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1. Introduction 

According to the sampling theory, the larger the 

sample size of test is, the higher the evaluation 

accuracy will be, and thus the assessment can more 

truly reflect the quality of the product level [14, 19]. 

However, as for expensive test specimens, like heavy-

duty machineries or missiles, only single sample test 

could be carried out. Bootstrap method is normally 

used to solve the test evaluation problems which test 

sample sizes n is larger than 10, and it could not be 

applied to the test evaluation of single simple, namely 

n=1. So how to determine the evaluation of single 

sample test with Bootstrap method is a subject of both 

theoretical meaning and great application value. 

Bootstrap method is a widely used evaluation 

method [6, 11, 15]. Huang et al. [2] proposed the small 

scale sample test estimation method based on 

Bootstrap method [1]. Hu et al. [3] evaluated the 

missile accuracy under the extreme small sample test 

by the non parametric Bootstrap method and the 

parametric Bootstrap method. Kijewski and Kareem 

[7] assessed the quality of system identification to 

generate useful statistics and confidence intervals 

through a bootstrap approach. Kreiss and Paparoditis 

[6] is concerned with the application of the bootstrap to 

time-series data [5]. In articles, Bootstrap method is 

applied in different conditions. 

In the paper, the Virtually Expanded Sample 

Estimation Method is proposed to virtually expand test 

samples from n=1 to n=13. Then the virtually 

expanded samples are evaluated by Bootstrap method.  

The estimation of confidence lower limit is also 

obtained, which can be compared with the confidence 

lower limit obtained by the semi-empirical evaluation 

method [16, 17].  

Particle Swarm Optimization (PSO) has been 

widely studied and applied for its advantages of easy 

implementation, high precision and rapid convergence 

[10, 20]. Nickabadi et al. [9] present the first 

comprehensive review of the various inertia weight 

strategies of PSO reported in the related literature and 

proposed a new adaptive inertia weight approach. The 

hybrid algorithm that combined particle swarm 

optimization with simulated annealing behavior is 

proposed in paper of Shieh et al. [18]. Hosseinnezhad 

et al. [4] proposed A new method called Species-based 

Quantum Particle Swarm Optimization and applied in 

the power systems. Mahmoodabadi et al. [8] 

introduced a new optimization method based on the 

combination of PSO and two novel operators in order 

to increase the exploration capability of the PSO 

algorithm. In this paper, the developing Particle Swarm 

Optimization based on Minimax is proposed to 

optimize parameters of empirical virtually augmented 

formula, and in this way the virtually expanded 

samples will be more convincing and reliable. 

To sum up, the Bootstrap method for reliability 

evaluation of small and extremely small samples was 

studied both at home and abroad, and applied in the 

fields of aircraft, missile and heavy machinery. In the 

aspect of intelligent algorithm optimization, PSO 

research emerges one after another and occupies a very 

important position. But no one has combined the two. 

After the sample size was expanded through virtual 

expansion, Bootstrap method was used for evaluation, 
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and developing PSO proposed in the paper was used 

for parameter optimization to make the results more 

convincing, which is the significance of this paper.  

2. The basis for Virtually Expanded Sample 

Method 

Two basic conditions have to be met in order to keep 

the difference between random characteristic of new 

sample by virtually expanded and random 

characteristic of original sample within the engineering 

allowance, which are as follows: 

1. The average of virtually expanded samples should 

be equal to the average of the original samples. 

2. The standard deviation of virtually expanded 

samples should be equal to the standard deviation of 

the original samples. 

On this basis, single sample of n=1 can be expanded to 

n=13. We do the following work. Assume that the 

distribution form of test estimation is normal 

distribution. To make the samples obtained by virtually 

expanded more reasonable, empirical formula of 

original virtually expanded samples is expressed as 

according to pertinent literature [12, 13]  

])1([0 ciaxx b
n   

where xn is expanded samples value, n=1, 2, 3,…, 13. 

x0 is original sample, σ is standard deviation. Because 

the standard deviation of single sample could not be 

calculated, the empirical standard deviation value is 

determined as 0.17, namely, σ=0.17. a and b are 

control coefficients to describe the dispersion 

characteristics of virtually augmented control points, 

which are different when the numbers of augmentation 

differ. c is a constant factor in order to satisfy the 

limiting conditions of the theoretical basis. 

