
798 The International Arab Journal of Information Technology, Vol. 16, No. 5, September 2019

An Efficient Line Clipping Algorithm in 2D Space

Mamatha Elliriki1, Chandrasekhara Reddy2, and Krishna Anand3
1Department of Mathematics, GITAM University, India

2Department of Mathematics, Cambridge Institute of Technology-NC, India
3Department of Computer Science, Sreenidhi Institute of Science and Technology, India

Abstract: Clipping problem seems to be pretty simple from human perspective point of view since with visualization a line can

easily be traced whether it is completely inside and if not what portion of the line lies outside the window. However, from

system point of view, the number of computations and comparisons for lines with floating point calculations are extremely

large which in turn adds to inherent complexity. It needs to minimize the number of computations thereby achieving a

significant increase in terms of efficiency. In this work, a mathematical model has been proposed for evaluating intersection

points thereby clipping lines which decently rely on integral calculations. Besides, no further computations are found to be

necessary for evaluating intersection points. The performance of the algorithm seems to be consistently good in terms of speed

for all sizes of clipping windows.

Keywords: Ortho lengths, raster graphics system, line clipping, intersection points, geometrical slopes, rectangle window.

Received July 23, 2015; accepted June 1, 2016

1. Introduction

The usage of line clipping in a wide variety of

scientific applications seems to increase rather

exponentially. Although the concept appears simple at

the outset, its enormity of usage makes scientific

research on the same an urgent requirement. With this

perspective in mind, this work has shifted its focus to

improving the efficiency of line clipping algorithms

[4]. This in turn also provides an added impetus to

perform improvement in clipping of polygons which

has also been highlighted this work.

Perhaps, line clipping algorithms seems to be the

second most important algorithms after line drawing

algorithms in the rank point [10] of view in graphics.

In general, the clipping window in raster scan system is

usually associated with a rectangular window.

However, window shapes including circular and

polygonal [16, 26] can also be taken into be

consideration. Rectangular windows are easy to be

mapped to a computer screen using a transformation

called ‘window to viewport mapping’ which in turn is

composed of translation, scaling and rotation.

The primary goal of clipping in a two Dimensional

computer graphics system is to remove objects, lines or

line segments that are outside the viewing port window

and clipping of lines is an elementary concept in the

visualization process [9]. Real world objects can be

represented relative to a reference world coordinate

system [12]. It is difficult to view all the objects on

computer screen at the same time in one screen shot

since it usually occupies many places in the world

coordinate system. As in human perception and

cameras, one screen shot contains the images of some

objects, parts of which are probably clipped. On

identifying objects or parts of objects that need to be

displayed on one screen shot, clipping algorithm needs

to be executed on every object to determine whether it

should appear completely or partially on the screen or

to be clipped out. Clipping algorithms [7, 11, 23, 24,

27] usually have parameters describing the ‘clipping

window’ in 2D worlds or ‘clipping volume’ in 3D

worlds apart from the representation of the object

being tested for clipping.

A large number of computer and mobile

applications require powerful hardware coupled with

efficient and fast algorithms [3, 13, 19] for their

successful usage. Besides, the selection of right choice

of tools helps in the usage of the application and

provides an added degree of sophistication that arises

in animations and graphical user interfaces [1]. In

addition, hardware implementation provides a special

significance for fast processing and accurate solutions.

The rest of this paper is organized as follows.

Section 2, briefly explains about the existing

algorithms for clipping lines in rectangle window.

Section 3 presents the problem analysis and various

possibilities of lines that exist in a two dimensional

coordinate system. Computational formulae are

derived in section 4 and these formulae greatly

simplify the work of extraction of a line which needs to

be saved in raster system. In detail study and

development of algorithm is explained to crop a line

from original line in section 5. In section 6 various

algorithms are described for optimal utilization of

resources for different cases. Section 7 concludes

performance analysis and comparisons with previous

algorithms.

An Efficient Line Clipping Algorithm in 2D Space 799

(1)

(2)

2. Existing Algorithms

Research has shown that, computation with each and

every intersection between line and edge of the

window needs more cycles for Central Processing

Units (CPU) since it incorporates floating point

operations. Several algorithms are introduced to clip

lines against rectangular [2, 15, 21] and non-

rectangular [12, 28] windows. A reduction in number

of intersections would lead to improvement in

efficiency. In this paper, an efficient algorithm is

proposed to minimize the number of intersections as

much as possible.

Currently, two types of approaches are available to

clip a line with respect to clipping window. One of

these methodologies is to deal with a logical approach

[18, 20, 25] where each and every line segment is

clipped identically by dividing regions with logical

code. Cohen Sutherland (CS) algorithm falls under this

approach and deals by encoding endpoints of line

segment. This algorithm is found to be highly effective

when the entire line is found to be inside the window.

