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Abstract: The problem of spatially detection and imaging of closely separated buried objects is investigated. A high 
resolution modified covariance method is employed. A recurrent neural network is used as a preprocessing technique to 
decrease the effect of concealing media on the results. The in-line holography is applied to increase the signal to noise ratio.  
Different concealing media and different values of signal to noise ratio are used to investigate the performance of such 
combination experimental results show that pre-processing the noisy data with recurrent neural network improves the 
performance.
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1. Introduction
The main attributes of neural networks processing are 
its nonlinear and adaptive learning capability, which 
enables machines to recognize possible variations of a 
same object or pattern and/or to identify unknown 
functions and mappings based on a set of training data, 
which can be noisy with missing information. Based 
on this training by example property with strong 
support of statistical and optimization theories, neural 
networks are becoming one of the most powerful and 
appealing nonlinear and adaptive data analysis tools 
for a variety of signal processing applications [1]. 

Neural Network (NN) techniques for noise 
reduction have been investigated [2, 3, 4, 5, 6, 7, 8, 9, 
10], and the main design goal of these NN was to get a 
good approximation for some input-output mapping. In 
addition to obtaining a conventional approximation, 
neural networks are expected to generalize from the 
given training data. The generalization is to use 
information that NN learned during training period in 
order to synthesize, similar but not identical, input-
output mapping [4]. In this paper, the NN to be 
designed and implemented will be considered as a 
preprocessing stage for the corrupted signal. This stage 
is used to enhance the noisy data signal; i.e.,
decreasing the effect of the noise as much as possible, 
before the application of the spectral estimation 
methods is performed to the resulted signal. A two 
layer recurrent back propagation, Elman Network,
have been designed, trained, and tested. Unlike the 
standard back propagation algorithm, the network 
being considered here is permitted to have feedback 
connections among the neurons; that is, the network is 

recurrent. During training, the input sequences are 
presented to the network, and there outputs are 
calculated and compared with the target sequences 
(desired signals) to generate an error sequences. The 
input training sequences are assumed to be a 
composition of the desired signal plus an additive 
white gaussian noise. For each time step, the error is 
back propagated to find the gradients of errors. This 
gradient is then used to update the weights.

The network is expected to learn the noisy training 
data with the corresponding desired output and 
generalize the model. Thus, care must be taken to 
prevent the system from over learning (i.e., modeling 
the details of the noise rather than the desired signal) 
[11]. The Recurrent Neural Network (RNN) has been 
chosen because they are computationally more 
powerful than other adaptive models such as hidden 
markov models (no continuous internal states), 
feedforward networks and supper vector machines (no 
internal state at all).

The problem of spectral estimation has been 
receiving considerable attention in the signal 
processing community since it arises in various fields 
of engineering and applied physics, such as 
spectrometry, geophysics, biomedical doppler 
echography, radar, etc. [12]. When the problem at hand 
is the restoration of Smooth Spectra (SS), basic 
nonparametric methods based on the Discrete Fourier 
Transform (DFT) such as period grams are often taken 
up. Such techniques usually involve a windowing or an 
averaging step, which requires a sufficiently large data 
set. By contrast, estimation of Line Spectra (LS) is 
more often dealt with in parametric methods, which are 
known as high-resolution methods [12]. A modified 
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covariance method is one of these. It is a high 
resolution and stable method, so it has been widely 
used in many applications [13, 14]. It generates 
frequency component estimates for a signal based on 
linear prediction modeling and minimization of the 
forward and backward errors in linear predictors. The 
buried object is illuminated by acoustic (ultrasound) 
waves, and the reflected (backscattered) waves are 
recorded. A transmit/ receive ultrasonic transducers are 
scanning over a synthetic aperture. The interest in 
acoustic waves for detection and imaging stems from 
its properties as highly coherent waves [15]. The 
ability of ultrasound waves to penetrate many media 
that are optically opaque makes them very important 
for detecting and imaging targets that cannot be 
imaged by light waves [16, 17].

The received signal is added electronically to a 
reference signal, of the same frequency, to generate the 
in- line holography. The recorded signal is sampled 
and is known as a hologram. Holography was initiated 
as an interferometric technique for recording the 
amplitude and phase of a coherent wave, whether it is 
electromagnetic or acoustic wave. A recording of this 
interference pattern is called a hologram, a term coined 
by Dennis Gabor in 1948 [18]. Holography has 
received considerable attention since more than three 
decades. It has been applied in the fields of optical, 
acoustical, and microwave radiations [19, 20, 21]. The 
holographic soundfield imaging technique combines 
the ultrasonic wave with the holographic 
interferometry. Holography [22] is one of a two major 
source ‘localization’ tools. The other one is a 
beamforming. 

