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1. Introduction 

In past two decades, many nature-inspired algorithms 

have been proposed and applied to solve optimization 

problems, e.g., Simulated Annealing (SA) [3, 17], 

Evolutionary Algorithms [4, 14], Genetic Algorithm 

(GA) [1, 8, 11, 15, 23], Differential Evolution (DE) 

[20, 22], Particle Swarm Optimization (PSO) [2, 10, 

12, 13], Ant Colony Optimization (ACO) [16, 21, 24], 

etc., Among these algorithms, PSO and ACO belong to 

biologically- inspired algorithms. This kind of 

optimization algorithms generally simulates some 

collective behavior of natural systems, e.g., the ACO 

algorithm is inspired by the biological behaviors of ant 

and PSO simulates the collective behavior of bird. 

One of recent developments in biologically-inspired 

algorithms is a series of cockroach-inspired algorithms. 

Chen first proposed a Cockroach Swarm Optimization 

(CSO) [25]. The CSO algorithm simulated the general 

behavior of cockroach, e.g., chase-swarming, 

dispersion and ruthless, etc., Furthermore, the 

Modified CSO (MCSO) is presented by introducing 

the inertial weight in chase-swarming operation of 

CSO [5]. By studying the recent discoveries in the 

behavior of cockroaches, Havens et al. proposed a new 

cockroach-inspired algorithm, called Roach Infestation 

Optimization (RIO) [9]. In essence, RIO has the 

different searching strategy with CSO. That is, RIO is 

not the improved version of CSO, but can be regarded 

as an improved version of PSO. Based on RIO, Havens 

proposed the hungry RIO (HRIO). Literature [9] has  

 

 

 

proved that HRIO has better performance than that 

RIO and PSO.  

In literature [6], we have proposed a series of 

cockroach-inspired algorithms for the Robot Path 

Planning (RPP) and Rod-Like Robot Path Planning 

(RLRPP) problems. However, practical experience 

shows that the existing cockroach-inspired algorithms 

for numerical optimization problem generally suffer 

from the problem of premature convergence. That is, 

the population converges to some local optima of a 

multimodal objective function, loses its diversity. We 

consider that the probability of stagnation depends on 

how many different potential solutions are available 

and also on their capability to enter into the population 

of the subsequent generations. Therefore, the strategy 

of neighborhood can be introduced in the original CSO 

algorithm. In this paper, we propose a new variant of 

CSO, which is called CSO with Global and Local 

neighborhoods (CSOGL). The CSOGL algorithm 

extends the original CSO, and a novel neighborhood 

scheme is proposed and applied in CSOGL. The 

neighborhood scheme can generate a local optimal 

global optimum Pi, which is significantly different 

from the CSO. Furthermore, a new Chase-Swarming 

behavior is designed for CSOGL, which can 

implement the better tradeoff between the local and 

global search during the computing process. 

The organization of this paper is as follows: section 

2 describes the original version of CSO. Section 3 

gives the swarm scheme and the chase-swarming 

strategy of CSOGL. Section 4 provides a formal 

convergence proof for the CSOGL algorithm. The 
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experimental results are illustrated in section 5. Section 

6 concluded this paper. 

2. Cockroach Swarm Optimization 

The original version of CSO simulates some basic 

biological behaviors of the cockroach, which include 

chase-swarming, dispersing, ruthless behavior. The 

CSO model is described as follow: 

1. Chase-swarming behavior: 
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, 2 , , , ,

( ),   

( ),   

i G i G i G i G i G

i G

i G g G i G i G i G
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X

X step r P X X P


    
 

      

Where, Xi,G is the cockroach current position at the G-

th generation, step is a constant value, r1 and r2 are 

random number within [0,1]. Pi is the personal best 

position, which can be computed by as following 

Equation: 

{ | | }i j j i jP Opt X X X visual  
 

here, visual is the perception constant. Pg,G is the 

global best position at the G-th iteration. 