For lines that are completely outside, unnecessary

computations need to be carried out. The complexity of

computations has been found to increase when the line

is found partially inside the window [8]. The second

approach deals with parameterization [15, 29]. Cyrus -

Beck [5] and Liang Barsky (LB) [15] algorithms come

under the second category and developed algorithms

with the help of parametric equations. These methods

are schematized based on the behaviour of line

segment. However, it has been found to be inefficient

in many scenarios.

A modified version for clipping has been tried out

by Nicholl Lee Nicholl (NLN) [21] where they

designed a hybrid parametric algorithm using both

techniques. The principal advantage of this hybrid

approach deals with minimization of time consuming

operations like multiplication and division [14]. They

are able to reduce the number of comparisons by two

thirds with respect to Cohen- Sutherland algorithm and

half with respect to Liang and Barsky [15] algorithm.

However, the time consumed in creation of regions is

significant as the algorithm needs to initially determine

the position of endpoints. Besides, the amount of effort

taken for applying geometric transformations and

comparing slopes lie on the other higher side and

saving these computations for further tests need more

memory.

All the algorithms described herein did not cater to

the speed requirement of the day to day needs. Keeping

this viewpoint in perspective, it needs a much faster

algorithm [17, 22, 30] for rectangular window and

polygon space in the present world. However, it was

observed that for some scenarios, the level of

complexity was found to rise in leaps and bounds

which in turn led to a serious loss in efficiency. In

order to rectify the inherent deficiencies in these

methods, a new clipping algorithm for a complex

window has been proposed by Skala [24, 25] and Day

has proposed an algorithm two dimensional small

window [6]. The usage of binary search in this

algorithm has led to a considerable decrease in the

level of complexity. However, the gain observed could

not be replicated on consideration of rectangular

windows.

The direct procedure to clip a line is to evaluate all

intersection points of the line with edges that lie on

rectangular window. It is observed that clipping

problem is trickier than evaluating juncture points of

infinite lines. In clipping method, it is imperative to

recognize whether a crossing point for a line lies inside

or on edges or outside. The same method applies for all

four edges of the rectangle window. Intersection points

of a line segment that lie outside edges or outside

endpoints are meaningless on saving line.

3. Computational Analysis and Algorithm

Development

To compute intersection points of a line, it is

worthwhile to denote the line segment connected by

two end points (xstart, ystart) and (xend, yend) and the

parameters of the rectangular clipping window are

(xleft, ybottom) and (xright, ytop); the lower left and upper

right corner coordinates expressed in real-world units.

Screen viewport parameters are given in pixels in

image space. Without loss of generality, (xstart, ystart)

can be considered as starting point which is close to x-

axis and (xend, yend) is the other end point of line

segment. From this, it can be observed that if slope of

the straight line is positive, then xstart ≤ xend. Otherwise,

xstart>xend. But for all slopes, yend is always greater than

or equal to ystart i.e., ystart ≤ yend.

 This information is highlighted in Figures 9 and 12.

These inequalities are found to be helpful for reducing

number of comparisons in inside/outside tests. Now,

the line can be decided with one of the following tests.

 Complete Acceptance: Entire line lies within the

clipping window. It implies that the whole line must

be saved as no clipping takes place. The comparison

shown in Equation (1) is founds to be sufficient.

This provides an impetus to these acceptance

criteria as shown in Figure 2.

topendartstbottomrightendstartleft yyyyxxxx  },{&},{

 Complete Rejection: Entire line located outside and

on one side of clipping window and will not

intersect perpendicular edges, hence line can be

rejected. The comparison shown in Equation (2)

highlights the case as shown in Figure 3.

topstartbottomendrightendstartleftendstart yyoryyorxxxorxxx  },{},{

 Partial Acceptance (Case 1): Both endpoints are

placed exterior to the rectangular window and the

800 The International Arab Journal of Information Technology, Vol. 16, No. 5, September 2019

(3)

(4)

line intersects perpendicular edges of the clipping

window. In this case, if some portion of the line is

inside of clipping window then the part of the line

segment has to be extracted along with end points

that lie on the clipping window. This case is the

most complex one and presented in detail in

sections 5.1. and 5.2.

 Partial Acceptance (Case 2): One end point is

inside the window while the other end is outside. It

is essential to find out line intersection points with

one of the four edges of the clipping window and

line should be drawn from inside point to

intersection point. This situation is considered as a

part of the previous one and discussed in section

5.3. as a special case.

Figure 1. General line segments that are to be tested to clip in a

rectangular window.

