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Abstract: Clipping problem seems to be pretty simple from human perspective point of view since with visualization a line can 

easily be traced whether it is completely inside and if not what portion of the line lies outside the window. However, from 

system point of view, the number of computations and comparisons for lines with floating point calculations are extremely 

large which in turn adds to inherent complexity. It needs to minimize the number of computations thereby achieving a 

significant increase in terms of efficiency. In this work, a mathematical model has been proposed for evaluating intersection 

points thereby clipping lines which decently rely on integral calculations. Besides, no further computations are found to be 

necessary for evaluating intersection points. The performance of the algorithm seems to be consistently good in terms of speed 

for all sizes of clipping windows. 
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1. Introduction 

The usage of line clipping in a wide variety of 

scientific applications seems to increase rather 

exponentially. Although the concept appears simple at 

the outset, its enormity of usage makes scientific 

research on the same an urgent requirement. With this 

perspective in mind, this work has shifted its focus to 

improving the efficiency of line clipping algorithms 

[4]. This in turn also provides an added impetus to 

perform improvement in clipping of polygons which 

has also been highlighted this work.  

Perhaps, line clipping algorithms seems to be the 

second most important algorithms after line drawing 

algorithms in the rank point [10] of view in graphics. 

In general, the clipping window in raster scan system is 

usually associated with a rectangular window. 

However, window shapes including circular and 

polygonal [16, 26] can also be taken into be 

consideration. Rectangular windows are easy to be 

mapped to a computer screen using a transformation 

called ‘window to viewport mapping’ which in turn is 

composed of translation, scaling and rotation.  

The primary goal of clipping in a two Dimensional 

computer graphics system is to remove objects, lines or 

line segments that are outside the viewing port window 

and clipping of lines is an elementary concept in the 

visualization process [9]. Real world objects can be 

represented relative to a reference world coordinate 

system [12]. It is difficult to view all the objects on 

computer screen at the same time in one screen shot 

since it usually occupies many places in the world 

coordinate system. As in human perception and 

cameras, one screen shot contains the images of some 

objects, parts of which are probably clipped. On 

identifying objects or parts of objects that need to be 

displayed on one screen shot, clipping algorithm needs 

to be executed on every object to determine whether it 

should appear completely or partially on the screen or 

to be clipped out. Clipping algorithms [7, 11, 23, 24, 

27] usually have parameters describing the ‘clipping 

window’ in 2D worlds or ‘clipping volume’ in 3D 

worlds apart from the representation of the object 

being tested for clipping. 

A large number of computer and mobile 

applications require powerful hardware coupled with 

efficient and fast algorithms [3, 13, 19] for their 

successful usage. Besides, the selection of right choice 

of tools helps in the usage of the application and 

provides an added degree of sophistication that arises 

in animations and graphical user interfaces [1]. In 

addition, hardware implementation provides a special 

significance for fast processing and accurate solutions. 

The rest of this paper is organized as follows. 

Section 2, briefly explains about the existing 

algorithms for clipping lines in rectangle window. 

Section 3 presents the problem analysis and various 

possibilities of lines that exist in a two dimensional 

coordinate system. Computational formulae are 

derived in section 4 and these formulae greatly 

simplify the work of extraction of a line which needs to 

be saved in raster system. In detail study and 

development of algorithm is explained to crop a line 

from original line in section 5. In section 6 various 

algorithms are described for optimal utilization of 

resources for different cases. Section 7 concludes 

performance analysis and comparisons with previous 

algorithms. 
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2. Existing Algorithms 

Research has shown that, computation with each and 

every intersection between line and edge of the 

window needs more cycles for Central Processing 

Units (CPU) since it incorporates floating point 

operations. Several algorithms are introduced to clip 

lines against rectangular [2, 15, 21] and non-

rectangular [12, 28] windows. A reduction in number 

of intersections would lead to improvement in 

efficiency. In this paper, an efficient algorithm is 

proposed to minimize the number of intersections as 

much as possible. 

Currently, two types of approaches are available to 

clip a line with respect to clipping window. One of 

these methodologies is to deal with a logical approach 

[18, 20, 25] where each and every line segment is 

clipped identically by dividing regions with logical 

code. Cohen Sutherland (CS) algorithm falls under this 

approach and deals by encoding endpoints of line 

segment. This algorithm is found to be highly effective 

when the entire line is found to be inside the window. 