{ }g iP Opt X
 

2. Dispersion behavior 

(1, )i iX X rand D   

where, rand (1, D) is a D-dimensional random position 

that can be set within a certain range. 

3. Ruthless behavior 

r gX P
 

where, r is a random integer within [1, N], Pg is the 

global best position. 

3. CSO with Global and Local 

Neighborhoods 

3.1. The Neighborhood Model of CSO 

By many experimental researches, we found that CSO 

suffers from the problems of slow or premature 

convergence. Furthermore, we found that the swarm 

strategy of CSO is unreasonable. In Equation (2), the 

swarm strategy |Xi－Xj|≤ visual does not guarantee that 

each cockroach is in a sub-population or a sub-

population with a certain size at the initial stage of 

CSO (See Figure 1-a). However, after some iteration, 

all cockroaches are near around Pg and there exist only 

one sub-population that is the entire population (See 

Figure 1-b). 

 

 
a) Population structure at the initial stage. 

 
b) Population structure after some iteration. 

Figure 1. The swarm strategy of CSO. 

In Figure 1-a, the cockroach X1 has no 

neighborhood in the range that controlled by Equation 

(2) and X1 hence does not belong to any sub-

population. It Means that many cockroach individuals 

is in the sub-population that only includes itself, and 

other cockroach individuals may be in a sub-

population with a big size. This problem can seriously 

deteriorate the diversity of promising solution.  

3.2. Neighborhood Model and Search Strategy 

of CSOGL  

In CSOGL, two kinds of neighborhood models are 

used, which are similar to the idea of literature [7]. The 

first one is called the local neighborhood model, where 

each Xi,G+1 is computed by the best position Pi,G found 

so far in a small neighborhood of it. On the other hand, 

the second one takes into account the globally best 

position Pg,G of the entire population at current 

generation G.  

We define a number of neighborhood K. The 

positions are organized on a ring topology with respect 

to their indices. Thus, the neighborhood structure can 

be illustrated as Figure 2. In Figure 2, N is the number 

of all cockroaches in CSOGL. We assume K=5, then 

cockroach Xi has five neighborhoods Xi+0, Xi+1, 

Xi+2, Xi+3 and Xi+4. There exist some overlapping 

neighborhoods (See Figure 3). 

(1) 

(2) 

(3) 

(4) 

(5) 
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Figure 2. The neighborhood model of CSOGL. 

 

Figure 3. The overlapping neighborhoods of CSOGL. 

According to above two neighborhood models, there 

exist two kinds of chase-swarming behaviors.  

The chase-swarming behavior for local 

neighborhood is as Equation (6): 

, , , 1 2( ) ( )i G i G i G i G r rF X P X X X    ,  

here, Li,G denotes the new location found by the i-th 

cockroach. Similarly, the chase-swarming behavior for 

global neighborhood is as Equation (7): 

, , , , 3 4( ) ( )i G i G g G i G r rF X P X X X    
 

In Equations (6) and (7), the indices r1, r2, r3, r4 are 

mutually exclusive integers randomly generated within 

the range [1, N]. 

Above two chase-swarming operations are chosen 

with a random method. Thus, the whole chase-

swarming behavior of CSOGL can be described as 

Equation (8) 

, , , 1 2

,

, , , 3 4

( ) ( ), (0,1) 0.5

( ) ( ),otherwise 
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where, rand (0, 1) is a uniformly distributed random 

number lying between 0 and 1. In essence, the chase-

swarming behaviors of local and global neighborhood 

correspond to the local and global searching on 

CSOGL. 

Notice that Fi,G, is the new location found by the i-th 

cockroach, which don’t mean that Fi,G, must be as 

position of i-th cockroach in G+1 generation. Any one 

of Fi,G, and Xi,G, is chosen to be Xi,G,+1 by the greedy 

selection scheme (See Equation (9)). 

, , ,

, 1

,

, if  ( ( ) ( )), minimization problems

,  otherwise
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F f L f X
X
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The complete pseudo-code of CSOGL is given in 

Algorithm 1. 