Figure 2. Set of line segments lie completely inside rectangular

window (Test 1).

Figure 3. Completely rejected line segments that lie entirely outside

clipping window (Test 2).

4. Ortho Length Formulae for Intersection

Points

Formation of computational formulae is desirable for

the development of algorithm and is considered to be

significant work developed using fundamental

geometry. As mentioned earlier, (xstart, ystart) and (xend,

yend) are end points of a line and xedge is either left or

right edge dimension of the rectangular window.

Similarly, yedge is top or bottom edge dimension.

Define, further Δx = xend - xstart and Δy = yend-ystart that

are the distances in terms x directions and y directions

respectively with end points of the line. From this, if

slope is positive then the product of Δx and Δy is

greater than or equal to zero (Δx * Δy ≥ 0) else product

sign is negative. With the help of clipping dimensions

and line segment end points, intersection points can be

easily evaluated and these formulae are presented in

subsequent part of this section.

4.1. Line Segment Intersection with x = xedge (δy

is Unknown)

Let the line segment with end points P(xstart, ystart) and

Q(xend, yend) and intersect x = xedge at the point C(xedge,

Ry). Ry defined as ortho length, is the upright distance

from x-axis to intersection point and plays strategic

role to decide line segment. From geometry, the slope

of a straight line for any two arbitrary points is same

[8, 10, 11]. i.e.,

)}(),,({)}(),,({ endendyedgeendendstartstart yxQRxCslopeyxQyxPslope 

edgeend

yend

startend

startend

xx

Ry

xx

yy










x
x

y
y

x

y

x

y















where Δx,Δy and δx=xend-xedge are known constants.

yend Ryy  is unknown constant to be evaluated.

From Equation (5), ortho length can be computed as

x
x

y
yR endy 






Figure 4. Ortho length Ryl in 2D-coordinate system representation.

Figure 5. Graphical view of ortho length Ryr used to evaluate right

edge intersection point.

Equation (6) holds good even for swapping end

points of the line segment. Now, if the line segment

(5)

(6)

An Efficient Line Clipping Algorithm in 2D Space 801

(9)

intersects left edge of the clipping window at point

(xleft, Ryl), (Figure 4) then Equation (6) becomes:

leftendendyl xxxwherex
x

y
yR 




 

Similar analysis can be given for the line segment that

intersects right edge of the rectangle window. Let Ryr

be the ortho distance from x-axis to intersection point

of a line with right edge of the clipping window as

presented in Figure 5. Then Equation (6) becomes

rightendendyr xxxwherex
x

y
yR 




 

4.2. Line segment intersection with y=yedge (δx

is unknown)

Section 4.1. focussed on positive slope line segments.

It could be observed that a suitable experimentation

can be carried out with negative slopes also. A case is

taken into consideration where the line PQ intersects

straight line y = yedge at the point D(Rx, yedge) where Rx

is ortho distance from (0, yedge) to (Rx, yedge). Equation

(9) deals with the formulation of slope. Equations (10)

and (11) could be derived from slope Equation (9).

 start start end end edge y end endslope{ P(x , y), Q(x y)} slope{ C(x ,R), Q(x y)}

xend

edgeend

startend

startend

Rx

yy

xx

yy










y
y

x
x

x

y

x

y















end xx x R   is unknown constant to be evaluated; Δx,

Δy and
end edgey y y   are known constants can be

evaluated with given parameters.

From Equation (11), ortho length is computed. The

distance between y axis and the point of intersection on

the clipping window could be computed as shown in

Equation (12).

y

y

x
xR endx 






Rxb and Rxt are ortho lengths as mentioned in Figures

6, and 7 are distances from y-axis to bottom and top

edges of clipping window respectively. Equations (13)

and (14) can in turn be obtained from Equation (12).

bottomendendxb yyywherey
y

x
xR 




 

topendendxt yyywherey
y

x
xR 




 

Figure 6. Ortho length Rxb evaluation for line segment that interest

bottom edge.

Figure 7. Graphical form of ortho length Rxt in 2D-coordinate

system.

Equations (7), (8), (13), and (14), represent the

intersection distance formulae for lines that clip the

rectangular window. These formulae provide a precise

indication of the presence of the line inside the

rectangular window. Magnitudes Δx, Δy, δx and δy

can be easily evaluated with help of given points of a

line segment and clipping window dimensions. Ortho

length dimension quantity formulae reveal equivalent

even if end points are interchanged.