For lines that are completely outside, unnecessary 

computations need to be carried out. The complexity of 

computations has been found to increase when the line 

is found partially inside the window [8]. The second 

approach deals with parameterization [15, 29]. Cyrus -

Beck [5] and Liang Barsky (LB) [15] algorithms come 

under the second category and developed algorithms 

with the help of parametric equations. These methods 

are schematized based on the behaviour of line 

segment. However, it has been found to be inefficient 

in many scenarios. 

A modified version for clipping has been tried out 

by Nicholl Lee Nicholl (NLN) [21] where they 

designed a hybrid parametric algorithm using both 

techniques. The principal advantage of this hybrid 

approach deals with minimization of time consuming 

operations like multiplication and division [14]. They 

are able to reduce the number of comparisons by two 

thirds with respect to Cohen- Sutherland algorithm and 

half with respect to Liang and Barsky [15] algorithm. 

However, the time consumed in creation of regions is 

significant as the algorithm needs to initially determine 

the position of endpoints. Besides, the amount of effort 

taken for applying geometric transformations and 

comparing slopes lie on the other higher side and 

saving these computations for further tests need more 

memory.  

All the algorithms described herein did not cater to 

the speed requirement of the day to day needs. Keeping 

this viewpoint in perspective, it needs a much faster 

algorithm [17, 22, 30] for rectangular window and 

polygon space in the present world. However, it was 

observed that for some scenarios, the level of 

complexity was found to rise in leaps and bounds 

which in turn led to a serious loss in efficiency. In 

order to rectify the inherent deficiencies in these 

methods, a new clipping algorithm for a complex 

window has been proposed by Skala [24, 25] and Day 

has proposed an algorithm two dimensional small 

window [6]. The usage of binary search in this 

algorithm has led to a considerable decrease in the 

level of complexity. However, the gain observed could 

not be replicated on consideration of rectangular 

windows. 

The direct procedure to clip a line is to evaluate all 

intersection points of the line with edges that lie on 

rectangular window. It is observed that clipping 

problem is trickier than evaluating juncture points of 

infinite lines. In clipping method, it is imperative to 

recognize whether a crossing point for a line lies inside 

or on edges or outside. The same method applies for all 

four edges of the rectangle window. Intersection points 

of a line segment that lie outside edges or outside 

endpoints are meaningless on saving line.  

3. Computational Analysis and Algorithm 

Development 

To compute intersection points of a line, it is 

worthwhile to denote the line segment connected by 

two end points (xstart, ystart) and (xend, yend) and the 

parameters of the rectangular clipping window are 

(xleft, ybottom) and (xright, ytop); the lower left and upper 

right corner coordinates expressed in real-world units. 

Screen viewport parameters are given in pixels in 

image space. Without loss of generality, (xstart, ystart) 

can be considered as starting point which is close to x-

axis and (xend, yend) is the other end point of line 

segment. From this, it can be observed that if slope of 

the straight line is positive, then xstart ≤ xend. Otherwise, 

xstart>xend. But for all slopes, yend is always greater than 

or equal to ystart i.e., ystart ≤ yend. 

 This information is highlighted in Figures 9 and 12. 

These inequalities are found to be helpful for reducing 

number of comparisons in inside/outside tests. Now, 

the line can be decided with one of the following tests.  

 Complete Acceptance: Entire line lies within the 

clipping window. It implies that the whole line must 

be saved as no clipping takes place. The comparison 

shown in Equation (1) is founds to be sufficient. 

This provides an impetus to these acceptance 

criteria as shown in Figure 2. 

topendartstbottomrightendstartleft yyyyxxxx  },{&},{
 

 Complete Rejection: Entire line located outside and 

on one side of clipping window and will not 

intersect perpendicular edges, hence line can be 

rejected. The comparison shown in Equation (2) 

highlights the case as shown in Figure 3. 

topstartbottomendrightendstartleftendstart yyoryyorxxxorxxx  },{},{
 

 Partial Acceptance (Case 1): Both endpoints are 

placed exterior to the rectangular window and the 
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line intersects perpendicular edges of the clipping 

window. In this case, if some portion of the line is 

inside of clipping window then the part of the line 

segment has to be extracted along with end points 

that lie on the clipping window. This case is the 

most complex one and presented in detail in 

sections 5.1. and 5.2. 