The in-line holographic data are modeled as an 
AutoRegressive (AR) process where the prediction 
coefficients are calculated by the modified covariance 
method. The use of holography enables improvement 
of the signal-to-noise ratio by coherently cumulating 
the acoustic field on the ultrasonic transducers when 
scanning the field [23].  The combination of high 
resolution and holographic techniques improves the 
performance of the problem [24]. The imaging process 
consists of two steps: the recording of the hologram 
and the image reconstruction of the object.

Our contribution is as following:

• The Elman neural network is designed and 
implemented as a preprocessing technique to reduce 
the noise in the corrupted signal.

• The combination of neural network with 
holographic imaging.

• Using a high resolution technique (modified 
covariance method) for holographic imaging.

The rest of the paper is organized as follows. Section 2 
presents the architecture of recurrent neural network 
and describes the method used in the training process 
of the designed NN. Section 3 presents the principles 
of the field propagation from the object under imaging 

process and in-line holography. Section 4 presents a 
principle of modified covariance method. Our 
contribution is summarized in section 5. In section 6, 
the experimental results are presented and discussed. 
Section 7 presents the final conclusions of our paper.

2. Recurrent Neural Network
2.1. Architecture
Elman networks have been constructed in this paper to 
perform the required extraction of the knowledge from 
a noisy training set to achieve better signal 
enhancement. The architecture of the RNN constructed 
is shown in Figure 1 [25]. 

Figure 1. The architecture of Elman network.

The Elman network is a two-layer network with 
feed back from the first-layer output to the first layer 
input. It performs the following [25]:

1. The input units receive the first input.
2. Both the input units and context units (group of 

units that receives feedback signals from the 
previous time step [26]) activate the hidden units.

3. The hidden units also feedback to activate the 
context units (copying the content of the hidden 
unit).

4. The output units is compared with a teacher input 
(desired output) and backpropogation of error is 
used to incrementally adjust the connection 
strength. 

The Elman network constructed has tansig neurons in 
its hidden layer, and purline neurons in its output layer.
This combination is special in that two-layer networks 
with these transfer functions can approximate any 
function (with a finite number of discontinuities) with 
arbitrary accuracy. The only requirement is that the 
hidden layer must have enough neurons. More hidden 
neurons are needed as the function being fit increases 
in complexity. The recurrent connections allow the 
network's hidden units to see its own previous output, 
so that the subsequent behaviour can be shaped by 
previous responses. These recurrent connections are 
what give the network memory. The context units are 
also "hidden" in the sense that they interact exclusively 
with other nodes internal to the network, and not the 
outside world [25].
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Figure 2. Tansig transfer function.

Figure 3. Purline transfer function.

2.2 Training Process
The distinction between training and generalization 
accuracies lies in the test patterns adopted. Good 
training accuracy can be achieved by forming complex 
decision boundaries, which in turn requires a large 
network size [8]. Also, good generalization accuracy 
needs not to push too hard on the training accuracy; the 
overtraining may result in degraded generalization. 
This is happened if too many hidden units are used [8].

A number of network architectures have been 
designed and tested with different noisy data samples. 
The aim was to have good training process, to avoid 
overtraining problem, and to have better Mean Square 
Error (MSE) goal during the training process. The 
research results declare that for the given model, with a 
reasonable number of training samples, 10 neurons in 
the hidden layer was sufficient to achieve the required 
aims. It has been proven [6] that the addition of 
random noise to the desired signal during the training 
process of the neural network can improve the 
generalization of the network and can take the learning 
process from getting into local minimum.  

Assume a neural network such that, xk denotes one 
element of an input vector; yi is the ith output of the 
output layer. Let di(t) denote desired response for 
output neuron i at time t, where t is the discrete time 
index. The error signal is defined as the difference 
between the target response di(t) and the actual 
response yi(t) as shown below:           

)t(y)t(d)t(e iii −= (1)

The aim of learning is to minimize a cost function 
based on the error signal ei(t), with respect to network 
parameters (weights), such that the actual response of 
each output neuron in the network approaches the 
target response [6]. A criterion commonly used for the 
cost function is the MSE criterion, defined as the 
mean-square value of the sum squared error [27]:
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where E is the statistical expectation operator and the 
summation is over all the neurons of the output layer. 
Usually the adaptation of weights is performed by 
using the desired signal di(t) only. Figure 4 shows the 
idea of the adaptation procedure used to optimise the 
selection of the weights [27].

Figure 4. Neural network model for weight adaptation.

