
The International Arab Journal of Information Technology, Vol. 19, No. 1, January 2022                                                         97 

Systematic Literature Review: Causes of Rework in 

GSD 

Shiza Nawaz, Anam Zai, Salma Imtiaz, and Humaira Ashraf 

Department of Computer Science and Software Engineering, International Islamic University, Pakistan  

Abstract: Global Software Development (GSD) involves multiple sites which comprise of different cultures and time zones 

apart from geographical locations. It is a common software development approach adopted to achieve competitiveness. 

However, due to multiple challenges it can result in misunderstandings and rework. Rework raises the chance of project 

failure by delaying the project and increasing the estimated budget. The aim of this study is to identify and categorize the 

rework causes to reduce its frequency in GSD. To identify the empirical literature related to causes of rework, we performed a 

Systematic Literature Review (SLR). A total of 23 studies are included as a result of final inclusion. The empirical literature 

from the year 2009 to 2020 is searched. The overall identified causes of rework in GSD are categorized into 6 major 

categories which are communication, Requirement Management (RM), roles of stakeholders, product development/integration 

issues, documentation issues, and differences among stakeholders. The most reported rework causes are related to the 

category of communication & coordination and RM. Moreover, an industrial survey is conducted to validate the identified 

rework causes and their mitigation practices from practitioners. This study will help practitioners and researchers in 

addressing the identified causes and therefore reduce the chances of rework. 

Keywords: Global software development, communication and coordination issues, requirement management issues and 

rework. 

Received August 21, 2020; accepted April 28, 2021  

 https://doi.org/10.34028/iajit/19/1/12 
 

1. Introduction 

Global Software Development (GSD) is a distributed 

development strategy that involves regions separated 

by space, time, and culture. It has become an industry 

norm due to the variety of advantages such as quality 

work, reduced development cost and around the clock 

development [18, 39]. The world has turned into a 

global village and globalization facilitates individuals 

from different areas to share ideas, thoughts, cultures, 

and business. The internet has opened new doors for 

business in the field of Information Technology (IT) 

and Engineering, where distance is of less importance 

[23]. Business globalization gives the concept of GSD 

which leads software development organizations to 

practice distributed development i.e., not restricted to a 

single country [4]. GSD ensures around the clock 

development, utilization of expertise from around the 

world, and therefore quality development but at the 

same time, it also faces many challenges as compared 

to co-located development [15]. 

Some of the challenges in GSD are due to the 

complexity of tasks, poor interpersonal relationship 

[25], difficulty of modules integration [13], and 

communication [3, 25, 37], poor planning of RM 

process, frequent changes in requirements [43], tool 

mismatch, outdated documentation [20], absence of 

product manager [12], different processes across 

distributed sites [15], etc., These challenges result in  

 

 
rework which delays the project and results in cost 

overrun. 

 “Rework” requires continuous attention and 

resolution throughout the Software Development Life 

Cycle (SDLC). Previous studies discuss different 

rework causes randomly. Our study aims to identify 

these causes from the empirical literature and 

categorize them. We suggest mitigation practices to 

minimize the root causes of rework.  

In this study, Systematic Literature Review (SLR) is 

conducted to evaluate and investigate all available 

causes of rework in GSD from the year 2009 to 2020. 

A total of 27 causes are identified from 23 studies that 

are further classified into 6 major categories. Limited 

rework causes are discussed in previous literature 

therefore, an industrial survey is conducted to 

complement the data. The identified rework causes are 

categorized to promote comprehension for 

practitioners and researchers.  

The organization of the paper is, section 2 is related 

work, section 3 describes the research methodology 

and section 4 gives detail of the SLR process. The 

findings of SLR are discussed in section 5 and results 

are explained in section 6. Threats to validity and 

industrial survey are discussed in sections 7, 8 

respectively. Mitigation practices discussed in section 

9. The research contribution is discussed in section 10. 

Finally, the conclusion and future work is in section 

11. 



98                                                       The International Arab Journal of Information Technology, Vol. 19, No. 1, January 2022 

2. Related Work  

In Software Industry, rework is the most common 

cause of uncertainty and as a result, it is one of the 

most significant factors that negatively affect 

organization's ability to meet customer demands [8, 

16]. It is a critical issue during the development of 

software [9, 17] because of extra effort of redoing a 

work that was initially poorly done [17, 38]. Literature 

highlights that fixing/correcting software flaws 

consume half of the effort and resources of the project 

[1]. According to multiple studies, redoing increases 

cost, generate delays and require extra time [16, 21] 

and directly impacts an organization's performance, 

productivity, and profit margins [38]. Most of the cost 

can approach or exceed 50 percent of the entire project 

cost [21]. The cost of rework rises significantly in case 

of increased delay, relative to the development life 

cycle i.e., between the incidence of an issue and its 

remedy [38].  

Different practices are used in software industry to 

deal with rework. The usage of Capability Maturity 

Model (CMMI) and Agile practices when combined 

decreases rework and boosts productivity [8]. These 

solutions are effective in traditional software 

development but are not effective in case of GSD due 

to the spatial, temporal and cultural distance. The 

corporate structure also establishes boundaries and 

obstacles [2]. Rework is a common problem in GSD 

and requires more time, effort and cost due to the 

distributed nature of team members/teams. Researchers 

have identified different challenges [5, 6, 19, 22, 41] 

which are reported in literature.  

The ineffective communication results in 

misinterpretation of user demands leading to the 

development of the incorrect features [42]. It can also 

lead to poor decision-making, and result in backlog 

management. It also results in technical faults, which 

could lead to defects and rework. These are just a few 

instances of how effective communication is critical 

and how poor communication leads to rework [42]. 

Different project management approaches might result 

in rework due to integration, and interoperability issues 

[2]. The design mistakes and omissions are the primary 

source of rework and contribute to 5.4% of the total 

construction cost [10]. Current development 

approaches result in unnecessary rework and cause 

mismatches between design and development [31]. 

The adequate and timely engagement of all 

stakeholders is critical during the negotiation of new 

requirements to minimize future rework effort [36]. All 

of these problems result in rework and disrupts the 

software development. 

