiator, then a

tuple (A

iID , B

iID , A

iPK , B

iPK , A

iR , B

iR , A

iW , B

iW ,
1i

K ,

2i
K ,

3i
K ,

4i
K , ih) can be found in

3L such that B

iPK =

JPK = aP , A

iR = ,

T

I JR = bP ; else if ,

T

I J is a responder

and a tuple (A

iID , B

iID , A

iPK , B

iPK , A

iR , B

iR , A

iW , B

iW ,

1i
K ,

2i
K ,

3i
K ,

4i
K , ih) can be found in

3L such that

A

i JPK PK aP  , B

iR = ,

T

I JR = bP . For both cases,

returns
3 ,

T

i I J IK SK R as a solution to the given CDH

problem, where
ISK can be retrieved from the tuple

(, ,)I I IID SK PK in
userL . It is easy to deduce that

3 ,

T

i I J IabP K SK R  because
3i

K = , ,

T T

I J J I J Ir PK SK R .

As in the proof of Lemma 1, we can derive that ’s

advantage is bounded by
3

2

c s Hq q q
   .

 Lemma 3. For any two oracles ,

n

i j and ,

m

j i in the

present of an adversary, both oracles always agree

on the same session key that is distributed uniformly.

 Proof. According to the specification of our

protocol, it is easy to see that if two oracles ,

n

i j and

,

m

j i are matching, then they have the same session

key. Since *, qa b Z are randomly selected during the

protocol execution, the session key can be viewed as

the output of the hash function H3 on a random input.

Thus, the session key is uniformly distributed

accordinging to the properties of hash functions.

5.3. Further Security Considerations

Since our CB-AKA protocol is proven secure under

Definition 5, it satisfies Basic impersonation attacks

resilience, Key-compromise impersonation resilience,

Partial forward secrecy, CA forward secrecy, Known-

key security, Unknown key-share resilience and Key

control. Below, we further prove that it achieves Perfect

forward secrecy and Leakage of ephemeral secrets

resilience.

 Lemma 4. Our proposed protocol has the property of

Perfect forward secrecy.

 Proof. Assuming that participants A and B have

established a session key K and both of their private

keys have been leaked. Let a andb be the ephemeral

secret keys used to establish their session key. To

calculate the session key, an adversary who knows

ASK and
BSK must compute the value of

4AK 

BaR 

abP or
4

=B AK bR abP from
AR aP and

BR bP .

However, it is difficult to compute abP without

knowing the values a and b unless the adversary can

solve the CDH problem. Thus, the proposed

protocol possesses the property of Perfect forward

secrecy.

 Lemma 5. Our proposed protocol has the property

of Leakage of ephemeral secrets resilience.

 Proof. The leakage of ephemeral secrets cannot

enable an adversary to determine the session key.

In particular, an adversary obtains the ephemeral

secrets a and b in any session between A and B, but

it cannot calculate
2AK = SKAPKB + H2(IDA, IDB,

CertA, SKA)WB or
2BK = SKBPKA + H2(IDA, IDB,

CertB, SKB)WA. As
2 2A BK K = SKBSKAP + H2(IDA,

IDB, CertB, SKB) H2(IDA, IDB, CertA, SKA)P, the

adversary must obtain at least one private key.

Given PKA = SKAP or PKB = SKBP, the adversary

can not obtain SKA or SKB unless it can solve the

DL problem. Thus, the adversary can not calculate

the session key.

5.4. Comparison

We compare our protocol with the previous three CB-

AKA protocols. Four operations are considered in the

comparison: bilinear pairing, exponentiation in G2,

multiplication in G1 and hash. For simplicity, these

operations are denoted by Bp, Exp, Mul and Ha

respectively. Without considering pre-computation, the

details of the compared protocols are listed in Table 2,

in which the “PKR attack” column indicates whether

the protocol is secure against PKR attacks.

Table 2. Comparison of the certificate-based AKA protocols.

Protocols
Key Agreement Cost

PKR attack
Bp Exp Mul Ha

[29] 2 0 3 1 no

[18] 2 0 4 1 no

[25] 2 1 3 1 no

Ours 1 0 8 2 yes

The efficiency of a pairing-based protocol lies on

the selected curve. In [5], Boyen provides the relative

time for the atomic cryptographic operations when

instantiated in 80 bits super-singular curves (SS/80)

and 80 bits MNT curves (MNT/80). In Table 3, we

review some related data.

http://dict.youdao.com/w/possess/

A Certificate-Based AKA Protocol Secure Against Public Key Replacement Attacks 763

Table 3. Relative time of the cryptographic operations.

Curves

Relative time

(1 unit = 1 multiplication in G1)

Mul Exp Bp

MNT/80 1 36 150

SS/80 1 4 20

Table 4. Time complexity of the CB-AKA protocols.