Algorithm 1: CSOGL 

1： INPUT: Fitness function: f(X), X ∈ RD 

2： Set parameters and generate an initial population of 

cockroach 

3： Choose the pg from whole population; 

4： Choose the pi for each cockraoch; 

5： FOR t = 1 to Gmax 

6： FOR 𝑖 = 1 to 𝑁 

7： chase-swarming operations (E.q(8)); 

8： greedy selection scheme(See E.q(9)) 

9: IF  f(Xi,) < f(Pi) THEN 

10: Pi = Xi; 

11: END IF 

12： IF  f(Xi) < f(Pg) THEN 

13： Pg = Xi; 

14： END IF 

15： END FOR 

16： END FOR 

17： Check termination condition 

4. Convergence Analysis on CSOGL 

In order to get a better understanding of the optimal 

strategy of an algorithm, it is necessary to conduct a 

theoretical analysis. In CSOGL, the greedy selection 

scheme can guarantee that the off springs are 

more optimal than the parents. Therefore, the 

stochastic functional theory can is used to analysis on 

CSOGL. For the D-dimensional problem, each 

individual in CSOGL is a D-dimensional vector Xi= 

xi1,xi2,...,xiD) (i=I,...,N) in essence. The minimization 

problem can be described as  

min{ ( ) | ,0 ( ) }f X X S f X      

Where, S is the solution space and 1
[ , ]

D

j jj
S L U


 . Each 

Xi subjects to L< Xi <U. Let
max{ | = , =1,2 }j j jU U U U j D   

and L  max{ | = , =1,2 }j j jL L L j D   , then  

1
| | [( - )10 +1] [10 ( ) 1]

D k k D

j jj
S U L U L


     

For each iteration, the Equations (8) and (9) are all 

executed. Equation (8) is composed of Equations (6) 

and (7). Note that Equation (6) and Equation (7) are 

similar in components. For conveniences, Equations 

(6) and (9) are only discussed. According to stochastic 

functional theory, once iteration of CSOGL is regarded 

as the stochastic mapping that composed of Equations 

(6) and (9). The mapping on Equation (6) can is 

defined as Ψ1. 

(9) 

(8) 

(7) 
(10) 

(11) 

(6) 
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Where, (Ω, A, μ) is the space of probability measures 

and Ω is a abstract set. Ω is the basic events and A 

denotes σ- algebra. μ is the probability measures of A.  

On the other hand, the mapping on Equation (9) can is 

defined as Ψ2: 

2 ( , ) { , } ( )

min{ ( ), ( )}

X F Z Z X F f F

f X f F

      

  

Once iteration of CSOGL can be regard as the 

mapping 2 1( )  
. For each iteration, Pg recorded 

the best cockroach individual. By the mapping Ψ, the 

fitness of Pg from 1 to Gmax are non-monotonic 

decreasing. That is, {f(Pg,t)}1≤t≤Gmax is a non-monotonic 

decreasing sequence. Pg is introduced in mapping Ψ. 

Thus, the mapping Ψ can be defined as 

, 1 , 2 1 ,= ( , ) ( ( , ))g t g t g tP P P     
 

 Lemma 1: Suppose λ: S×S→R is the distance 

defined on the space S and 
( , ) | ( ) ( ) |, ,i j i j i jX X f X f X X X S    

, then (S, λ) is 

the Perfect Metric Space [18].  

 Theorem 1: Mapping Ψ: Ω×S→S is a randomly 

contractive operator.  

 PROOF: According to Equations (6) and (9), the off 

springs are more optimal than parents. For the 

mapping Ψ, there exist a non-negative variable 

0≤K(ω)＜1, a. s. 
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here 
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0
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The result of the above proof shows that mapping Ψ is 

the randomly contractive operator. 