GSD is a trendy software development approach 

that many software organizations have adopted to save 

money and time. Rework, on the other hand, has a 

negative impact on these advantages. The rework is 

handled as a reactive approach i.e., strategies are used 

to perform rework while reducing the impact of 

rework. This reactive approach is not cost effective, 

since a lot of effort is wasted on handling the rework. 

Addressing rework in a proactive approach would 

require eliminating or minimizing the causes that 

generates rework. Doing so will reduce the likelihood 

of occurrence of rework and reduce the impact of 

rework as well saving much of the unnecessary effort. 

Rework is a problem that affects businesses of all 

sizes, hence a critical issue. To the best of our 

knowledge no empirical research on rework is 

published both in traditional software development and 

GSD. The work which reports the causes is limited and 

scattered. Since rework has severe and more negative 

consequences during distributed development, 

therefore we have chosen to identify, analyse and 

synthesize the causes of rework in GSD. The outcome 

of the research can be used by researchers as well as 

practitioners to ensure successful GSD. 

3. Research Methodology 

The research methods selected for this study are SLR 

and industrial survey. SLR is performed to identify 

relevant empirical data from the literature. It is 

complemented with an industrial survey to understand 

rework causes from practice. Under this survey, 25 

requests are sent to organizations but only 18 

organizations participated. The practitioners are also 

asked to report mitigation practices to address the 

rework causes. The Figure 1 below elaborates the 

research methodology. 
 

 

Figure 1. Research methodology. 

3.1. Phase 1: Data Collection 

Data for this research is collected by conducting SLR. 

In SLR we collected the rework causes which are faced 



Systematic Literature Review: Causes of Rework in GSD                                                                                                           99 

 

 

during GSD. Practices are also found from selected 

studies to mitigate rework causes. 

3.2. Phase 2: Data Analysis 

Three major steps performed in this section:  

1) Categorization: Six major causes are found after the 

categorization of the overall identified rework 

causes. 

2) Analysis of identified practices: 2nd step is the 

analysis of mitigation practices that are found from 

literature. 

3) Validation of rework causes and practices from 

industry: The last step of data analysis is to validate 

the rework causes and to get more mitigation 

practices from industry. 

3.3. Phase 3: Mitigation Practices 

The output of phase 2 is used to propose migration 

practices, which can help the practitioners to minimize 

the effects of identified causes.  

4. Systematic Literature Review 

SLR is the kind of secondary study [24] which 

provides a method of examining the empirical 

literature in any research field and the question of 

interest in a systematic manner [30]. SLR applies a 

systematic procedure of inclusion/exclusion, data 

extraction and, quality assessment. A protocol is 

designed prior to the execution of research, which is 

strictly followed, which in turn makes sure that the 

process is repeatable with the same results [29]. The 

steps that we followed to conduct the SLR are given in 

Figure 2. 

 

Figure 2. SLR process. 

4.1. Research Question (RQ) 

RQ is an initial step of SLR process and it should be 

defined on the basis of research objective. We have 

formulated the following RQ to find the causes of 

rework in GSD. 

 RQ# 1: What are the causes of rework during 

Global Software Development? 

4.2. Database Selection 

We choose the following digital libraries to identify 

empirical literature because these are important 

databases related to computer science and software 

engineering: 

 IEEE  

 Science direct 

 Springer link  

 ACM digital library  

 Others (scholar Google)  

4.3. Data Retrieval 

The data retrieval depends on the search string 

composed of the research question. In order to avoid 

researcher bias, the below given strategy is used to 

construct the main search string: 

1. Analyse the research question and identify the main 

terms.  

2. Identify synonyms for major terms (if exist).  

3. Connect alternative synonyms with Boolean OR. 

4. Link the main terms with Boolean AND. 

The resultant main search string is: 

 ((“GSD” OR “global software development” OR 

“DSD” OR “distributed software development”) AND 

(“rework” OR “redo” OR “modify” OR “reshape” OR 

“alter” OR “remodel” OR “revise” OR “remake” OR 

“rewrite” OR “change”) AND (“cause” OR “reason” 

OR “origin” OR “creator” OR “base” OR “source”)) 

This main term is customized for the different 

databases based on their format i.e., use of wildcards 

and brackets etc. 

4.4. Study Selection 

The selections of studies rely on the below given 

inclusion and exclusion criteria: 

1) Included Studies should be  

1. Published in journal or conference 

2. Published between 2009-2020 

3. Available in English 

4. Regarding causes of rework in GSD 

2) Excluded Studies should be  

1. Duplicated or repeated study. 

2. Not related to causes of rework in GSD. 



100                                                       The International Arab Journal of Information Technology, Vol. 19, No. 1, January 2022 

3. Studies published in other languages.  

4. Thesis and gray literature. 

4.5. Selection Process 

The Figure 3 shows the overall search process in detail 

from search string to the number of selected studies 

which are included at each level. The search process 

consists of two levels: 

 

Figure 3. Detail of number of evidences at each step. 

1) Level I: In level 1, the primary studies searched 

through selected sources by using the main search 

string defined in section 4.3 are included or 

excluded by reading titles and abstracts. The 

inclusion and exclusion criteria is used to make the 

final decision. 

2) Level 2: In level 2 All the included papers collected 

in level 1 are studied in detail to identify the causes 

of rework in GSD or excluded based on the 

availability of relevant material or not. 

4.6. Quality Assessment (QA) 

According to [34], in SLR, QA is essential step, as it 

enhances reliability of selected studies in order to 

avoid research bias. QA criteria of selected studies is 

designed by using the guidelines defined by 

Kitchenhem and Charters is [24]. QA is based on 

following Quality Questions (QQ):  

 QQ 1: Is the aim/objectives of the study clearly 

stated?  

 QQ 2: Is the study designed to achieve defined 

objectives?  

 QQ 3: Are findings and results clearly described in 

the study?  

 QQ 4: Is the study well referenced?  

The QA of an individual study is performed through 

quality points which are based on the following rules: 

 Rule 1: If selected study answers the quality 

question then its score is 1. 

 Rule 2: If a selected study partially answers the 

quality question then its score is 0.5. 

 Rule 3: If a selected study does not answer the 

quality question then its score is 0. 

The assessed quality of each of the selected study is 

given in Table 1 below. None of the study is excluded 

due to QA since the QA score is ok for all studies. 