 Partial Acceptance (Case 2): One end point is 

inside the window while the other end is outside. It 

is essential to find out line intersection points with 

one of the four edges of the clipping window and 

line should be drawn from inside point to 

intersection point. This situation is considered as a 

part of the previous one and discussed in section 

5.3. as a special case. 

 

Figure 1. General line segments that are to be tested to clip in a 

rectangular window. 

 
Figure 2. Set of line segments lie completely inside rectangular 

window (Test 1). 

 

Figure 3. Completely rejected line segments that lie entirely outside 

clipping window (Test 2). 

4. Ortho Length Formulae for Intersection 

Points 

Formation of computational formulae is desirable for 

the development of algorithm and is considered to be 

significant work developed using fundamental 

geometry. As mentioned earlier, (xstart, ystart) and (xend, 

yend) are end points of a line and xedge is either left or 

right edge dimension of the rectangular window. 

Similarly, yedge is top or bottom edge dimension. 

Define, further Δx = xend - xstart and Δy = yend-ystart that 

are the distances in terms x directions and y directions 

respectively with end points of the line. From this, if 

slope is positive then the product of Δx and Δy is 

greater than or equal to zero (Δx * Δy ≥ 0) else product 

sign is negative. With the help of clipping dimensions 

and line segment end points, intersection points can be 

easily evaluated and these formulae are presented in 

subsequent part of this section. 

4.1. Line Segment Intersection with x = xedge (δy 

is Unknown) 

Let the line segment with end points P(xstart, ystart) and 

Q(xend, yend) and intersect x = xedge at the point C(xedge, 

Ry). Ry defined as ortho length, is the upright distance 

from x-axis to intersection point and plays strategic 

role to decide line segment. From geometry, the slope 

of a straight line for any two arbitrary points is same 

[8, 10, 11]. i.e., 

)}(),,({)}(),,({ endendyedgeendendstartstart yxQRxCslopeyxQyxPslope 
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where Δx,Δy and δx=xend-xedge are known constants. 

yend Ryy  is unknown constant to be evaluated. 

From Equation (5), ortho length can be computed as 

x
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Figure 4. Ortho length Ryl in 2D-coordinate system representation. 

 
Figure 5. Graphical view of ortho length Ryr used to evaluate right 

edge intersection point. 

Equation (6) holds good even for swapping end 

points of the line segment. Now, if the line segment 

(5) 

(6) 
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intersects left edge of the clipping window at point 

(xleft, Ryl), (Figure 4) then Equation (6) becomes: 

leftendendyl xxxwherex
x

y
yR 




   

Similar analysis can be given for the line segment that 

intersects right edge of the rectangle window. Let Ryr 

be the ortho distance from x-axis to intersection point 

of a line with right edge of the clipping window as 

presented in Figure 5. Then Equation (6) becomes 

rightendendyr xxxwherex
x

y
yR 




 

 

4.2. Line segment intersection with y=yedge (δx 

is unknown) 

Section 4.1. focussed on positive slope line segments. 

It could be observed that a suitable experimentation 

can be carried out with negative slopes also. A case is 

taken into consideration where the line PQ intersects 

straight line y = yedge at the point D(Rx, yedge) where Rx 

is ortho distance from (0, yedge) to (Rx, yedge). Equation 

(9) deals with the formulation of slope. Equations (10) 

and (11) could be derived from slope Equation (9). 
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end xx x R   is unknown constant to be evaluated; Δx, 

Δy and 
end edgey y y    are known constants can be 

evaluated with given parameters. 

From Equation (11), ortho length is computed. The 

distance between y axis and the point of intersection on 

the clipping window could be computed as shown in 

Equation (12).

 
y

y

x
xR endx 




  

Rxb and Rxt are ortho lengths as mentioned in Figures 

6, and 7 are distances from y-axis to bottom and top 

edges of clipping window respectively. Equations (13) 

and (14) can in turn be obtained from Equation (12).  

bottomendendxb yyywherey
y

x
xR 




 

 

topendendxt yyywherey
y

x
xR 




 

 

 
Figure 6. Ortho length Rxb evaluation for line segment that interest 

bottom edge. 

 
Figure 7. Graphical form of ortho length Rxt in 2D-coordinate 

system. 