From this it is observed that for all slopes of a line

segment, evaluation of distance from x-axis to

intersection point of a line with left and right edges of

clipping window has the same formula with small

variation of δx and δy. These formulae further can be

simplified by using roundup and floor functions in

integral form as:

For left edge x = xleft of the clipping window
















2

1
x

x

y
yR endyl 

leftendendyl xxxwhere
x

xxy
yR 












 



2

2

Following similar procedure for right edge x = xright of

the clipping window, we have:

rightendendyr xxxwhere
x

xxy
yR 












 



2

2

For all slopes of a line segment the evaluation of

integral distances from y-axis to intersection point of a

line with bottom and top edges of clipping window

are:

For bottom edge y = ybottom of the clipping window

(7)

(8)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

802 The International Arab Journal of Information Technology, Vol. 16, No. 5, September 2019

bottomendendxb yyywhere
y

yyx
xR 












 



2

2

For top edge y = ytop of the clipping window

topendendxt yyywhere
y

yyx
xR 












 



2

2

Where  )(f is the floor function defined as integer

part of the function f(ω).

These equation, in C compiler compute one third

times faster than floating point computations. Majority

of lines are eliminated by inequality tests. All

remaining lines are evolved with the help of ortho

lengths Ryl, Ryr, Rxb, and Rxt and these are the decision

factors to choose whether the line is inside or outside

of the clipping window. If inequality tests (1) and (2)

fail for a line then the other possibilities for line are

either both end points of line are outside which

intersects perpendicular edges of the clipping window

or one end of the line is inside. Now let us deal first

problem as two special cases with assistance of slope

of a line. For any line slope may be either positive or

negative and can be decided as positive if the

inequality Δx * Δy ≥ 0 or in easy form xend ≥ xstart holds

good which is integral value computation, otherwise it

is negative. Following sections deals in detail study for

partially accepting or completely rejecting lines.

5. Line Clipping Tests

A vast majority of lines need few tests for determining

the portion of line that remains inside the clipping

window (Figures 1, 2, and 3). All ortholengths Ryl, Ryr,

Rxb and Rxt of a line are first evaluated and the

corresponding intersections have been computed. If all

intersection points with ortho lengths are outside

window then entire line is rejected. For the line which

is partially inside clipping window, exactly two points

are on the window edges and two points are outside. In

this case, the line with two end points that are inside

window is drawn and the remaining portion of line is

discarded.

Evaluations of ortho lengths and all four intersection

points could be avoided in case of invisible line

through comparison tests thereby saving effort and

time. All invisible lines can be eliminated by

conducting a maximum of two comparisons. However,

atmost four comparisons are needed for partially

visible lines. For further computations, as earlier

stated, first point is near to x-axis and end point of the

line is above first point. From this, if ∆x * ∆y ≥ 0, then

slope is positive and line is drawn from left to right

and/or diagonally above in the coordinate system, so

that xend ≥ xstart and yend ≥ ystart. The converse holds true

for negative slopes. From this it can be accomplished

that, irrespective of all slopes, authors have taken two

end points in such a way that yend is always greater than

or equal to ystart (yend ≥ ystart).

This inequality constraint is used to reduce

comparisons for partially visible and completely

rejected lines.

The procedure for a line with positive slope is as

follows. If Ryl > ytop,, then entire line is outside clipping

window and can be rejected (Figure 8). This can be

visualized using simple analogy. Ryl is the distance

from x-axis to intersection point of line with left edge

of window and slope of the line is positive. Hence, the

points of the line from staring point to (xleft, Ryl) fall to

the left of the clipping window and outside. According

to slope property, frequently used in NLN algorithm, if

slope between first point and intersection point is

greater than the slope between first point and top left

vertex of window then entire line is outside, line is

rejected. If Ryr < ybottom then line intersects right edge

below clipping window and passes outside, hence

rejected (Figure 8). In this case, the line with points (xi,
yi) for all yi < Ryr is below clipping window and

remaining portion of the line is right side to window.
Similar analysis can be carried out for negative

slopes (Figure 11). For all remaining cases, a part of

the line is inside clipping window and subsequent

procedure is used to save part of line segment.

5.1. Straight line with Positive Slope

Initially, Ryl has been computed and checked for its

range. If ybottom≤ Ryl ≤ ytop, then line enters the clipping

window at the point (xleft, Ryl).

Figure 8. Line segments with positive slopes.

Figure 9. Line segment with positive slope.

Subsequently, the next end point has to be

computed. This can be evaluated easily using ortho

length formulae Ryr or Rxt. This in turn may lie either

on the right or top edge of the clipping window.

Figures 9, and 10 highlight the mentioned aspects.

(19)

(18)

An Efficient Line Clipping Algorithm in 2D Space 803

Figure 10. Segment lines enter into the clipping window with

different possible cases.