 Lemma 2: Ψ: Ω×S→S is a randomly operator. For 

each ω ( ω∈Ω) , If Ψ(ω) is the contractive operator, 

then Ψ(ω) has the unique fixed point g(ω), that is, 

Ψ(ω, g(ω))= g(ω) [18, 19].  

 Theorem 1: If Ψ is the randomly contractive 

operator of CSOGL, then Ψ has the unique fixed 

point, that is, CSOGL has the property of gradual-

approach convergence. 

5. Simulation Studies 

In order to evaluate the performance of CSOGL, the 

paper selected eleven classical benchmark test 

functions. These functions include various types of 

complex problems, e.g., the single-mode and multi-

mode, regular and irregular, separation and non-

separated, etc., all the test functions are shown in Table 

1. 

Table 1. Benchmark test functions. 

Fn Description Search range Optimum value 

Sphere 
2

1

1

D

i

i

f X x


（ ）
 

−100≤xi≤ 100 1 0f X *（ ）
 

Rastrigin 
2

2

1

( ) 10 ( 10cos(2 ))
D

i i

i

f X D x x


   
 

−5.12≤xi≤ 5.12 
2 0f X *（ ）

 

Rosenbrock 

1
2 2 2

3 1

1

( ) [100( ) (1 ) ]
D

i i i

i

f X x x x






   
 

−30≤xi≤ 30 3 0f X *（ ）
 

Ackley 
2

4

1 1

1 1( ) 20exp 0.2 exp cos(2 ) 20
D D

i i

i i

f X x x e
D D


 

   
           

 
 

−100≤xi≤ 100 4 0f X *（ ）
 

Schwefel1.2 
2

5

1 1

( ) ( )
D i

j

i j

f X x
 

 
 

−100≤xi≤ 100 5 0f X *（ ）
 

Schwefel2.22 6

1 1

( )
DD

i i

i i

f X x x
 

  
 

−10≤xi≤ 10 6 0f X *（ ）
 

Griewangk 

2

7

1 1

( ) 1 ( ) (cos( ))
4000

DD
i i

i i

x x
f X

i 

   
 

−600≤xi≤ 600 7 0f X *（ ）
 

Sumsquares 
2

8

1

D

i

i

f X i x


 （ ）
 

−10≤xi≤ 10 8 0f X *（ ）
 

Sinusoidal 9 1 1
( ) - sin( ) sin( ( )) ; 2.5, 5, 30

D D

i ii i
f X A x z B x z A B z

 

       
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0≤xi≤ 180 9 3.5f X  *（ ）
 

Zakharov 

2 4

2

10

1 1 1

( ) 0.5 0.5
D D D

i i i

i i i

f X x ix ix
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   
     

   
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−5≤xi≤ 10 10 0f X *（ ）
 

Step 

1
2

11

1

( ) ( 0.5 )
D

i

i

f X x




   
 

−100≤xi≤ 100 11 0f X *（ ）
 

(12) 

(13) 
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We perform large number of simulation 

experiments, and compare the CSOGL with original 

CSO, MCSO, RIO and HRIO. All the benchmark 

functions are test with 30 dimensions, and each test is 

run 20 times with maximum iteration 1000. Cockroach 

population size N=50 is used in this paper for all the 

algorithms. Other control parameters of original CSO 

and CSO variants are set according literature [5, 9, 25]. 

The test results are demonstrated in Table 2. 

In Table 2, Mean denotes the mean function value, 

STD is the standard deviation of the function value 

during the 20 runs, and Best means the best function 

values. For most of test functions, MCSO demonstrates 

better performance than that of CSO, RIO and HRIO. 

Compared with MCSO, CSOGL can give smaller 

function values by using the same numbers of function 

evaluations. That is, the performance of CSOGL is 

significantly superior to the existing cockroach-

inspired algorithm. The standarddeviation of the 

function value shows that CSOGL is stable. 

Table 2. Test results of CSO, MCSO, RIO, HRIO, and CSOGL. 