Equations (7), (8), (13), and (14), represent the 

intersection distance formulae for lines that clip the 

rectangular window. These formulae provide a precise 

indication of the presence of the line inside the 

rectangular window. Magnitudes Δx, Δy, δx and δy 

can be easily evaluated with help of given points of a 

line segment and clipping window dimensions. Ortho 

length dimension quantity formulae reveal equivalent 

even if end points are interchanged.  

From this it is observed that for all slopes of a line 

segment, evaluation of distance from x-axis to 

intersection point of a line with left and right edges of 

clipping window has the same formula with small 

variation of δx and δy. These formulae further can be 

simplified by using roundup and floor functions in 

integral form as: 
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Following similar procedure for right edge x = xright of 

the clipping window, we have: 

rightendendyr xxxwhere
x

xxy
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
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For all slopes of a line segment the evaluation of 

integral distances from y-axis to intersection point of a 

line with bottom and top edges of clipping window 

are: 

For bottom edge y = ybottom of the clipping window 

(7) 

(8) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 
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For top edge y = ytop of the clipping window 
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Where  )(f  is the floor function defined as integer 

part of the function f(ω). 

These equation, in C compiler compute one third 

times faster than floating point computations. Majority 

of lines are eliminated by inequality tests. All 

remaining lines are evolved with the help of ortho 

lengths Ryl, Ryr, Rxb, and Rxt and these are the decision 

factors to choose whether the line is inside or outside 

of the clipping window. If inequality tests (1) and (2) 

fail for a line then the other possibilities for line are 

either both end points of line are outside which 

intersects perpendicular edges of the clipping window 

or one end of the line is inside. Now let us deal first 

problem as two special cases with assistance of slope 

of a line. For any line slope may be either positive or 

negative and can be decided as positive if the 

inequality Δx * Δy ≥ 0 or in easy form xend ≥ xstart holds 

good which is integral value computation, otherwise it 

is negative. Following sections deals in detail study for 

partially accepting or completely rejecting lines. 

5. Line Clipping Tests 

A vast majority of lines need few tests for determining 

the portion of line that remains inside the clipping 

window (Figures 1, 2, and 3). All ortholengths Ryl, Ryr, 

Rxb and Rxt of a line are first evaluated and the 

corresponding intersections have been computed. If all 

intersection points with ortho lengths are outside 

window then entire line is rejected. For the line which 

is partially inside clipping window, exactly two points 

are on the window edges and two points are outside. In 

this case, the line with two end points that are inside 

window is drawn and the remaining portion of line is 

discarded. 

Evaluations of ortho lengths and all four intersection 

points could be avoided in case of invisible line 

through comparison tests thereby saving effort and 

time. All invisible lines can be eliminated by 

conducting a maximum of two comparisons. However, 

atmost four comparisons are needed for partially 

visible lines. For further computations, as earlier 

stated, first point is near to x-axis and end point of the 

line is above first point. From this, if ∆x * ∆y ≥ 0, then 

slope is positive and line is drawn from left to right 

and/or diagonally above in the coordinate system, so 

that xend ≥ xstart and yend ≥ ystart. The converse holds true 

for negative slopes. From this it can be accomplished 

that, irrespective of all slopes, authors have taken two 

end points in such a way that yend is always greater than 

or equal to ystart (yend ≥ ystart). 

This inequality constraint is used to reduce 

comparisons for partially visible and completely 

rejected lines. 

The procedure for a line with positive slope is as 

follows. If Ryl > ytop,, then entire line is outside clipping 

window and can be rejected ( Figure 8 ). This can be 

visualized using simple analogy. Ryl is the distance 

from x-axis to intersection point of line with left edge 

of window and slope of the line is positive. Hence, the 

points of the line from staring point to (xleft, Ryl) fall to 

the left of the clipping window and outside. According 

to slope property, frequently used in NLN algorithm, if 

slope between first point and intersection point is 

greater than the slope between first point and top left 

vertex of window then entire line is outside, line is 

rejected. If Ryr < ybottom then line intersects right edge 

below clipping window and passes outside, hence 

rejected (Figure 8). In this case, the line with points (xi, 
yi) for all yi < Ryr is below clipping window and 

remaining portion of the line is right side to window.  
Similar analysis can be carried out for negative 

slopes (Figure 11). For all remaining cases, a part of 

the line is inside clipping window and subsequent 

procedure is used to save part of line segment.  