5.2. Straight Line with Negative Slope

Lines with negative slopes have been found to be

analogous with those of positive slope. In this case

xend<xstart. The values Ryl and Ryr that had been

computed earlier have been retained for further

computations. The following procedure helps in

determination of the presence of that part of the line

which is inside the window.

If ybottom≤ Ryr ≤ ytop, then line intersects the right

edge of clipping window at the point (xright, Ryr). The

next end point evaluated may lie on left or top edge of

clipping window. This can be evaluated using ortho

length formulae Ryl or Rxt.
If Ryl≤ ytop, then last end point is (xleft, Ryl) else (Rxt,

ytop) and part of visible line can easily be drawn using

these two end points.

If Ryr<ybottom then line enters inside window at the

point (Rxb, ybottom) by intersecting bottom edge. If Ryl ≤

ytop , the next intersection point is (xleft, Ryl). Otherwise

the point is (Rxt, ytop).

Figure 11. Discarded line segments with negative slopes.

Figure 12. Part of line segments inside clipping window.

If Ryr≤ ytop , then the second end point is (xright, Ryr).

Otherwise it is (Rxt, ytop) as highlighted in Figure 12.

The partially visible line could in turn be drawn using

these two end points.

Figure 13. Line segments needing larger number of tests.

If Ryl<ybottom then line enter inside window at the

point (Rxb, ybottom) by intersecting bottom edge and

next point is (xright, Ryr) if Ryr ≤ ytop else (Rxt, ytop).

5.3. One Line Edge is Inside Clipping Window

With small modifications as stated earlier, let (xin, yin)

be one end point of line that lie inside clipping window

and (xout, yout) be the other end point lying outside the

window. As some part of the line lies inside the

window, the possibility of complete rejection ceases to

exist. For extracting the portion of the line,

redefine
inoutinout yyyxxx  , . The clipping window

is now divided into four regions based on the location

of the point lying inside the window. These regions are

presented in Figure (14) and can be identified as:

1. Right top corner region: Δx > 0, Δy ≥ 0

2. Left top corner region: Δx ≤ 0, Δy > 0

3. Left bottom corner region: Δx < 0, Δy ≤ 0

4. Right bottom corner region: Δx ≥ 0, Δy < 0

Figure 14. Various possibilities of straight lines exit from clipping

window to external region.

Section of region to evaluate another end point that

lie on edge will be decided with the help of positive

and negative values of Δx and Δy. The various

constraints that need to be checked in each case have

been clearly highlighted in the various portions of

Figure 14.

As defined earlier, ortho lengths are distances, from

coordinate axis to intersection point between edges of

clipping window and line.

804 The International Arab Journal of Information Technology, Vol. 16, No. 5, September 2019

edgeoutoutx yyywhere
y

yyx
xR 












 



2

2

edgeoutouty xxxwhere
x

xxy
yR 












 



2

2

δx and δy indicate horizontal and vertical distances

from point that lies outside the window to

corresponding intersection edge of clipping window.

After identifying regions with the help of inequality

conditions, corresponding ortho lengths Rx and/or Ry

have been evaluated. For lines that lie in the top right

corner region, the last point is (xright, Ry) if Ry ≤ ytop.

Otherwise, it is (Rx, ytop). A similar procedure can be

applied to compute other end point of a line for all

remaining regions. In this case, it could be easily

observed that a maximum of two computations Rx and

Ry need to be performed. In the best case scenario, only

one among Rx and Ry needs to be evaluated.

6. Proposed Algorithms

In order to consider the various cases of line clipping

highlighted in section 5, a set of three mathematical

algorithms have been designed. The choice of the set

of algorithms to be applied depends on the constraints

satisfied by the line. Magnitudes Rxl, Rxr, Ryb, and Ryt

are the ortho lengths and calculated using the formulae

described earlier.

Algorithm 1: Selection of algorithm and end points for the

straight lines

Get clipping window edges xleft, xright, ybottom and ytop

Collect end points of line segment (x1, y1), (x2, y2)

If (y1 < y2)

{

 Set (xstart, ystart) ← (x1, y1)

Set (xend, yend) ← (x2, y2)

 }

 Else

 {

 Set (xstart, ystart) ← (x2, y2)

Set (xend, yend) ← (x1, y1)

 }

 Save entire line if it satisfies the inequalities

 {

xleft ≤ {xstart, xend} ≤ xright

ybottom ≤ ystart and yend ≤ ytop

}

 Reject entire line if it satisfies the inequalities

 {

yend < ybottom or ystart > ytop

{xstart, xend} < xleft or {xstart, xend} >xright

}

 If both end points are outside rectangular window

 { Apply second algorithm }

Else

{ Apply third algorithm }

Algorithm 2: Both End Points are Outside Window

Evaluate Rxl, Rxr, Ryb and Ryt at appropriate time

Case I: xstart ≤ xend (Slope of the line is positive)