Table 1. Assessed the quality of each selected study. 

PC Q1 Q2 Q3 Q4 
Total 

Points 

Assessed 

Quality 

PC1 1 1 1 1 4 Excellent 

PC2 1 1 1 1 4 Excellent 

PC3 1 1 0 1 3 Good 

PC4 1 1 1 1 4 Excellent 

PC5 1 1 1 1 4 Excellent 

PC6 1 1 0.5 1 3.5 Excellent 

PC7 0.5 0.5 0.5 1 2.5 Medium 

PC8 1 0.5 0.5 1 3 Good 

PC9 1 1 1 1 4 Excellent 

PC10 1 1 1 1 4 Excellent 

PC11 1 1 0.5 1 3.5 Excellent 

PC12 1 1 1 1 4 Excellent 

PC13 1 1 1 1 4 Excellent 

PC14 1 1 1 1 4 Excellent 

PC15 1 1 0.5 1 3.5 Excellent 

PC16 1 1 1 1 4 Excellent 

PC17 1 1 1 1 4 Excellent 

PC18 1 1 0.5 1 3.5 Excellent 

PC19 0.5 0.5 0.5 1 2.5 Good 

PC20 1 1 0.5 1 3.5 Excellent 

PC21 0.5 0.5 0.5 1 2.5 Good 

PC22 1 1 1 1 4 Excellent 

PC23 1 1 1 1 4 Excellent 

 

Low: If total points <=1 

Medium: If total points=>1&<=2 

Good: If total points=>2&<=3 

Excellent: If total points=>3&=4 

4.7. Data Extraction  

Microsoft Excel is used to create data extraction forms 

that recorded information on how the studies answered 

RQ. Metadata such as paper title, author, and 

publication’s year, database, and the decision of 

inclusion or exclusion with rationale is recorded in data 

extraction forms. The number of studies included and 

excluded is detailed with help of Figure 3. 

5. Findings of SLR 

The data from SLR and industrial survey are analysed, 

and the causes of rework are reported, which are 

explained in detail one by one. 



Systematic Literature Review: Causes of Rework in GSD                                                                                                           101 

 

 

5.1. Rework Causes Due to Communication Issues 

Communication is a major problem and it assumes 

complexity when teams are distributed globally. Table 

2 presents the causes related to communication issues. 

Table 2. Causes of rework due to communication issues. 

Main 

causes 
Sub-causes PC Frequency 

C
o

m
m

u
n
ic

at
io

n
 

Poor interpersonal relationship PC3, PC5 2 

Task awareness PC6, PC9, PC 23 3 

Availability awareness PC18 1 

Phonetic spellings PC14 1 

Lack of informalCommunication 
PC1, 

PC 20 
2 

Misinterpretation of vocabulary PC4, PC13 2 

Poorly communicated 
requirements 

PC9 1 

Poorly communicated module 

objectives 
PC9 1 

Poor interpersonal relationship between remote 

teams is one of the communication risks that increases 

the rework frequency [25, 27]. Communication barriers 

and awareness results in software integration and 

coordination breakdown that in turn leads to delay in 

task completion, and increased rework [37]. Task 

awareness at distributed location makes it challenging 

to find the right person. This in return leads to rework 

[22, 47]. Delay in response also increases rework [28]. 

When phonetic spellings are used by the client while 

providing requirements, it sometimes leads to rework 

[7]. The use of different terminologies leads to 

coordination time delay and rework [35]. Lack of 

Informal planning [45] and poorly communicated 

requirements or module objectives make it challenging 

to develop the correct modules, ultimately leading to 

rework [41, 47]. Misinterpretation of vocabulary due to 

cultural differences enhance chances of rework [20]. 

5.2. Rework Causes Due to Requirement 

Management Issues 

Requirements Engineering (RE) is a very complex and 

human concerned activity; where the complexity 

increases in the case of GSD [28]. Table 3 presents the 

requirement management related causes. 

Table 3. Causes of rework due to requirement management issues. 

Main 

causes 
Sub-causes PC Frequency 

R
eq

u
ir

em
en

t 
M

an
ag

em
en

t 

Frequent change in requirements PC8 1 

Requirements identified but not 

executed 
PC8 1 

Poor planning of RMP PC8 1 

Change un-notified to all 

stakeholders 
PC16 1 

Mistakes at requirements elicitation 

phase 
PC17, PC 19 2 

Problems in gaining a shared 

understanding 

PC4, PC 21, 

PC 20 
3 

Ineffective flow of changed 

information in RCM 
PC2, PC15 2 

Tool mismatch PC4 1 

 

Developers at different sites face challenges in 

understanding the requirements [19, 33, 41]. Lack of 

effective collaborative tools and technologies makes 

RE more complicated [46]. Tool mismatch among 

team increases rework [20]. “RM is an organized 

activity to elicit, document and organize requirements 

of a software system, that maintain and establish a 

contract between the project development team and 

client on the changes to requirements” [43]. RM makes 

sure that all the collected requirements are 

implemented as well [43]. Shortcomings in this phase 

will result in unacceptable software and rework [40].  

During SDLC, requirements constantly change [11] 

at every phase [27]. Its poor planning results in delay 

which in turn causes frequent changes and leads to 

rework [5]. Moreover, it impacts the design activity 

and increase the effort and cost [7]. Changes in 

requirements not notified to relevant stakeholders 

causes rework [32]. In RCM, the ineffective flow of 

changed information among distributed sites also 

increases rework chances [26]. 

5.3. Rework Causes Due to different Role 

The software development literature highlights the 

importance of roles, to carry tasks related to the 

development and ensuring success. Table 4 presents 

the causes related to roles.  

Table 4. Causes of rework due to different roles. 

Main causes Sub-causes PC Frequency 

Different Roles 
Stakeholder’s Unaligned agenda PC11 1 

Absence of product manager PC11 1 

 

There are multiple shareholders involved in 

development of project who may have unaligned 

agendas, which results in delayed development and 

rework. In absence of product manager when nobody 

takes leadership and ownership of task from the group 

of stakeholders it also results in rework [12]. 