In [6] it is stated that a new di(t)+ni(t) signal can be 
used as a desired signal for output neuron i instead of 
using the original desired signal di(t), where ni(t) is a 
noise term. This noise term is assumed to be white 
gaussian noise, independent of both the input signals 
xk(t) and the desired signals di(t). With the new desired 
signals, the MSE of equation 3 can be written as:
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It is shown in [6] that equation 4 is equal to: 
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where the symbol means conditional probabilities and 
var is an abbreviation of variance. The second term in 
the right hand side of equation 5 will contribute to the 
total error J and in learning progresses, but it does not 
affect the final value of the weights because it is not a 
function of the network weights, while the first term 
will decide the optimal value of the weights [6]. Since 
the noise is zero mean and it is independent of both 
desired and the input signals, thus:

)}t(x)t(d{E{)}t(x)t(n)t(d{E{ iii =+

It is clear from equations 5 and 6 that the final 
weight values can be determined without the existence 
of noise in the Equation. Thus, learning with noisy 
desired signal will yield in the mean the solution for 
the original optimization problem, i.e., without the 
noise added to the desired signal.

(6)
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3. Holographic Imaging (Detection)
3.1. Field Analysis at the Receiver [18, 28]
The object, under imaging (detection) process, is 
assumed to have a field distribution D(p). The 
distribution is caused by reflecting the incident 
ultrasonic waves on the object. This distribution 
propagates to the recording axis X where it produces 
the field distribution S(x), given by:
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This is the paraxial approximation to the huygens-
fresnel principles.  B is a complex constant, k is a 
propagation constant (wave number), Zo is the distance 
between the object and recording (observation) planes, 
and r is the distance from a typical point on the object 
to a typical point on the recording axis X.  r is given as:
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In fresnel region, r can be approximated by the first 
two terms of equation 10, hence
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Substituting equation 11 into equation 7 yields
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where B1 is a complex constant resulting from 
equations 7 and 11.

3.2. Analysis of In-Line Hologram
Analysis of in-line holography can be found in many 
references [29, 30]. Figure 5 shows the geometry of 
recording the in-line hologram with a plane-wave 
reference. This type of wave can be easily synthesized 
in an experimental recording system by simply 
introducing a constant reference signal in the receiver.

Assuming that the synthesized plane-wave reference 
is Ar exp (jФ) where Ar and Ф are constants. The in-
line hologram h(x) is given by 
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where * is a conjugate symbol (operator).

Figure 5. Hologram recording geometry.

An image can be extracted from the recorded 
hologram h(x) through its multiplication by either one 
of the focusing phase factors )

2
exp(

2

oZ
jkx

±  and 

subsequent either Fourier Transformation (FT) (a 
classical method [31]) or one of the modern high 
resolution spectral analysis, like modified covariance 
method. A positive phase factor produces an in-focus 
image from the third term of h(x) and defocused image 
from its fourth term while the negative phase factor 
achieves the opposite result. For both signs of the 
phase factor, the second term produces a defocused 
autocorrelation function of D(p) and the first term 
generate a fresnel diffraction pattern related to the 
hologram boundary. Thus, while only one term of h(x)
produces an in-focus image, the other three terms 
generate interference that obscure the wanted image. It 
has been shown [31] that the effect of these interfering 
terms can be considerably reduced. The first term A2

r
is constant and can be subtracted from the recorded 
hologram prior to reconstruction [23, 31].

The training of RNN was made to follow the model 
described by the following equation:

θSCosASAdp rr 222 ++=      (14)

where θ is a phase difference between Ar and  S. This is
equivalent to equation 13. 

4. Modified Covariance Method
The derivation of this method can be found in many 
references [32, 33]. The modified covariance method 
for estimating the autoregressive parameters of order p
(AR(p)) can be viewed as least-squares method , based 
on the minimization  of the forward and backward 
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errors in linear predictors. The hologram h(x) is 
sampled, and the distance between each two samples is 
∆x. The number of samples is N. The resultant 
hologram is then h(n); n= 0, 1,….., N-1. To derive the 
estimator, let us consider the forward and backward 
linear prediction estimates of order p, given as
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where a(k)'s are the AR filter parameters. In either case 
the minimum prediction error power is just the white 
noise variance σ 2. The modified covariance method 
estimates the AR parameters by minimizing the 
average of the estimated forward and backward 
prediction error powers, or
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A least-square solution is used for minimization of 
(17). The result is [32, 33]
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Solving equation 20 will give the values of a(k), k=
1, 2,…p. Then the power spectral density can be 
estimated using the values of a(k), k= 1, 2,…p. The 
estimate of the white noise variance is 
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The power spectral density is:
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The advantages of the modified covariance method for 
estimating  the parameters of the AR model are (1) it 
yields statistically stable spectral estimates with high 
frequency resolution [14, 32], (2) the usual shifting of 
the peaks of an AR spectral estimate from the true 
frequency locations due to additive observation 
appears to be less pronounced for many of the other 
AR spectral estimators, and (3) spectral line splitting in 
which a single sinusoidal component gives rise to two 
distinct spectral peaks has never been observed [32].