If (Ryl > ytop)

{

 Reject line

}

Else If(Ryl ≥ ybottom)

{

 Set the first point (xleft, Ryl)

 Compute next point (xright, Ryr) or (Rxt, ytop)

}

Else if (Ryr < ybottom)

{

Reject line

 }

Else

{

 Set the first point (Rxb, ybottom)

 If(Ryr ≤ ytop)

 { Set the last point (xright, Ryr) }

 Else

{ Set the last point (Rxt, ytop) }

 }

Case II: xstart > xend (Slope of the line is negative)

If (Ryr > ytop)

{

Reject line

 }

Else If (Ryr ≥ ybottom)

{

 Set the first point (xright, Ryr)

 Compute the last point (xleft, Ryl) or (Rxt, ytop)

}

Else If (Ryl < ybottom)

{

Reject line

 }

 Else

 {

 Set the first point (Rxb, ybottom)

 If (Ryl ≤ ytop)

 {

 Set the last point (xleft, Ryl)

 }

 Else

 {

 Set the last point (Rxt, ytop)

 }

 }

Algorithm 3: One End Point of Line Inside Rectangular

Window

Set (xin, yin) as inside point

Set (xout, yout) as outside point of line in clipping region

(20)

(21)

An Efficient Line Clipping Algorithm in 2D Space 805

Save (xin, yin)

compute other end point with following procedure

If (Δx > 0 && Δ y ≥ 0 && Ryr ≤ ytop)

{

 Set other end point (xright, Ryr)

}

Else

{

Set other end point (Rxt, ytop)

}

If (Δx ≤ 0 && Δ y > 0 && Rxt ≥ xleft)

{

Set other end point (Rxt, ytop)

}

Else

{

 Set other point (xleft, Ryl)

}

If (Δx < 0 && Δ y ≤ 0 && Ryl ≥ ybottom)

{

Set other point (xleft, Ryl)

}

Else

{

 Set other point (Rxb, ybottom)

}

If (Δx ≥ 0 && Δ y < 0 && Rxb ≤ xright)

{

Set other point (Rxb, ybottom)

}

Else

{

 Set other point (xright, Ryr)

}

Once the end points are computed and if part of line

segment is inside, then portion of the line can easily be

drawn that lie inside clipping window. The selection of

end points for a line in the third algorithm are slightly

different and chosen such a way that one point is inside

rectangular window and another point is outside

anywhere in coordinate system.

7. Performance Analysis

The proposed algorithm has been compared with

existing algorithms in graphics industry. A wide range

of conclusions could be inferred.

 It has been observed that the proposed algorithm

mostly depends on comparisons that need only one

cycle of CPU apart from few arithmetic

computations.

 Unlike other methods, no calculations are needed to

evaluate end points of the saving line that lie inside

clipping window.

 All presently existing algorithms are using floating

point calculations whereas proposed algorithm

depends only on integral values. It is observed that

integral calculations are one third times faster than

floating point computations.

 Time complexity does not change with the size of

the window.

 LB algorithm may be straight forward but requires a

large number of computations (multiplications and

divisions) as compared to other methods.

 CS seems to be simplest and oldest algorithm but

the number of computations grow exponentially for

the points that lie on edge. Besides, there is

ambiguity in the choice of upper or lower or side

regions.

 NLN algorithm is developed based on slope

comparisons that are stored for further

computations. Hence, a huge quantity of memory is

needed to handle the level of storage.

 In NLN algorithm, geometric transformations are

used. This in turn leads to need for knowledge on

the area initially for understanding and later for

subsequent implementation. In NLN algorithm, first

geometric transformation has to be applied to rotate

point location and three slopes are compared.

However, in the proposed algorithm, first Ryr is

compared with inequalities ybottom ≤ Ryr ≤ ytop and

the point is chosen as (xright, Ryr).

Numerical computations are evaluated with three

different cases.

1. Positive slope lines.

2. Negative slope lines.

3. Portion of line inside window apart from completely

accepted and rejected lines.

Rectangular window dimensions, in this analysis are

taken as (25, 25) and (75, 75). i.e., edges of clipping

window are x = 25, x = 75, y = 25 and y = 75. Results

are presented in tables.

Table 1 presents the results for positive slope lines,

where these lines may be passed clipping window

either by intersecting left or bottom clipping edges.

Numerical results for negative slope lines are presented

in Table 2 and clipping portion of the line and its end

points are computed. Table 3 handles the results for the

lines, where one point is inside clipping window and

another end point is outside. Based on algorithm tests

some of the lines are rejected and in some other lines a

portion of the line is clipped.