5.4. Rework Causes Due to Product Development 

and Integration Issues 

In GSD development of product and integration of 

modules is a challenging task, however little attention 

is given to this phase in empirical literature. Table 5, 

shows identified causes of rework which are discussed 

in the empirical literature.  

Table 5. Causes of rework due to product development and 
integration and management issues. 

Main causes Sub-causes PC Frequency 

P
ro

d
u

ct
 D

ev
el

o
p

m
en

t,
 

In
te

g
ra

ti
o

n
 a

n
d

 m
an

ag
em

en
t Poor integration 

PC7 

 
1 

Mismatch of methodology and 

development process 
PC4 1 

Mismatches in management approaches PC13 1 

Project management challenges PC 21 1 

Fast track projects PC12 1 



102                                                       The International Arab Journal of Information Technology, Vol. 19, No. 1, January 2022 

 

Module integration in dispersed environment is 

much problematic and most of the time results in 

rework [13]. According to [19], in GSD team also face 

challenges related to project management. Rework is a 

negative outcome, linked with poor integration strategy 

[20]. Mismatch of methodology and development 

process results in postponement [20]. The mismatches 

in the management approaches also result in rework 

[34]. In GSD fast track projects is a reason for 

overlapping dependent modules and thus, produce 

unexpected rework [14]. 

5.5. Rework Causes due to Documentation Issues  

Unambiguous and updated documentation can be 

useful for resources therefore documentation should be 

verified. In system design, out-of-date documentation 

results in rework [20]. Table 6, discusses related issue 

from the empirical literature. 

Table 6. Causes of rework due to documentation. 

Main causes Sub-causes PC Frequency 

Documentation 
Outdated documentation 

system design 
 

PC4 
 

1 

5.6. Rework Causes due to differences of 

Stakeholders 

The different national and organizational culture of 

distributed sites in GSD is a major source of rework [6, 

41, 44]. The causes mentioned below in Table 7. 

Table 7. Causes of rework due to differences of stakeholders. 

Main causes Sub-causes PC Frequency 

D
if

fe
re

n
ce

s 
o

f 

st
ak

eh
o
ld

er
s National differences 

PC10, 
PC 22 

2 

Cultural differences 
PC10,PC 20, 

PC 22 
3 

Organizational 
differences 

PC10, 
PC 22 

2 

6. Results and Discussion 

This research reviews the existing empirical literature 

to identify reported GSD challenges which leads to 

rework. We selected SLR as our research method to 

overcome the biasness and to provide comprehensive 

overview of the available evidence. In the findings of 

SLR we identified different challenges. In order to 

identify challenges faced by the practitioners we 

conducted an industrial survey. Our proposed practices 

are based on the combined results of SLR and survey. 

In addition, the practices are validated from industry. 

To address RQ1, the classification and 

categorization of scattered rework causes is performed 

and presented in Figure 4 below in the form of a 

fishbone diagram. The purpose is to pictorially 

represent the causes in meaningful categories for 

comprehension and further analysis.  

 

Figure 4. Fish bone diagram (causes of rework organized in 

categories. 

The above fish diagram (Figure 4) is a simple and 

clear representation of all identified causes of rework 

into different categories. In order to answer RQ1, we 

obtained 27 causes of rework from 23 selected studies 

from SLR. The ultimate aim of this research is to 

categories all identified causes; which are categorized 

into 6 major categories. We identified 

“communication” (30%), “requirement management” 

(30%), “product development and integration” (15%), 

“differences in stakeholders” (11%), “roles” (7%), 

documentation issues (3%), as major categories of 

rework cause in GSD. Most of the studies reported 

communication and RM as a significant reason for 

rework in GSD. 

7. Threats to Validity  

The threats to the study are due to access of limited 

resources for conducting SLR and also time constraint 

and limited budget, however we have tried to remove 

these limitations by 

 Searching in related sources of computer sciences 

and software engineering.  

 Use of synonyms to identify all empirical evidence 

related to rework in GSD.  

 The search process is planned and piloted before 

execution. 

 In addition, the organizations active in GSD are 

targeted to overcome threats.  

8. Industrial Survey 

To get practitioner opinions on the identified rework 

causes and mitigation practices, an industrial survey is 

performed. An industrial survey via questionnaire is 



Systematic Literature Review: Causes of Rework in GSD                                                                                                           103 

 

 

selected because it is easy to collect the information 

from samples of the target audience. As the 

background of this study is GSD so, it is effective to 

use industrial survey method because in this way the 

selected sample can be contacted easily via email, 

skype or telephone.  

8.1. Population 

The target audience of the survey are practitioners, 

who are working in GSD based organizations. 

8.2. Sampling 

The type of sampling chosen is non-probability 

sampling and snowballing technique for data 

collection. We do not have a predefined list of 

distributed organizations due to the vast population of 

GSD organizations as well as inability to reach all in 

person. 

8.3. Instrument  

A survey is conducted by using questionnaires as an 

instrument for validation which is based on two steps. 

In the first step, validation of the overall rework causes 

performed via structured (closed-ended) questions. In 

second step, open-ended and partially structured 

questions are used to validate the identified practices 

and to get some more practices as feedback to mitigate 

rework issues in GSD.  

8.4. Survey Instrument Administration  

Survey administrated via email, social media (skype) 

and direct meeting (unstructured interviews) to 

personal contacts. 

8.5. Survey Result  

The main purpose behind conducting the industrial 

survey is to get practitioners' feedback on the causes of 

rework in GSD. Additionally, in the result section of 

the survey some mitigation practices to reduce rework 

causes are found. A detailed discussion of these 

practices is given in section 9. 

8.6. Limitation of Survey  

Most of the survey is based on personal contacts and 

snowballing strategy, where the first link is asked for 

more referrals. Therefore the survey is limited due to 

number of responses received. 

9. Proposed Practices to Reduce Rework 

Causes  

There are number of practices found from literature 

and industrial survey to address the identified causes of 

rework. Some of the practices are discussed below: 

  

 P1-Direct communication: 

In GSD due to lack of group cohesiveness, the 

communication between teams present at distributed 

sites becomes weak and causes communication 

challenges, which can be resolved through continuous 

feedback. Therefore, initial level of software 

development direct communication is required to build 

strong relationship among the team members.  