Protocols Relative time in MNT/80 Relative time in SS/80

[29] 303 43

[18] 304 44

[25] 339 47

Ours 158 28

To make a much clearer comparison, Table 4 gives

the concrete values of the computation cost and the

communication cost for the compared protocols. As

usually, we ignore the costs of the hash operations as

the hash operation is more efficient than the

multiplication in G1. From Table 4, we can see that our

protocol enjoys obvious advantage in the computation

efficiency. Most importantly, our protocol can provide

stronger security guarantee as it can resist the PKR

attack while others can not.

6. Conclusions

In this paper, we show that the previous CB-AKA

protocols are insecure against PKR attacks. To improve

security, we propose a new CB-AKA protocol and

prove it to be secure against PKR attacks in the random

oracle model. Compared with the previous protocols,

the new protocol enjoys better computation efficiency

while offering stronger security guarantee. The security

of our protocol can only be achieved in the random

oracle model. Therefore, it would be interesting to

construct a secure CB-AKA protocol without random

oracles. Furthermore, another interesting problem is to

design a CB-AKA protocol without bilinear pairings.

Acknowledgements

This work is supported by the National Natural Science

Foundation of China (grant No. 61672207), the

Fundamental Research Funds for the Central

Universities (grant No. 2016B10114) and the Natural

Science Foundation of Jiangsu Province (grant No.

BK20161511).

References

[1] Al-Riyami S. and Paterson K., “Certificateless

public key cryptography,” in Proceedings of

International Conference on the Theory and

Application of Cryptology and Information

Security, Taipei, pp. 452-473, 2003.

[2] Bellare M. and Rogaway P., “Random Oracles are

Practical: A Paradigm for Designing Efficient

Protocols,” in Proceedings of the 1st ACM

Conference on Computer and Communications

Security, Fairfax, pp. 62-73, 1993.

[3] Blake-Wilson S. and Menezes A.,

“Authenticated Diffie-Hellman Key Agreement

Protocols,” in Proceedings of the 6th Annual

International Workshop on Selected Areas in

Cryptography, Kingston, pp. 339-361, 1999.

[4] Boneh D. and Franklin M., “Identity-based

Encryption from the Weil Pairing,” in

Proceedings of Annual International Cryptology

Conference, Santa Barbara, pp. 213-229, 2001.

[5] Boyen X., “The BB1 Identity-Based

Cryptosystem: A Standard for Encryption And

Key Encapsulation,” IEEE Standard 1363.3,

2006.

[6] Chen L. and Kudla C., “Identity Based

Authenticated Key Agreement Protocols from

Pairings,” in Proceedings of the 16th IEEE

Computer Security Foundations Workshop,

Pacific Grove, pp. 219-233, 2003.

[7] Diffie W. and Hellman M., “New directions in

Cryptography,” IEEE Transactions on

Information Theory, vol. 22, no. 6, pp. 644-654,

1976.

[8] Galindo D., Morillo P., and Ràfols C.,

“Improved Certificate-Based Encryption in The

Standard Model,” Journal of Systems and

Software, vol. 81, no. 7, pp. 1218-1226, 2008.

[9] Gentry C., “Certificate-Based Encryption and

The Certificate Revocation Problem,” in

Proceedings of International Conference on the

Theory and Applications of Cryptographic

Techniques, Warsaw, pp. 272-293, 2003.

[10] Jeong I., Katz J., and Lee D., “One-round

Protocols for Two-Party Authenticated Key

Exchange,” in Proceedings of the 2nd

International Conference on Applied

Cryptography and Network Security, Yellow

Mountain, pp. 220-232, 2004.

[11] Kang B., Park J., and Hahn S., “A Certificate-

Based Signature Scheme,” in Proceedings of

Cryptographers’ Track at the RSA Conference,
San Francisco, pp. 99-111, 2004.

[12] Law L., Menezes A., Qu M., Salinas J., and

Vanstone S., “An Efficient Protocol for

Authenticated Key Agreement,” Technical

Report CORR98-05, University of Waterloo,

1998.

[13] Li J., Huang X., Mu Y., Susilo W., and Wu Q.,

“Constructions of Certificate-Based Signature

Secure Against Key Replacement Attacks,”

Journal of Computer Security, vol. 18, no. 3, pp.

421-449, 2010.

[14] Li J., Guo Y., Yu Q., Lu Y., Zhang Y., and

Zhang F., “Continuous Leakage-Resilient

Certificate-Based Encryption,” Information

Sciences, vol. 355-356, pp. 1-14, 2016.

[15] Li J., Huang X., Zhang Y., and Xu L., “An

Efficient Short Certificate-Based Signature

764 The International Arab Journal of Information Technology, Vol. 16, No. 4, July 2019

Scheme,” Journal of Systems and Software, vol.

85, no. 2, pp. 314-322, 2012.

[16] Li J., Teng H., Huang X., Zhang Y., and Zhou J.,

“A Forward-Secure Certificate-Based Signature

Scheme,” The Computer Journal, vol. 58, no. 4,

pp. 853-866, 2015.

[17] Li J., Wang Z., and Zhang Y., “Provably Secure

Certificate-Based Signature Scheme without

Pairings,” Information Sciences, vol. 233, pp.