First of all, reserve the original sample x0, and then 

13 samples are expanded. The expanded samples 

represented by coefficients according to Equation (1) 

are as follows: 
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According to the Equation (4), the parameter c is 

obtained as follows: 
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Combining the Equations (2) and (5), the samples 

expanded from n=1 to n=13 are obtained. 

3. Bootstrap Method 

3.1. Empirical Distribution Function 

Arrange x(1), x(2), …, x(n), that represent their capacity 

and renumber them from small to large, namely, 

(1) (2) ( )nx x x    

Empirical Cumulative Distribution Function is 

expressed as follows: 
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According to Gerry Brunei theorem, for any real 

number x, Fn(x) converges to distribution function F(x) 

with probability 1 when n approaches infinity. The 

expression form is as follows:  

{lim sup ( ) ( ) 0} 1n
n x
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Therefore, for any real number x, when n is large 

enough, there are minute difference between observed 

value Fn(x) and overall distribution function F(x). And 

F(x) can be replaced by Fn(x). 

3.2. Bootstrap confidence interval of mean 

value μ obtained by bootstrap-t 

Bootstrap method could generate more samples based 

on existed samples, if the simulated samples comply 

with Bootstrap subsamples of Empirical Cumulative 

Distribution Function Fn(x). According to the 

characteristics of Empirical Cumulative Distribution 

Function, the main steps generated Bootstrap 

subsamples are briefed as follows: 

 (1) 

 (2) 

 (3) 

 (4) 

 (5) 

 (6) 

 (7) 

 (8) 
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1. Generate the number m of uniform distribution at 

section [0, 1]. 

2. Ensure l= m(n-1) and c=[l]+1, where [l] represents 

that l is always rounded down. 

3. xF is a random sample point obtained by 

))(1( )()1()( nnnF xxclxx   . 

4. },,{
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The first Bootstrap sample, can be obtained through n 

times repetitions.  

In this process, X=(X1, X2, …, Xn…) is generated 

from Bootstrap samples which are obtained through 

manifold cycles. x=(x1, x2,…, xn) is initial sample 

value. Random variables X1, X2,…, Xn… are mutually 

independent and follow the same distribution. 

According to Central limit Theorem of Independent 

identical distribution, we get the expression as follows: 
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sum of random variables, follows normal distribution 

approximately, which is expressed as 
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It can be got that X  follows ),(~
2

N
NX


 . Assume 

that *X  represents the corresponding sample values of 

Bootstrap respectively, and   is replaced by *X , so 

we get 
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Where )1(  is inverse of standard normal distribution, 

which means that following formula is true, namely, 
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When failure probability   is less than 50%, )()1(   

is negative. As mentioned above, lower confidence 

limit is as follows: 

n
X
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4. Equations Optimization of Empirical 

Equation Parameters 

4.1. The Establishment of Objective Function 

And Constraint Conditions 

The samples generated by virtual-augmentation 

function expanded from n=1 to n=13 are connected 

with parameters a and b, and a and b are control 

coefficients to describe dispersion characteristics of 

virtually augmented point. The values of a and b differ 

when the number of augmentation are different. 

Therefore, to generate Bootstrap samples which are 

more aligned with the situation expanded from n=1 to 

n=13, it is necessary to optimize the values of 

parameters a and b. 

Optimization objective function is as follows: 

( 1) * ( 1)
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Where )1(  is the inverse function of cumulative 

distribution function of standard normal distribution. 

The ultimate goal of optimization is the 

convergence of semi-empirical evaluation method and 

Bootstrap method. In this way, the optimum values of 

a and b are obtained, and experience Equation of 

expansion from n=1 to n=13 can be more consistent 

with the actual situation. 

The constraint function is as follows: 
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Where the values of a and b are not negative. 

4.2.  Developing Particle Swarm Optimization 

Based on Minimax 

4.2.1. Minimax Method 

There are many methods to solve non-constrained 

optimization problems, so it is natural to try to 

transform constrained problems to non-constrained 

problems, which can be realized by Minimax. 