 P2-Use Administrative tools and agile 

development process: 

By personal awareness means that we are aware of 

who is working on the specific task and in which 

timings that person is available. The rework due to task 

unawareness can be minimized by using common 

knowledge, repositories and administrative tools (JIRA 

etc.,). These tools give central visualization of all 

scheduled activities with details of all resources. The 

agile development process is also helpful for task 

awareness. 

 P3-Established communication plan: 

To ensure availability awareness and to avoid 

communication bottlenecks, communication process 

must be planned according to situation and 

continuously examined after implementation. 

 P4-Discussions/Meetings:  

Quality assurance procedures and plans should be 

discussed early in the GSD process and clear module 

objectives are communicated before implementations 

to get feedback in the early stages. 

 P5-Review Formal Document: 

Formal documents should be reviewed by content 

writer or language expert to avoid issues due to 

phonetic spellings.  

 P6-Language training lessons:  

Misinterpretation of vocabulary can be reduced by 

choosing sites in culturally similar locations and also 

provide language training lessons to reduce linguistic 

distance.  

 P7-Extensive use of synchronize communication 

technology: 

Informal communication is a challenge in GSD 

environment, but it can be minimized by using 

synchronous communication technology extensively.  

 P8- Promote visits and exchanges among sites:  

Exchange team members among sites and also promote 

visits to overcome the lack of informal communication. 

 P9- Management of changed information: 

Follow standard approaches in RCM and manage 

changes in requirements at the right time to overcome 



104                                                       The International Arab Journal of Information Technology, Vol. 19, No. 1, January 2022 

ineffective flow of change information. 

 P10- Change notify to all stakeholders: 

Change in requirements should timely be propagated 

and the status be clearly informed to the relevant 

stakeholders.  

 P11- Implement RM process: 

Sometimes identified requirements are not executed 

due to poor RM process, therefore use a standard RM 

process to ensure and validate implementation of all 

requirements.  

 P12- Requirement verification: 

Requirement (documentation) verification also helps 

when requirements are identified but not executed. 

Therefore, all requirements should be noted down and 

verified from the client. 

 P13- Use incremental working solution: 

Change in requirement is obvious in the GSD 

environment and we cannot resist or stop it. At the 

initial level of software, development change is good 

but frequent late changes lead to rework. Use prototype 

or incremental working solutions to overcome 

problems due to frequent late changes in requirements. 

Different online applications for real scenarios are also 

helpful for better understandings of prototypes. 

 P14- Established business analyst team: 

To improve the RM process the established business 

analyst team arranges direct project planning meetings 

before implementation. Metrics are useful for the 

effectiveness of RMP. 

 P15- Direct communication between users and 

developers: 

Extensive use of synchronous communication 

technology or face to face communication among users 

and developers is important to get the correct 

requirements initially and minimize mistakes at the 

requirement elicitation phase. A well-defined process 

(agile) and the tool can be used to acquire 

requirements. 

 P16- Continuous discussion: 

Continuous discussion of relevant stakeholders is 

required for the development of mutual understanding. 

 P17- Develop core team: 

Develop a core team for each product and schedule 

group meetings for the common understanding of 

scope, immediately after getting requirements. 

 P18- Follow defect prevention activities: 

Defect prevention activities help to improve module 

integration. 

 P-19- Plan fast track projects 

Usually, fast track techniques used for small projects 

but there is a chance of rework in case of dependency 

between modules. For this proper planning and 

alternate solutions required. 

 P-20- Improve code review process 

Outdated documentation is an issue which requires 

document verification with code in the code review 

process.  

10. Research Contribution  

This research makes four primary contributions. 

 First contribution is the design and execution of an 

empirical study to identify and categorize rework 

causes which are described in the section 5 (findings 

of SLR).  

 The second contribution is the validation of the 

identified causes from the real world via survey 

(questionnaire and unstructured interviews).  

 The third contribution is the proposed practices 

based on the combined results of SLR and survey. 

These practices will help to reduce rework causes 

described in section 9.  

 The fourth contribution is the validation of proposed 

practices from practitioners.  

11. Conclusions and Future Work 

In this study, SLR is performed to identify the rework 

causes faced by distributed teams during the Software 

Development Lifecycle. The objective of the study is 

to classify and categorize the identified causes, which 

is the main contribution of this research. A total of 6 

major rework categories and 27 causes are identified 

from the empirical literature. 

The causes are categorized into main categories as 

part of this research work, which will also help in 

comprehension and evaluation. These causes may have 

a relationship with each other and impact each other. A 

detailed analysis will be performed in the future to 

identify the correlation among these causes. 

The most reported rework causes are related to the 

category of communication and RM. The outcomes 

achieved from this SLR and industrial survey can be 

useful for practitioners and researchers to work on 

mitigating the causes of rework. 

References 

[1] Adnan F. and Andnaqvi I., “Effect of Rework on 

Project Success,” Science International, vol. 27, 

no. 1, pp. 575-580, 2015. 

[2] Ahmed M., Ateeq A., Khan S., and Junad M., 

“Software Cost Estimation in Global Software 

Development Business: A Review of Models and 



Systematic Literature Review: Causes of Rework in GSD                                                                                                           105 

 

 

Cost Drivers for Economical Business,” 
International Journal of Business and Economic 

Affairs, vol. 6, no. 3, pp. 118-129, 2021. 

[3] Al-Zaidi A. and Qureshi R., “Global Software 

Development Geographical Distance 

Communication Challenges,” The International 

Arab Journal of Information Technology, vol. 14, 

no. 2, pp. 215-222, 2017. 

[4] Aranda N., Vizcaino A., and Piattini M., “A 

Framework to Improve Communication During 

The Requirements Elicitation Process in GSD 

Projects,” Requirements Engineering, vol. 15, 

vol. 4, pp. 397-417, 2010. 

[5] Barbosa O., Albuquerque W., Bandeira A., 

Pivoto U., Pires F., and Bonifacio B., 

“Developing a Release Management Tool to 

Support Global Software Development: An 

Experience Report on Android Platform,” in 

Proceedings of the 15th International Conference 

on Global Software Engineering, Seoul Republic 

of Korea, pp. 117-121, 2020. 

[6] Beecham S., Clear T., Lal R., and Noll J., “Do 

Scaling Agile Frameworks Address Global 

Software Development Risks? an Empirical 

Study,” Journal of Systems and Software, vol. 