5.1. Straight line with Positive Slope 

Initially, Ryl has been computed and checked for its 

range. If ybottom≤ Ryl ≤ ytop, then line enters the clipping 

window at the point (xleft, Ryl). 

 

 
Figure 8. Line segments with positive slopes. 

 
Figure 9. Line segment with positive slope. 

Subsequently, the next end point has to be 

computed. This can be evaluated easily using ortho 

length formulae Ryr or Rxt. This in turn may lie either 

on the right or top edge of the clipping window. 

Figures 9, and 10 highlight the mentioned aspects. 

(19) 

(18) 
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Figure 10. Segment lines enter into the clipping window with 

different possible cases. 

5.2. Straight Line with Negative Slope 

Lines with negative slopes have been found to be 

analogous with those of positive slope. In this case 

xend<xstart. The values Ryl and Ryr that had been 

computed earlier have been retained for further 

computations. The following procedure helps in 

determination of the presence of that part of the line 

which is inside the window.  

If ybottom≤ Ryr ≤ ytop, then line intersects the right 

edge of clipping window at the point (xright, Ryr). The 

next end point evaluated may lie on left or top edge of 

clipping window. This can be evaluated using ortho 

length formulae Ryl or Rxt.  
If Ryl≤ ytop, then last end point is (xleft, Ryl) else (Rxt, 

ytop) and part of visible line can easily be drawn using 

these two end points.  

If Ryr<ybottom then line enters inside window at the 

point (Rxb, ybottom) by intersecting bottom edge. If Ryl ≤ 

ytop , the next intersection point is (xleft, Ryl). Otherwise 

the point is (Rxt, ytop). 

 

 
Figure 11. Discarded line segments with negative slopes. 

 

Figure 12. Part of line segments inside clipping window.  

If Ryr≤ ytop , then the second end point is (xright, Ryr). 

Otherwise it is (Rxt, ytop) as highlighted in Figure 12. 

The partially visible line could in turn be drawn using 

these two end points.  

 

Figure 13. Line segments needing larger number of tests. 

If Ryl<ybottom then line enter inside window at the 

point (Rxb, ybottom) by intersecting bottom edge and 

next point is (xright, Ryr) if Ryr ≤ ytop else (Rxt, ytop). 

5.3. One Line Edge is Inside Clipping Window 

With small modifications as stated earlier, let (xin, yin) 

be one end point of line that lie inside clipping window 

and (xout, yout) be the other end point lying outside the 

window. As some part of the line lies inside the 

window, the possibility of complete rejection ceases to 

exist. For extracting the portion of the line, 

redefine
inoutinout yyyxxx  , . The clipping window 

is now divided into four regions based on the location 

of the point lying inside the window. These regions are 

presented in Figure (14) and can be identified as: 

1. Right top corner region: Δx > 0, Δy ≥ 0 

2. Left top corner region: Δx ≤ 0, Δy > 0 

3. Left bottom corner region: Δx < 0, Δy ≤ 0 

4. Right bottom corner region: Δx ≥ 0, Δy < 0 

  

 
 

Figure 14. Various possibilities of straight lines exit from clipping 

window to external region.  

Section of region to evaluate another end point that 

lie on edge will be decided with the help of positive 

and negative values of Δx and Δy. The various 

constraints that need to be checked in each case have 

been clearly highlighted in the various portions of 

Figure 14. 

As defined earlier, ortho lengths are distances, from 

coordinate axis to intersection point between edges of 

clipping window and line.  
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δx and δy indicate horizontal and vertical distances 

from point that lies outside the window to 

corresponding intersection edge of clipping window. 

After identifying regions with the help of inequality 

conditions, corresponding ortho lengths Rx and/or Ry 

have been evaluated. For lines that lie in the top right 

corner region, the last point is (xright, Ry) if Ry ≤ ytop. 

Otherwise, it is (Rx, ytop). A similar procedure can be 

applied to compute other end point of a line for all 

remaining regions. In this case, it could be easily 

observed that a maximum of two computations Rx and 

Ry need to be performed. In the best case scenario, only 

one among Rx and Ry needs to be evaluated. 

6. Proposed Algorithms 

In order to consider the various cases of line clipping 

highlighted in section 5, a set of three mathematical 

algorithms have been designed. The choice of the set 

of algorithms to be applied depends on the constraints 

satisfied by the line. Magnitudes Rxl, Rxr, Ryb, and Ryt 

are the ortho lengths and calculated using the formulae 

described earlier. 