The definition of Minimax is express as follows: 

constrained problems min ( ))

s.t.   ( ) 0, 1, ,i

F x

g x i m   

 (9) 

 (10) 

 (11) 

 (12) 

 (13) 

 (14) 

 (15) 

 (16) 

 (17) 

 (18) 
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Non-constrained problems are as follows after 

conversion: 

1

min ( ),

( ) max ( )
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i
i m
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It can be proved when ai is large enough, above 

constrained problems are equal to non-constrained 

problems. This strategy provides the large objective 

function for iteration points which tries to break the 

constraint conditions through solving non-constrained 

optimization problems. That forces minimum points of 

non-constrained optimization problems to be infinitely 

close to the feasible region, or keep moving within the 

feasible region until iteration points converge to the 

minimum point of the original problem. 

4.2.2. Developing Particle Swarm Optimization 

As a new type of stochastic evolutionary algorithm, 

Particle Swarm Optimization has been successfully 

applied in integer programming, neural network and 

electric power system due to ease of implementation, 

global search, fast convergent rate and few differences 

which needs adjustment. As one of heuristic random 

search methods, PSO evaluates systems with fitness 

functions and does random search according to fitness. 

Compared with traditional optimization methods, such 

as coordinate exchange method and steepest descent 

method, PSO is not easily trapped in local optimal 

solution. Meanwhile, during the process of search 

evaluation, PSO can decide search according to its own 

speed combining with memory function, then groups 

of particles are converged to the optimum quickly. 

PSO is described as follows: 

( , , , , )popu iter fitPSO N K V P F  

Where Npopu is population size, Kiteris evolving algebra, 

V and P represent particle velocity space and location 

and location space respectively, Ffit is fitness. 

Assume that there are m units in the population of 

D-dimensional space, the ith unit can be expressed as 

1 2( , , , ), 1, ,i i i idx x x x i m   

The best historical space it went through is written as 

1 2( , , , ), 1, ,i i i idp p p p i m   

The best space of all units belonging to the population 

is expressed as 

1 2( , , , ), 1, ,g dp g g g i m   

For the ith particle of k generation, iterative Equations 

of particle swarm optimization algorithm are as 

follows: 

1
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Where r1 and r2 are random coefficients between [0, 1], 

ω is inertia weight, c1 and c2 are accelerating weight. 

Particle velocity vi is restricted by maximum velocity, 

that is to say, 
max

vv
i
  , which can prevent the extreme 

disorder phenomenon. The main steps of standard 

particle group algorithm are briefly as the following: 

 Step 1: Set parameters and initialize population. 

 Step 2: Calculate the fitness value of each particle. 

 Step 3: Compare adaptive value of every particle 

with the best historical position pi. If there is the 

better, reset pi;. 

 Step 4: Compare adaptive value of every particle 

with the best historical position pg of overall 

situation. If there is the better, reset pg. 

 Step 5: Update particles according to the evolution 

equation of stochastic particle swarm algorithm. 

Then return to step 2, and continue particle swarm 

iteration until the given number of iterations in 

advance is reached. 

The inertia weight ω is used to control the influence 

degree of historical speed to current particle velocity. 

If ω is large, the capacity of algorithm to search for 

new area can be increased, but too large ω may lead to 

particle swarm explosion. And if ω is small, the 

capacity of algorithm to search for present area can be 

increased. Appropriate ω can keep balance between 

global searching ability and local search ability. 

Numerical experiments show that choosing the larger 

value at initialization stage and gradually reducing the 

value can obtain more accurate result. 

In order to overcome the slow convergence of PSO 

algorithm in late period and avoid the calculation and 

storage of first derivative, global convergence of 

particle group algorithm, rapid convergence and high 

precision of Minimax method are combined to propose 

a new evolutionary algorithm. The process is written as 

follows:  

 Search the global best point pg using the stochastic 

particle swarm algorithm.  

 Regard the final obtaining point as the initial point 

to search out a new point 


g
P  by coordinate rotation 

method.  

 Replace pg with 


g
P  to continue the particle swarm 

evolution of next generation. The validity and 

rationality of this algorithm have been proved by 

numerical experiments. 
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4.2.3. Test and Validation of Developing Particle 

Swarm Algorithm Based on Minimax 

In order to demonstrate the effectiveness of the 

algorithm for nonlinear constraint problem, test 

functions are applied. 

Question 1: 
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Results of testing functions can be seen in Table 1. 