171, pp. 110823, 2021. 

[7] Beecham S., Noll J., and Richardson I., “Using 

Agile Practices to Solve Global Software 

Development Problems-A Case Study,” in 

Proceedings of the IEEE International 

Conference on Global Software Engineeering 

Workshops, Shanghai, pp. 5-10, 2014. 

[8] Canedo D. and Santos A., “Factors Affecting 

Software Development Productivity: An 

Empirical Study,” in Proceedings of the XXXIII 

Brazilian Symposium on Software Engineering, 

pp. 307-316, 2019. 

[9] Cass A., Sutton S., and Osterweil L., 

“Formalizing Rework in Software Processes,” in 

Proceedings of the 9th International European 

Workshop on Software Process Technology, 

Helsinki, pp. 16-31, 2003. 

[10] De Beer J. and Depew C., “The Role of Process 

Engineering in the Digital Transformation,” 

Computers and Chemical Engineering, vol. 154, 

pp. 107423, 2021. 

[11] De Farias junior I., De Azevedo R., De Moura 

H., and Da Silva D., “Elicitation of 

Communication Inherent Risks in Distributed 

Software Development, in Proceedings of the 

EEE 7th International Conference on Global 

Software Engineering Workshops, Porto Alegre, 

pp. 37-42, 2012. 

[12] Ebert C. and Brinkkemper S., “Software Product 

Management-An Industry Evaluation,” Journal 

of Systems and Software, vol. 95, pp. 10-18, 

2014. 

[13] Faizan M., Ulhaq S., and Khan A., “Defect 

Prevention and Process Improvement 

Methodology for Outsourced Software Projects,” 

Middle-East Journal of Scientific Research, vol. 

19, no. 5, pp. 674-682, 2014. 

[14] Fruchter R., Bosch-Sijtsema P., and Ruohomäki 

V., “Tension between Perceived Collocation and 

Actual Geographic Distribution in Project 

Teams,” Ai and Society, vol. 25, no. 2, pp. 183-

192, 2010. 

[15] Galviņa Z. and Šmite D., “Software 

Development Processes in Globally Distributed 

Environment,” Scientific Papers, University of 

Latvia, vol. 770, pp. 7-14, 2011. 

[16] Giuseppe S. and Imanol U., “Do We Rework? A 

Path to Manage One of the Primary Cause of 

Uncertainty in Software Industry,” in 

Proceedings of International Conference on the 

Quality of Information and Communications 

Technology, Ciudad Real, pp. 179-192, 2019. 

[17] Hossain S., “Rework and Reuse Effects in 

Software Economy,” Global Journal of 

Computer Science and Technology, vol. 18, no. 

4, pp. 35-50, 2018. 

[18] Imtiaz S. and Ikram N., “Dynamics of Task 

Allocation in Global Software Development,” 

Journal of Software: Evolution and Process,vol. 

29, no. 1, pp. e1832, 2017. 

[19] Jain R. and Suman U., “A Project Management 

Framework for Global Software Development,” 

ACM SIGSOFT Software Engineering Notes, vol. 

43, no. 1, pp. 1-10, 2018. 

[20] Jain R. and Suman U., “A Systematic Literature 

Review on Global Software Development Life 

Cycle,” ACM Sigsoft Software Engineering 

Notes, vol. 40, no. 2, pp. 1-14, 2015. 

[21] Jayatilleke S. and Lai R., “A Method of 

Assessing Rework for Implementing Software 

Requirements Changes,” Computer Science and 

Information Systems, vol. 18, no. 1, pp. 32-32, 

2020. 

[22] Jiménez M., Piattini M., and Vizcaíno A., 

“Challenges and Improvements in Distributed 

Software Development: A Systematic Review,” 

Advances in Software Engineering, vol. 2009, 

2009. 

[23] Kaur A., Outsourcing Software Quality, Institutt 

for Datateknikk og Informasjonsvitenskap, 2013. 

[24] Kitchenham B. and Charters S., Guidelines for 

performing systematic Literature Reviews in 

Software Engineering,” Technical Report, Keele 

University, 2007. 

[25] Khan A., Basri S., and Selvam D., 

“Communication Risks in Gsd During Rcm: 

https://scholar.google.com/citations?user=CQDOm2gAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=ApWniv8AAAAJ&hl=en&oi=sra


106                                                       The International Arab Journal of Information Technology, Vol. 19, No. 1, January 2022 

Results fsrom Slr,” in Proceedings of the 

International Conference on Computer and 

Information Sciences, Kuala Lumpur, pp. 1-6, 

2014. 

[26] Khan A., Basri S., and Dominic D., “A Propose 

Framework Fsor Requirement Change 

Management In Global Software Development,” 

in Proceedings of International Conference on 

Computer and Information Science, Kuala 

Lumpur, pp. 944-947, 2012. 

[27] Khan B. and Ahsan A., “Recommended 

Configuration Management Practices for 

Freelance Software Developers,” in Proceedings 

of 5th International Conference on Software 

Engineering and Service Science, Beijing, pp. 

111-115, 2014.  

[28] Khan H., Ahmed A., and Johansson C., 

“Requirements Understanding in Global 

Software Engineering: Industrial Surveys,” in 

Proceedings of International Conference on 

Computer and Software Modelling, Singapore, 

2011. 

[29] Kitchenham B., “Procedures for Performing 

Systematic Reviews,” Technical Report, Keele 

University, 2004. 

[30] Kitchenham B., Brereton O., Budgen D.,Turner 

M., Bailey J., and Linkman S., “Systematic 

Literature Reviews in Software Engineering-A 

Systematic Literature Review,” Information and 

Software Technology, vol. 51, no. 1, pp. 7-15, 

2009. 

[31] Leiva G., Maudet N., Mackay W., and 

Beaudouin-Lafon M., “Enact: Reducing 

Designer-Developer Breakdowns When 

Prototyping Custom Interactions,” ACM 

Transactions on Computer-Human Interaction, 

vol. 26, no. 3, pp. 1-48, 2019. 