Function  CSO MCSO RIO HRIO CSOGL 

Sphere 

Mean 1.812E+02 1.520E-12 2.217E-05 1.668E-04 1.427E-30 

STD 8.105E+02 6.722E-12 2.453E-05 2.402E-04 1.332E-30 

Best 4.920E-07 2.998E-24 5.763E-09 5.564E-08 4.643E-44 

Rastrigin 

Mean 3.602E+03 9.199E-11 3.814E-05 3.215E-04 0.000E+00 

STD 5.573E+03 3.946E-10 3.444E-05 3.000E-04 0.000E+00 

Best 3.134E-04 0.000E+00 2.710E-07 2.145E-07 0.000E+00 

Rosenbrock 

Mean 9.507E+11 2.900E+01 2.528E+06 3.357E+06 3.400E+01 

STD 2.271E+12 0.000E+00 4.053E+06 7.115E+06 0.000E+00 

Best 4.407E+01 2.900E+01 1.677E+04 3.756E+04 2.700E+01 

Ackley 

Mean 1.922E+01 5.159E-06 2.000E+01 2.001E+01 2.146E-14 

STD 5.826E+00 1.915E-05 3.046E-03 1.567E-02 6.822E-16 

Best 2.013E+01 6.462E-09 2.000E+01 2.000E+01 3.294E-16 

Schwefel1.2 

Mean 3.499E-04 4.475E-13 2.450E-05 2.271E-04 5.309E-27 

STD 3.373E-04 1.975E-12 2.796E-05 2.364E-04 2.417E-27 

Best 4.155E-08 5.631E-23 1.136E-08 5.823E-07 4.506E-50 

Schwefel2.22 

Mean 2.901E+54 6.359E-06 2.313E+02 2.440E+02 4.030E-17 

STD 1.297E+55 1.194E-05 1.319E+02 1.234E+02 2.314E-15 

Best 3.685E+01 5.941E-08 6.740E+01 1.735E+01 4.251E-23 

Griewangk 

Mean 2.615E+01 3.315E-11 7.951E-01 7.775E-01 0.000E+00 

STD 3.663E+01 1.467E-10 3.758E-01 2.545E-01 0.000E+00 

Best 6.391E-05 0.000E+00 2.932E-01 3.203E-01 0.000E+00 

Sum Squares 

Mean 9.050E+05 4.245E-11 1.982E+03 4.677E+03 2.124E-27 

STD 1.025E+06 1.293E-10 2.837E+03 6.710E+03 5.441E-24 

Best 1.873E+02 1.500E-16 1.646E+01 2.052E+02 2.464E-46 

Sinusoidal 

Mean -2.449E+00 -3.103E+00 -4.259E-01 -3.790E-01 -2.034E+00 

STD 1.020E+00 5.047E-05 2.663E-01 1.979E-01 2.115E-14 

Best -3.309E+00 -3.103E+00 -1.192E+00 -8.311E-01 -4.142E+00 

Zakharov 

Mean 6.366E+18 2.388E-09 1.017E+04 1.022E+04 3.065E-24 

STD 2.273E+19 8.853E-09 3.864E+03 5.101E+03 0.446E-24 

Best 1.358E+09 2.095E-15 2.663E+03 2.315E+03 5.239E-57 

Step 

Mean 2.000E+04 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

STD 8.482E+04 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

Best 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

 

6. Summary and Conclusions 

In this paper, we present the CSOGL algorithm for 

global numerical optimization with continuous 

variables. CSOGL is an improved version of CSO. 

However, CSOGL has a novel swarm strategy and all-

new chase-swarming scheme, which are 

significantly different from existing cockroach -

inspired algorithms. This paper provides a formal 

convergence proof for the CSOGL algorithm. We have 

compared the performance of CSOGL with those of 

CSO, MCSO, RIO, and HRIO over a suite of 11 

numerical optimization problems and concluded that 

CSOGL is more effective in obtaining better quality 

solutions. In most cases, CCO is more stable with the 

relatively smaller standard deviation. 
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