Table 1. Comparison of test function. 

function f1(x) f2(x) 

f(x*) 1.39343 0.8 

Best 1.39347 0.800000001 

Average 1.3935 0.8000061 

deviation 0.00004 0.000000001 

4.3. The Optimization of Objective Function By 

Developing Particle Swarm Algorithm 

Based on Minimax 

Based on the objective function (25) with constraint 

conditions (26), the objective function developing 

particle swarm optimization based on Minimax can be 

obtained as follows: 
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Developing particle swarm algorithm is applied to 

optimize the objective function. Due to random factors 

of Bootstrap-t method and PSO algorithm, shock may 

be generated during the process of solving the optimal 

value. So it need to be optimized for many times to 

obtain optimal value and corresponding values of a and 

b. 

5. Case 

Fatigue life testing of a structure takes into account the 

test conditions including Kpy=2.5, R=0, 

Sa=Sm=107(Mpa). Testing result of a specimen is N 

=159600, and logarithmic life standard deviation is 

0.17 according to test experience. To ensure reliability 

reach 90%, reliability evaluation is applied to this 

structure. Because of single simple, the result can be 

expressed as: 2030.5lg
0

 NT . 

To verify the superiority of this algorithm, Genetic 

Algorithm and PSO based on Minimax are applied 

simultaneously. Ten sets of data are obtained, which 

can be seen in Table 2. 

Table 2. Comparison table of Genetic algorithm and Optimization 
Based on developing PSO based on Minimax. 

Genetic algorithm 
Developing PSO based on 

Minimax 

a b F(a,b) a b F(a,b) 

0.653 0.55 0.09124 0.607 0.458 0.09070 

0.518 0.527 0.09162 0.467 0.654 0.09011 

0.651 0.58 0.09062 0.352 0.813 0.09073 

0.582 0.625 0.09070 0.568 0.666 0.09019 

0.726 0.521 0.09104 0.479 0.704 0.08999 

0.611 0.572 0.09094 0.58 0.656 0.09030 

0.644 0.561 0.09144 0.484 0.744 0.09022 

0.626 0.574 0.09071 0.697 0.538 0.09015 

0.52 0.605 0.09089 0.664 0.424 0.09049 

0.548 0.583 0.09137 0.469 0.656 0.09027 

The results of the objective function obtained by the 

optimization of two algorithms can be seen in Figure 1. 

By the comparison of the optimal value of objective 

function by two methods, means and variances of ten 

sets of data can be obtained (Table 3). 
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Figure 1. Comparison curves of Genetic algorithm and 

Optimization Based on developing PSO based on Minimax. 

Table 3. The mean and variance of the optimal value calculated by 
the two methods. 

 
Genetic 

algorithm 

developing PSO based 

on Minimax 

The mean of the objective 

function 
0.09106 3.46×10-4 

The variance of the 

objective function 
0.09031 2.48×10-4 

From the Table 3, it can be observed that mean 

value of F(a,b) obtained by developing PSO based on 

Minimax is 0.83% less than genetic algorithm, and 

variance is also 39.52% less. When the objective 

function gets the minimum value, it means that 

variances of single sample virtually expanded method 

and semi-empirical evaluation method are the least. 

And in the process of calculation, the minimum 

variance between them is 0.08999. At this time, there 

are a=0.479 and b=0.704. 

 

 (25) 

 (26) 

 (27) 
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When a ＝ 0.479 and b ＝ 0.704 are achieved, 

variances of Bootstrap method and semi-empirical 

evaluation method are the least. The lower confidence 

limit of semi-empirical evaluation method is 5.0764, 

and Bootstrap method is 4.9864. Therefore, the lower 

confidence limit frequency of Bootstrap method is 
49852.4 106917.910  . 

6. Conclusions 

In principle, Bootstrap method is more dispersed. 

Therefore, virtual-augmented sample method applied 

in this paper is more reasonable than semi-empirical 

method. By combing the global convergence of PSO 

with rapid convergence and high precision of Minimax 

method, developing PSO method which is based on 

Minimax was proposed. Under the premise that 

calculation and storage are needless, the lower 

convergence speed of PSO algorithm in late period was 

overcame. Parameters a and b in the process of sample 

virtual-augmentation were optimized with better speed, 

higher precision and smaller fluctuation. And in this 

way, estimated results were more in line with the 

practice and adjustability of practical engineering. The 

evaluation of single sample test had been achieved 

eventually.  
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