[32] Minhas N. and Zulfiqar A., “An improved 

Framework for Requirement Change 

Management in Global Software Development,” 

Journal of Software Engineering and 

Applications, vol. 7, no. 9, pp. 779-790, 2014. 

[33] Nakatsu R. and Iacovou C., “A Comparative 

Study of Important Risk Factors Involved in 

Offshore and Domestic Outsourcing of Software 

Development Projects: A Two-Panel Delphi 

Study,” Information and Management, vol. 46, 

vol. 1, pp. 57-68, 2009. 

[34] Nguyen-Duc A., Cruzes D., and Conradi R., 

“The Impact of Global Dispersion on 

Coordination, Team Performance and Software 

Quality-A Systematic Literature Review,” 

Information and Software Technology, vol. 57, 

pp. 277-294, 2015. 

[35] Petersen K., Feldt R., Mujtaba S., and Mattsson 

M., “Systematic Mapping Study in Software 

Engineering,” in Proceedings of the 12th 

International Conference on Evaluation and 

Assessment in Software Engineering, Italy, pp. 

68-77, 2008. 

[36] Qureshi S., Khan S., Iqbal J., and Ur-Rehman I., 

“A Study on Mitigating the Communication and 

Coordination Challenges During Requirements 

Change Management in Global Software 

Development,” IEEE Access, vol. 9, pp. 88217-

88242, 2021. 

[37] Ramasubbu N., Cataldo M., Balan R., and 

Herbsleb J., “Configuring Global Software 

Teams: A Multi-Company Analysis of Project 

Productivity, Quality, and Profits,” in 

Proceedings of the 33rd International Conference 

on Software Engineering, Honolulu, pp. 261-270. 

2011.  

[38] Ramdoo V. and Huzooree G., “Strategies to 

Reduce Rework in Software Development on an 

Organisation in Mauritius,” International Journal 

of Software Engineering and Applications, vol. 6, 

no. 5, pp. 9-20, 2015. 

[39] Ramos J., Esteban A., García J., and Amescua 

A., “Skills and Abilities for Working in A Global 

Software Development Team: A Competence 

Model,” Journal of Software: Evolution and 

Process, vol. 26, no. 3, pp. 329-338, 2014. 

[40] Sabahat N., Iqbal F., Azam F., and Javed M., 

“An Iterative Approach for Global Requirements 

Elicitation: A Case Study Analysis,” in 

Proceedings of International Conference on 

Electronics and Information Engineering, Kyoto, 

pp. 361-366, 2010. 

[41] Saleem N., Mathrani S., and Taskin N., 

“Investigating Critical Success Factors of Project 

Management in Global Software Development: 

A Work in Progress,” in Proceedings of in 

International Conference on Information 

Resources Management, Auckland, 2019.  

[42] Sedano T., Ralph P., and Péraire C., Rethinking 

Productivity in Software Engineering, Springer, 

2019. 

[43] Venkatesh B. and Balani L., “Requirement 

Management A Key To Successful Project 

Management for Software Systems,” An 

International Refereed Journal for Change and 

Development, vol. 05, no.1, pp. 49-51, 2016. 

[44] Verner J., Breretona O., Kitchenhama B., 

Turnera M., and Niaziacd M., “Risks and Risk 

Mitigation in Global Software Development: A 

Tertiary Study,” Information and Software 

Technology, vol. 56, no. 1, pp. 54-78, 2014. 

[45] Yadav V., “A Flexible Management Approach 

for Globally Distributed Software Projects,” 

Global Journal of Flexible Systems Management, 

vol. 17, no. 1, pp. 29-40, 2016. 



Systematic Literature Review: Causes of Rework in GSD                                                                                                           107 

 

 

[46] Yaseen M., Baseer S., and Sherin S., “Critical 

Challenges for Requirement Implementation in 

Context of Global Software Development: A 

Systematic Literature Review,” in Proceedings of 

the International Conference on Open Source 

Systems and Technologies, Lahore, pp. 120-125, 

2015. 

[47] Zafar A., Ali S., and Shahdzad R., “Investigating 

Integration Challenges and Solutions in Global 

Software Development,” in Proceedings of 

Frontiers of Information Technology, Islamabad, 

pp. 291-297, 2011. 

Appendices  

This report contains a review, collected from defined 

data sources. This method is implemented by using the 

above (section 4.4) defined inclusion and exclusion 

criteria. 

Table 8. Paper types. 

Paper type Type Code 

Article A 

Book B 

International Conference IC 

Journal J 

Thesis T 

Table 9. Detail of final selected studies. 

PC Type Database Publication year Address 

PC1 J Springer 2015 Y 

PC2 J Science Direct 2015 Y 

PC3 IC Science Direct 2013 Y 

PC4 A ACM 2015 Y 

PC5 IC IEEE 2014 Y 

PC6 IC ACM 2011 Y 

PC7 J Other 2014 Y 

PC8 J Other 2016 Y 

PC9 J IEEE 2011 Y 

PC10 J Science Direct 2013 Y 

PC11 J Science Direct 2014 Y 

PC12 J Springer 2009 Y 

PC13 J Science Direct 2014 Y 

PC14 IC IEEE 2014 Y 

PC15 IC IEEE 2012 Y 

PC16 A Other 2015 Y 

PC17 IC IEEE 2011 Y 

PC18 IC Other 2010 Y 

PC 19 IC Other 2020 Y 

PC 20 IC Other 2019 Y 

PC 21 J ACM 2018 Y 

PC 22 J Other 2021 Y 

PC 23 A Other 2009 Y 

 

 

 

 

 

 

 

 

 

 

 

Table 10. Paper codes. 

PC Paper Title 

PC1. 
“A Flexible Management Approach for Globally 

Distributed Software Projects.” 

PC2. 
“A method of requirements change management for 

global software development.” 

PC3. 
“A Proposed Framework for Communication Risks during 

RCM in GSD.” 

PC4. 
“A Systematic Literature Review on Global Software 

Development Life Cycle.” 

PC5. 
“Communication Risks in GSD during RCM: Results 

from SLR.” 

PC6. “Analysis of Project Productivity, Quality, and Profits.” 

PC7. 
“Defect Prevention and Process Improvement 

Methodology for Outsourced Software Projects.” 

PC8. 
“Requirement management a key to successful project 

management for software systems.” 