The algorithm steps are as followes:

1. A pre-processing of the measured data using 
elman neural network.

2. Averaging the samples.
3. Subtracting the average value from the hologram, 

i.e. removing an approximation value of the first 
term of (13).

4. Multiplication the hologram (observed samples) by 
one of the quadratic factor:

5. Application of modified covariance algorithm on the 
resulting data.

5. Experimental Results
In this paper, a test object consisting of two steel rods 
of 2.5 cm diameter was used. The separation between 
the two rods was 7 cm. The object was located at a 
distance Zo cm from the recording (hologram) plane. A 
different concealing opaque media were used. The 
object was illuminated by ultrasound waves using 
ultrasonic transmitting transducer of 40 kHz. The 
reflected wave from the object that impinging the 
receiving transducer is added electronically to a 
reference signal to form the in-line hologram. The 
transmit/receive transducers scan the hologram 
aperture to record the received signal at uniformly 
spaced (∆x) positions. The total number of samples is 
N. In order to enhance the received signal, or in other 
words, to decrease the effect of the relatively high 
background that caused by the opaque media; a RNN 
is designed and used as a pre-processing technique.

Two experiments were made, with two different 
concealing media. In the first experiment a sheet of a 
paper was used as a concealing medium. The distance 
Zo was 90 cm. Image reconstructions was performed 
using modified covariance method. In the second 
experiment, a concealing styrofoam plate of 3 cm 
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thickness was used instead of the sheet of paper. The 
object was located 50 cm instead of 90 cm from the 
recording plane. Figure 6 shows the image of the 
object. Where the two peaks A1 and A2 are 
corresponding to the two rods, and they are clearly 
defined.

Figure 6. Reconstructed image of two rods concealed by a 
styrofoam of 3cm thickness.

The combination of RNN techniques and in-line 
holography try successfully to decrease the effect of 
concealing medium which contribute itself as a 
background noise that degrade the signal to noise ratio 
and also the resolution. 

 It is worthwhile to mention that, the resolution 
formula for FT method is given as [31].

b
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Where 2b is the hologram length, and
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In [34], where FT technique was used to image a same 
2-point object concealed by a sheet of paper, a 
degrading effect of the performance was noticeably 
greater. The separation between the two points was 
made greater by more little than two times of the 
separation given by equation 26, in order the object 
(two rods) to be resolved. 

 In order to study the problem more deeply, and to 
compare the performance between the two cases, with 
and without using the neural network, a white noise 
was added to the hologram and its effect on the results 
has been investigated. Two points are taken into 
account. These are the deviation from the true value of 
separation between the two rods (dv), and the 
difference between the intensity of the two peaks, 
symboled as A1 and A2. Theoretically, it is expected 
that the received signals from the two rods are of the 
same values because the two rods are similar.

Figure 7. Difference in intensity of the two rods as a function of 
SNR-sheet of paper.

Figure 8. Separation between the two rods as a function of SNR-
sheet of paper.

Figure 9. Separation between the two rods as a function of SNR-
styrofoam.

Figures 7 and 8 show the performance with and 
without using the neural network on the separation 
between the two roads as a function of Signal-to-Noise 
Ratio (SNR) for both concealing medium. It is clear 
that as the SNR decreases, the performance degrades. 
The degradation is not so severe when SNR decreases 
to about 0 dB. This is because the addition of a 
reference wave, in recoding the in-line hologram, will 
result in a coherently cumulating the acoustic field on 
the ultrasonic transducers when scanning the field. 
However, the implementation of neural network 
improves the performance noticeably especially for the 
case of styrofoam medium.
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Figure 10. Difference in intensity of the two rods as a function of 
SNR-styrofoam.

Similar results are noticed for the difference of    
intensities of the two peaks that are corresponding to 
the two rods, as shown in Figures 9 and 10. Hence it is 
clear that the performance is better for the case of 
using neural network as a pre-processor before 
applying the spectral estimation method.

6. Conclusion
It is demonstrated that the modified covariance method 
can be used to detect and image a concealed object of 
closely separated points, and to find the required 
parameters such as the amplitude and the separation 
between a two adjacent points. Experimental results 
show that a pre-processing the noisy data with RNN to 
decrease the effect of noise as much as possible and 
then applying the enhanced data to spectral estimation 
methods can improve the tracking of the model 
parameters. Also the use of holography enables an 
improvement of the signal-to-noise ratio by coherently 
cumulating the acoustic field on the ultrasonic 
transducers when scanning the field.
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