Algorithm 1: Selection of algorithm and end points for the 

straight lines 

Get clipping window edges xleft, xright, ybottom and ytop 

Collect end points of line segment (x1, y1), (x2, y2)  

If (y1 < y2) 

{ 

  Set (xstart, ystart) ← (x1, y1) 

Set  (xend, yend) ← (x2, y2) 

    } 

    Else 

   { 

   Set (xstart, ystart) ← (x2, y2)  

Set (xend, yend) ← (x1, y1) 

   } 

  Save entire line if it satisfies the inequalities 

  { 

xleft  ≤ {xstart, xend} ≤ xright 

ybottom ≤ ystart and yend  ≤  ytop 

} 

  Reject entire line if it satisfies the inequalities 

  { 

yend < ybottom or ystart > ytop 

{xstart, xend} < xleft or {xstart, xend} >xright 

} 

  If both end points are outside rectangular window 

  { Apply second algorithm  } 

Else 

{  Apply third algorithm  }  

 

Algorithm 2: Both End Points are Outside Window 

Evaluate Rxl, Rxr, Ryb and Ryt at appropriate time 

Case I: xstart ≤ xend (Slope of the line is positive) 

If (Ryl > ytop) 

{ 

 Reject line 

} 

Else  If( Ryl ≥ ybottom) 

{ 

           Set the first point (xleft, Ryl)  

              Compute next point (xright, Ryr) or (Rxt, ytop) 

} 

Else if (Ryr < ybottom) 

{ 

Reject line 

    } 

Else 

{ 

     Set the first point (Rxb, ybottom) 

 If( Ryr ≤ ytop) 

 {        Set the last point (xright, Ryr)   } 

 Else 

{       Set the last point (Rxt, ytop)     } 

     } 

Case II: xstart > xend (Slope of the line is negative) 

If (Ryr > ytop) 

{ 

Reject line 

    } 

Else  If (Ryr ≥ ybottom ) 

{ 

  Set the first point (xright, Ryr)  

 Compute the last point (xleft, Ryl) or (Rxt, ytop) 

} 

Else If (Ryl < ybottom) 

{ 

Reject line 

    } 

    Else 

    { 

 Set the first point (Rxb, ybottom) 

   If (Ryl ≤ ytop ) 

 { 

          Set the last point (xleft, Ryl)  

         } 

        Else  

        { 

        Set the last point (Rxt, ytop)  

            } 

 } 
 

Algorithm 3: One End Point of Line Inside Rectangular 

Window 

Set (xin, yin) as inside point  

Set (xout, yout) as outside point of line in clipping region 

(20) 

(21) 
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Save (xin, yin)  

compute other end point with following procedure 

If ( Δx > 0 && Δ y ≥ 0 && Ryr ≤ ytop ) 

{ 

   Set other end point (xright, Ryr) 

} 

Else  

{ 

Set other end point (Rxt, ytop) 

} 

If ( Δx ≤ 0 && Δ y > 0 &&  Rxt ≥ xleft ) 

{ 

Set other end point (Rxt, ytop) 

} 

Else 

{ 

           Set other point (xleft, Ryl) 

} 

If ( Δx < 0 && Δ y ≤ 0 && Ryl ≥ ybottom ) 

{ 

Set other point (xleft, Ryl) 

} 

Else 

{ 

 Set other point (Rxb, ybottom) 

} 

If (Δx ≥ 0 && Δ y < 0 && Rxb ≤ xright ) 

{ 

Set other point (Rxb, ybottom) 

} 

Else 

{ 

 Set other point (xright, Ryr) 

} 

Once the end points are computed and if part of line 

segment is inside, then portion of the line can easily be 

drawn that lie inside clipping window. The selection of 

end points for a line in the third algorithm are slightly 

different and chosen such a way that one point is inside 

rectangular window and another point is outside 

anywhere in coordinate system. 

7. Performance Analysis 

The proposed algorithm has been compared with 

existing algorithms in graphics industry. A wide range 

of conclusions could be inferred.  

 It has been observed that the proposed algorithm 

mostly depends on comparisons that need only one 

cycle of CPU apart from few arithmetic 

computations. 