PC9. 
“Investigating Integration Challenges and Solutions in 

Global Software Development.” 

PC10. 
“Risks and risk mitigation in global software 

development: A tertiary study.” 

PC11. 
“Software product management – An industry 

evaluation.” 

PC12. 
“Tension between perceived collocation and actual 

geographic distribution in project teams.” 

PC13. 

“The impact of global dispersion on coordination, team 
performance and software quality – A systematic 

literature review.” 

PC14. 
“Using Agile practices to solve Global Software 

Development problems – A Case Study.” 

PC15. 
“A Propose Framework for Requirement Change 

Management in Global Software Development.” 

PC16. 
“An Improved Framework for Requirement Change 

Management in Global Software Development.” 

PC17. 
“An Iterative Approach for Global Requirements 

Elicitation: A Case Study Analysis.” 

PC18. 
“Requirements Understanding in Global Software 

Engineering: Industrial Surveys.” 

PC 19 
“Developing a Release Management Tool to Support 

Global Software Development.” 

PC 20 

“Investigating Critical Success Factors of Project 

Management in Global Software Development: A Work 
in Progress.” 

PC 21 
“A Project Management Framework for Global Software 

Development.” 

PC 22 
“Do scaling agile frameworks address global software 

development risks? An empirical study.” 

PC 23 
“Challenges and Improvements in Distributed Software 

Development: A Systematic Review 

 

 Analysis of selected studies: Table 11 shows the 

codes of causes and sub-causes of rework which are 

used in Table 12 for analysis. By using codes all 

sub-causes are marked in a particular paper to 

provide us the overall view. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



108                                                       The International Arab Journal of Information Technology, Vol. 19, No. 1, January 2022 

Table 11. Causes code. 

Main Cause 

 
Main Cause-

code 
Sub Cause Sub Cause-code 

Communication 

cause 
CC 

Poor interpersonal relationship CC1 

Task Awareness CC2 

Availability Awareness CC3 

Phonetic spellings CC4 

Lack of informal communication CC5 

Misinterpretation of technical vocabulary CC6 

Poorly communicated requirements CC7 

Poorly communicated module objectives CC8 

Requirement 

Management 
RMC 

Frequent change in requirements RMC 1 

Non implementation of identified requirements RMC2 

Poor planning of RMP RMC3 

Change un-notified RMC4 

Mistakes at requirements elicitation phase RMC5 

Lack of shared understanding RMC6 

Ineffective flow of changed information in RCM RMC7 

Tool mismatch RMC8 

Roles RC 
Stakeholder’s Unaligned agenda RC1 

Absence of product manager RC2 

Product 

Development 

and Integration 

PDIC 

Poor integration PDIC1 

  

Mismatch of methodology and development process PDIC2 

Mismatches in management approaches PDIC3 

Project management challenges PDIC4 

Fast track projects PDIC5 

Documentation DC Outdated documentation in system design DC1 

Differences of 

Stakeholders 
DSC 

National differences DSC1 

Cultural differences DSC2 

Organizational differences DSC3 

Table 12. Paper analysis. 

PC 
PC

1 

PC

2 

PC

3 

PC

4 

PC

5 

PC

6 

PC

7 

PC

8 

PC

9 

PC

10 

PC

11 

PC

12 

PC

13 

PC

14 

PC

15 

PC

16 

PC

17 

PC

18 

PC

19 

PC

20 

PC

21 

PC

22 

PC

23 Sub cause-code 

CC1                          

CC2                           

CC3                         

CC4                         

CC5                          

CC6                          

CC7                         

CC8                         

RMC1                         

RMC2                         

RMC3                         

RMC4                         

RMC5                           

RMC6                          

RMC7                          

RMC8                         

RC1                         

RC2                         

PDIC1                         

PDIC2                         

PDIC3                         

PDIC4                         

PDIC5                         

DC1                         

DSC1                          

DSC2                           

DSC3                          

The Table 12 below represents the analysis of each 

selected study, columns represent the paper-code of 

each study and rows of entire table represent identified 

causes.  

 

 

 

 

 

 

 

 



Systematic Literature Review: Causes of Rework in GSD                                                                                         109 

 

 

Shiza Nawaz is a PhD student at 

IIU Islamabad, Pakistan. She holds a 

Bachelor degree of software 

engineering from University of AJK 

Muzaffarabad in 2014, and a Master 

degree in Software Engineering 

from IIUI in 2019. As academician, 

here research interests are: Global Software 

Development, Requirement Engineering, and Block 

chain. She is teaching as lecturer at IIUI.  

Anam Zai holds her Bachelor’s 

degree of Computer Science from 

FUUAST, Islamabad Pakistan in 

2016 and a Master’s degree in 

Software Engineering from IIU 

Islamabad, Pakistan in 2019. She is 

pursuing her Ph.D. in Software 

Engineering from the same University and her doctoral 

work involves Blockchain Technology, Information 

Security, GSD and Agile. She is a Lecturer at IIUI and, 

also working as “Specialist Information Security Risk” 

in banking sector.  

Salma Imtiaz holds a PhD 

(Computing) Degree from Riphah 

International University, Islamabad. 

She is an Assistant Professor at the 

Department of Computer Science 

and Software Engineering (DCSSE), 

International Islamic University, 

Islamabad. She works in the area of Global Software 

Development, Software Requirement Engineering, 

Empirical Software Engineering and Agile Software 

Development. She heads the Software Engineering 

Research Group at International Islamic University. 

She has presented at national and international 

conferences and serves as a reviewer to many 

conferences and journals.  

Humaira Ashraf received BCS 

degree from Balochist an University, 

Quetta, Pakistan in 2005 and MSCS 

degree from BUITEMS, Quetta, 

Pakistan in 2008. She received the 

Ph.D. degree in computer science 

(with majors in cellular mobile 

networks and wireless networks) from International 

Islamic University Islamabad, Pakistan in 2017. She 

has published several papers in Impact Factor Journals 

and International Conferences. She is also reviewer of 

many ISI-indexed and Impact Factor Journals. Her 

areas of interest include Wireless Sensor Networks, 

Next Generation Networks, Internet of Things, 

Network Security, IP Multimedia Sub-system, Voice 

over LTE and Voice over IP 