Table 1. Positive slopes line segments.

S. No First Point Last Point Ryl Ryr Rxb Rxt Decision

Save Points

First

Point

Last

Point

1 (15, 50) (35, 150) 100 - - - - - - Rejected - - - -

2 (00, 05) (175, 40) 10 20 - - - - Rejected - - - -

3 (20, 35) (100,75) 38 63 - - - - Accepted (25, 38) (75, 63)

4 (15, 30) (85, 100) 40 90 - - 60 Accepted (25, 40) (60, 75)

5 (10, 10) (110, 60) 18 43 40 - - Accepted (40, 25) (75,43)

6 (20, 05) (65, 95) 15 115 30 55 Accepted (30, 25) (55, 75)

806 The International Arab Journal of Information Technology, Vol. 16, No. 5, September 2019

Table 2. Negative slope line segments.

S. No First Point Last Point Ryr Ryl Rxb Rxt Decision

Save Points

First Point
Last

Point

1 (100, 30) (65, 100) 80 - - - - - - Rejected -- --

2 (110, 05) (00, 27) 12 22 - - - - Rejected - - - -

3 (90, 10) (10, 90) 25 75 - - - - Accepted (75, 25) (25, 75)

4 (90, 20) (50, 100) 50 150 - - 63 Accepted (75, 50) (63, 75)

5 (80, 00) (00, 80) 5 55 55 - - Accepted (55, 25) (25, 55)

6 (75, 00) (20, 110) 0 100 63 38 Accepted (63, 25) (38, 75)

Table 3. One side of line segment is inside clipping window.

S. No First Point Last Point Ry Rx Region
Save Points

In Point Out Point

1 (50, 60) (150, 80) 65 - - I (50, 60) (75, 65)

2 (40, 60) (70, 90) 95 55 I (40, 60) (55, 75)

3 (50, 40) (00, 90) 65 - - II (50, 40) (25, 65)

4 (50, 50) (20, 110) 100 38 II (50, 50) (38, 75)

5 (50, 60) (20, 30) 35 - - III (50, 60) (25, 35)

6 (50, 50) (30, 10) 00 38 III (50, 50) (38, 25)

7 (40, 60) (90, 35) 43 - - IV (40, 60) (75, 43)

8 (40, 50) (80, 10) 15 65 IV (40, 50) (65, 75)

References

[1] Abdullah M., Pathan A., and Al Shaikhli I., “A

Web and Software-Based Approach Blending

Social Networks for Online Qur'anic Arabic

Learning,” The International Arab Journal of

Information Technology, vol. 14, no. 1, pp. 80-

90, 2017.

[2] Andreev R. and Sofianska E., “New Algorithm

for Two-Dimensional Line Clipping,” Computers

and Graphics, vol. 15, no. 4, pp. 519-526, 1991.

[3] Bui D. and Skala V., “Fast Algorithms for

Clipping Lines and Line Segments in E2,” The

Visual Computer, vol. 14, no. 1, pp. 31-38, 1998.
[4] Chen X., Yong J., Wang G., Paul J., and Xu G.,

“Computing the Minimum Distance between a

Point and a NURBS Curve,” Computer-Aided

Design, vol. 40, no. 10, pp. 1051-1054, 2008.

[5] Cyrus M. and Beck J., “Generalized Two-and

Three-Dimensional Clipping,” Computers and

Graphics, vol. 3, no. 1, pp. 23-28, 1978.

[6] Day J., “A New Two Dimensional Line Clipping

Algorithm for Small Windows,” Computer

Graphics Forum, vol. 11, no. 4, pp. 241-245,

1992.

[7] Day J., “An Algorithm for Clipping Lines in

Object and Image Space,” Computers and

Graphics, vol. 16, no. 4, pp. 421-426, 1993.

[8] Dévai F., “Analysis of the Nicholl-Lee-Nicholl

Algorithm,” in Proceedings of International

Conference on Computational Science and its

Applications, Singapor, pp. 726-736, 2005.
[9] Foley J. and Van Dam A., Fundamentals of

Interactive Computer Graphics, MA: Addison-

Wesley, 1982.

[10] Gross M. and Pfister H., Point-Based Graphics,

Morgan Kaufmann, 2011.

[11] Hearn D. and Baker P., Computer Graphics,

Prentice Hall, 1997.

[12] Huang W., “Line Clipping Algorithm of Affine

Transformation for Polygon,” in Proceedings of

International Conference on Intelligent

Computing, Nanning, pp. 55-60, 2013.

[13] Hughes J. and Foley J., Computer Graphics:

Principles and Practice, Pearson Education,

2013.