 Unlike other methods, no calculations are needed to 

evaluate end points of the saving line that lie inside 

clipping window. 

 All presently existing algorithms are using floating 

point calculations whereas proposed algorithm 

depends only on integral values. It is observed that 

integral calculations are one third times faster than 

floating point computations. 

 Time complexity does not change with the size of 

the window. 

 LB algorithm may be straight forward but requires a 

large number of computations (multiplications and 

divisions) as compared to other methods. 

 CS seems to be simplest and oldest algorithm but 

the number of computations grow exponentially for 

the points that lie on edge. Besides, there is 

ambiguity in the choice of upper or lower or side 

regions. 

 NLN algorithm is developed based on slope 

comparisons that are stored for further 

computations. Hence, a huge quantity of memory is 

needed to handle the level of storage.  

 In NLN algorithm, geometric transformations are 

used. This in turn leads to need for knowledge on 

the area initially for understanding and later for 

subsequent implementation. In NLN algorithm, first 

geometric transformation has to be applied to rotate 

point location and three slopes are compared. 

However, in the proposed algorithm, first Ryr is 

compared with inequalities ybottom ≤ Ryr ≤ ytop and 

the point is chosen as (xright, Ryr). 

Numerical computations are evaluated with three 

different cases. 

1. Positive slope lines. 

2. Negative slope lines.  

3. Portion of line inside window apart from completely 

accepted and rejected lines.  

Rectangular window dimensions, in this analysis are 

taken as (25, 25) and (75, 75). i.e., edges of clipping 

window are x = 25, x = 75, y = 25 and y = 75. Results 

are presented in tables. 

Table 1 presents the results for positive slope lines, 

where these lines may be passed clipping window 

either by intersecting left or bottom clipping edges. 

Numerical results for negative slope lines are presented 

in Table 2 and clipping portion of the line and its end 

points are computed. Table 3 handles the results for the 

lines, where one point is inside clipping window and 

another end point is outside. Based on algorithm tests 

some of the lines are rejected and in some other lines a 

portion of the line is clipped. 

Table 1. Positive slopes line segments. 

S. No First Point Last Point Ryl Ryr Rxb Rxt Decision 

Save Points 

First 

Point 

Last 

Point 

1 (15, 50) (35, 150) 100 - - - - - - Rejected - - - - 

2 (00, 05) (175, 40) 10 20 - - - - Rejected - - - - 

3 (20, 35) (100,75) 38 63 - - - - Accepted (25, 38) (75, 63) 

4 (15, 30) (85, 100) 40 90 - - 60 Accepted (25, 40) (60, 75) 

5 (10, 10) (110, 60) 18 43 40 - - Accepted (40, 25) (75,43) 

6 (20, 05) (65, 95) 15 115 30 55 Accepted (30, 25) (55, 75) 
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Table 2. Negative slope line segments. 

S. No First Point Last Point Ryr Ryl Rxb Rxt Decision 

Save Points 

First Point 
Last 

Point 

1 (100, 30) (65, 100) 80 - - - - - - Rejected -- -- 

2 (110, 05) (00, 27) 12 22 - - - - Rejected - - - - 

3 (90, 10) (10, 90) 25 75 - - - - Accepted (75, 25) (25, 75) 

4 (90, 20) (50, 100) 50 150 - - 63 Accepted (75, 50) (63, 75) 

5 (80, 00) (00, 80) 5 55 55 - - Accepted (55, 25) (25, 55) 

6 (75, 00) (20, 110) 0 100 63 38 Accepted (63, 25) (38, 75) 

Table 3. One side of line segment is inside clipping window. 

S. No First Point Last Point Ry Rx Region 
Save Points 

In Point Out Point 

1 (50, 60) (150, 80) 65 - - I (50, 60) (75, 65) 

2 (40, 60) (70, 90) 95 55 I (40, 60) (55, 75) 

3 (50, 40) (00, 90) 65 - - II (50, 40) (25, 65) 

4 (50, 50) (20, 110) 100 38 II (50, 50) (38, 75) 

5 (50, 60) (20, 30) 35 - - III (50, 60) (25, 35) 

6 (50, 50) (30, 10) 00 38 III (50, 50) (38, 25) 

7 (40, 60) (90, 35) 43 - - IV (40, 60) (75, 43) 

8 (40, 50) (80, 10) 15 65 IV (40, 50) (65, 75) 
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