313-320, 2013.

[18] Lim M., Lee S., and Lee H., “An Improved

Variant of Wang-Cao’s Certificated-Based

Authenticated Key Agreement Protocol,” in

Proceedings of 4th International Conference on

Networked Computing and Advanced Information

Management, Gyeongju, pp. 198-201, 2008.

[19] Lippold G., Boyd C., and Nieto J., “Strongly

Secure Certificateless Key Agreement,” in

Proceedings of International Conference on

Pairing-Based Cryptography, Palo Alto, pp. 206-

230, 2009.

[20] Liu J., Baek J., Susilo W., and Zhou J.,

“Certificate Based Signature Schemes without

Pairings Or Random Oracles,” in Proceedings of

the 11th International Conference on Information

Security, Taipei, pp. 285-297, 2008.

[21] Liu J. and Zhou J., “Efficient Certificate-Based

Encryption in The Standard Model,” in

Proceedings of the 6th International Conference

on Security and Cryptography for Networks,
Amalfi, pp. 144-155, 2008.

[22] Lu Y. and Li J., “Efficient Construction of

Certificate-Based Encryption Secure Against

Public Key Replacement Attacks in the Standard

Model,” Journal of Information Science and

Engineering, vol. 30, no. 5, pp. 1553-1568, 2014.

[23] Lu Y. and Li J., “A Provably Secure Certificate-

Based Encryption Scheme against Malicious CA

Attacks in the Standard Model,” Information

Sciences, vol. 372, pp. 745-757, 2016.

[24] Lu Y. and Li J., “An Improved Certificate-Based

Signature Scheme without Random Oracles,” IET

Information Security, vol. 10, no. 2, pp. 80-86,

2016.

[25] Luo M., Wen Y., and Zhao H., “A Certificate-

Based Authenticated Key Agreement Protocol for

SIP-Based Voip Networks,” in Proceedings of

IFIP International Conference on Network and

Parallel Computing, Shanghai, pp. 3-10, 2008.

[26] McCullagh N. and Barreto P., “A New Two-Party

Identity-Based Authenticated Key Agreement,” in

Proceedings of Cryptographers’ Track at the RSA

Conference, San Francisco, pp. 262-274, 2005.

[27] Shi Y. and Li J., “Two-Party Authenticated Key

Agreement in Certificateless Public Key

Cryptography,” Wuhan University Journal of

Natural Sciences, vol. 12, no. 1, pp. 71-74, 2007.

[28] Smart N., “An Id-Based Authenticated Key

Agreement Protocol Based on The Weil

Pairing,” Electronic Letters, vol. 38, no. 13, pp.

630-632, 2002.

[29] Wang S. and Cao Z., “Escrow-Free Certificate-

Based Authenticated Key Agreement Protocol

from Pairings,” Wuhan University Journal of

Natural Science, vol. 12, no. 1, pp. 63-66, 2007.

[30] Wang S., Cao Z., and Dong X., “Certificateless

Authenticated Key Agreement Based on the

MTI/CO Protocol,” Journal of Information and

Computation Science, vol. 3, no. 3, pp. 575-581,

2006.

[31] Yang Y., Hu Y., Sun C., Lv C., and Zhang L.,

“An Efficient Group Key Agreement Scheme for

Mobile Ad-Hoc Networks,” The International

Arab Journal of Information Technology, vol. 10,

no. 1, pp. 10-17, 2013.

[32] Yu Q., Li J., and Zhang Y., “Leakage-Resilient

Certificate-Based Encryption,” Security and

Communication Networks, vol. 8, no. 18, pp.

3346-3355, 2015.

[33] Yu Q., Li J., Zhang Y., Wu W., Huang X., and

Xiang Y., “Certificate-based Encryption

Resilient to Key Leakage,” Journal of Systems

and Software, vol. 116, pp. 101-112, 2016.

[34] Zhang L., Zhang F., Wu Q., and Domingo-Ferrer

J., “Simulatable Certificateless Two-Party

Authenticated Key Agreement Protocol,”

Information Sciences, vol. 180, no. 6, pp. 1020-

1030, 2010.

A Certificate-Based AKA Protocol Secure Against Public Key Replacement Attacks 765

Yang Lu received the Ph.D. degree

from PLA University of Science and

Technology in 2009. He has been

working in HoHai University from

2003. Currently, he is an Associate

Professor in College of Computer

and Information Engineering. His

major research interests include information security

and cryptography, network security and cloud security,

etc. He has published more than 50 scientific papers in

international conferences and journals.

Quanling Zhang has been studying

in HoHai University from 2013.

Currently, he is a postgraduate

student in College of Computer and

Information Engineering. His major

research interests include information

security and cryptography.

Jiguo Li received the Ph.D. degree

from Harbin Institute of Technology

in 2003. He has been working in

HoHai University from 2003.

Currently, he is a Professor in

College of Computer and

Information Engineering. His major

research interests include information security and

cryptography, network security, wireless security etc.

He has published more than 100 scientific papers.