[14] Klette R. and Rosenfeld A., Digital Geometry:

Geometric Methods for Digital Picture Analysis,

Morgan Kaufmann, 2004.

[15] Liang Y. and Barsky B., “A new Concept and

Method for Line Clipping,” ACM Transactions

on Graphics, vol. 3, no. 1, pp. 1-22, 1984.

[16] Liu Y., Wang X., Bao S., Gomboši M., and Žalik

B., “An Algorithm for Polygon Clipping, and for

Determining Polygon Intersections and Unions,”

Computers and Geosciences, vol. 33, no. 5, pp.

589-598, 2007.

[17] Lu G., Wu X., and Peng Q., “An Efficient Line

Clipping Algorithm Based on Adaptive Line

Rejection,” Computers and Graphics, vol. 26, no.

3, pp. 409-415, 2002.

[18] Mamatha E., Reddy C., and Anand S., “Focal

Point Computation and Homogeneous

Geometrical Transformation for Linear Curves,”

Perspectives in Science, vol. 8, pp. 19-21, 2016.

[19] Mamatha E., Reddy C., and Prasad K., “Anti

Aliased Digital Pixel Plotting for Raster Scan

Lines Using Area Evaluation,” in Proceedings of

Emerging Research in Computing, Information,

Communication and Applications, Singapore, pp.

461-468, 2016.

[20] Kumar M., Mamatha V., Reddy C., Mukesh V.,

and Reddy R., “Data hiding with Dual Based

Reversible Image Using Sudoku Technique,” in

Proceedings of International Conference on

Advances in Computing, Communications and

Informatics, Udupi, pp. 2166-2172, 2017.

[21] Nicholl T., Lee D., and Nicholl R., “An Efficient

New Algorithm for 2-D Line Clipping: its

Development and Analysis,” ACM SIGGRAPH

Computer Graphics, vol. 21, no. 4, pp. 253-262,

1987.

[22] Reddy C., Janani1 B., Narayanan S., and

Mamatha E., “Obtaining Description for Simple

Images using Surface Realization Techniques

and Natural Language Processing,” Indian

Journal of Science and Technology, vol. 9, no.

22, pp. 1-7, 2016.

[23] Rogers D. and Rybak L., “On an Efficient

General Line-Clipping Algorithm,” Computer

Graphics and Applications, vol. 5, no. 1, pp. 82-

86, 1985.

[24] Schneider P. and Eberly D., Geometric Tools for

Computer Graphics, Morgan Kaufmann, 2002.

[25] Skala V., “A New Approach to Line and Line

Segment Clipping in Homogeneous

An Efficient Line Clipping Algorithm in 2D Space 807

Coordinates,” The Visual Computer, vol. 21, no.

11, pp. 905-914, 2005.

[26] Slater M. and Barsky B., “2D line and Polygon

Clipping Based on Space Subdivision,” The

Visual Computer, vol. 10, no. 7, pp. 407-422,

1994.

[27] Wang J., Cui C., and Gao j., “An Efficient

Algorithm for Clipping Operation Based on

Trapezoidal Meshes and Sweep-Line

Technique,” Advances in Engineering Software,

vol. 47, no. 1, pp. 72-79, 2012.

[28] Weng L., Daman D., and Rahim M., “Shadow

Casting with Stencil Buffer for Real-Time

Rendering,” The International Arab Journal of

Information Technology, vol. 5, no. 4, pp. 102-

110, 2008.

[29] Wu Q., Huang X., and Han Y., “A clipping

Algorithm for Parabola Segments against

Circular Windows,” Computers and Graphics,

vol. 30, no. 4, pp. 540-560, 2006.

[30] Zhang M. and Sabharwal C., “An Efficient

Implementation of Parametric Line and Polygon

Clipping Algorithm,” in Proceedings of the ACM

Symposium on Applied Computing, Madrid, pp.

796-800, 2002.

 Mamatha Elliriki is working at

GITAM University, Bangalore

Campus. She is presently working

on graphical models, digital

geometry, performance of various

processing systems. She is published

good number of research articles in

peer reviewed and indexed journals and international

conferences.

Chandrasekhara Reddy has

published several scientific papers in

reputed journals and conferences. He

is working as professor in

Cambridge Institute of Technology–

North Campus, Bangalore. His

current areas of research include

performance analysis of Markov models.

 Krishna Anand is currently

working as professor in the

Department of Computer Science in

Sreenidhi Institute of Science and

Technology, Hyderabad. He has rich

teaching experience in different

universities apart from the industrial

experience. His areas of interest include Simulation,

Soft Computing, Graphics and Expert Systems.

