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Abstract: If any Global Positioning System (GPS) receiver is operated in low latitude regions or urban canyons, the visibility 

further reduces. These system constraints lead to many challenges in providing precise GPS position accuracy over the Indian 

subcontinent. As a result, the standalone GPS accuracy does not meet the aircraft landing requirements, such as Category I 

(CAT-I) Precision Approaches. However, the required accuracy can be achieved by augmenting the GPS. Among all these 

issues, the predominant factors that significantly influence the receiver position accuracy are selecting a user/receiver position 

estimation algorithm. In this article, a novel method is proposed based on correntropy and designated as Correntropy Kalman 

Filter (CKF) for precise GPS applications and GPS Aided Geosynchronous equatorial orbit Augmented Navigation (GAGAN) 

based aircraft landings over the low latitude Indian subcontinent. The real-world GPS data collected from a dual-frequency 

GPS receiver located in the southern region of the Indian subcontinent (IISc), Bangalore with Lat/Long: 13.021°N/ 77.5°E) is 

used for the performance evaluation of the proposed algorithm. Results prove that the proposed CKF algorithm exhibits 

significant improvement (up to 34%) in position estimation compared to the traditional Kalman Filter. 
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1. Introduction 

The generic term preferred for the satellite-based 

navigation system is the Global Navigation Satellite 

System (GNSS), which covers global satellite 

constellation such as Global Positioning System 

(GPS), Global Orbiting Navigation Satellite System 

(GLONASS), BeiDou, Galileo, etc., Currently, GPS is 

the only full-fledged global satellite constellation 

system in GNSS; it has 32 satellites more significant 

than the nominal figure of 24 satellites. All over this 

globe, a minimum of 14 to 18 satellite signal systems 

are available andoperating fully for various sources 

since 1995 in both civilian and military fields. For 

continuous worldwide coverage, the arrangement of 

GPS satellites is such that four satellites are arranged 

in each of 6 orbits [19].  

The estimation problem has been a significant issue 

in industrial application and research areas covering 

the processing of signals, optimization, and 

navigational decisions; many marked fields requiring 

estimation, identification of system, tracking of the 

target, and localization. In linear dynamics and 

systematic applications, Kalman Filter (KF) is used to 

solve estimation. In general, KF and its modifications 

[12, 13, 15, 20, 23] have excellent performance in 

Gaussian variety noises. However, their operations get 

degraded when non-Gaussian situations are 

predominantly in a system with disturbance of 

impulsive noises. Aforementioned, KF and Extended 

Kalman Filter (EKF) [12, 13, 20] are not suitable for 

systems that are disturbed by heavy-tailed impulsive 

noises. Thus, modifications in the KF are necessary to 

overcome this difficulty. In this paper, KF has been 

modified based on the correntropy criterion [17] to 

improve the accuracy of GPS receiver position in low 

latitude regions like India. The proposed Correntropy 

Kalman Filter (CKF) adopts the robust correntropy 

criterion as the optimality criterion instead of using the 

well-known Minimum Mean Square Error (MMSE). 

Unless mentioned in this article, correntropy of error 

may be utilized as a cost function for adaptive training 

of the system. It perceives that correntropy, having the 

advantage of being local, can be useful for the 

situations in which the measurement noise has a non-

zero mean, non-Gaussian pattern with large outliers. 

Like the traditional KF, the state mean vector and 

covariance matrix propagation equations give prior 

estimations of the state and covariance matrix in CKF. 

A novel Fixed-point algorithm is then used to update 
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the posterior estimates. The proposed algorithm results 

are then compared with the traditional KF algorithm.  

The paper’s structure is as follows. In section 2, a 

short review of the literature and motivation in this 

area of research is presented. Section 3 covers the 

correntropy notation and basics of KF estimator; CKF 

implementation and essential steps to estimate accurate 

user/receiver position are discussed in section 4. In 

section 5, elaborated the results on estimated position 

and errors of GPS receiver in X, Y, and Z direction, 

comparison of the proposed method CKF with the 

traditional KF estimator are presented, and numerous 

statistical factors (2-D and 3-D) are tabulated. The 

overall conclusions, along with the suggestions for 

possible future extensions, are provided in section 6. 

Finally, in Table 6 of the conclusions, the 

nomenclature used in explaining the algorithms in a 

deterministic manner is presented. 

2. Review of Literature 

Precise positioning and robust surveillance systems are 

crucial to secure countries such as India, with a long 

geographical frontier and an expansive coastline. This 

has led to the development and advancement of many 

of these systems. Aviation, maritime, mining, military, 

medicine, and agriculture are some of these system’s 

real-world applications. Global positioning of an 

unknown object also plays a prominent role in the civil 

aviation and defense sector fields for aircraft landings, 

navigation of ships, etc. Literature also provides an 

enormous number of critical applications of 

positioning systems and shows the increase in need and 

demand for positioning systems [1, 18]. The different 

positioning algorithm strategies to solve these 

measurement equations like linear, nonlinear, and 

iterative, closed-form solutions are also studied and 

analyzed [10, 16, 24]. 

To improve the accuracy, Firefly Algorithm (FA) 

and Teaching Learning Based Optimization (TLBO) 

algorithms were developed [4]. Estimation accuracy 

can be further enhanced by using KF, EKF is also 

studied [7, 9, 12], which can estimate the required state 

under noisy conditions. Later, a new filter of Kalman 

family (weighted Kalman Filter) was developed based 

on the variance estimation method [22]. This method 

improves accuracy by up to 30% and Central 

Processing Unit (CPU) time up to 80% in speed and 

velocity. A new filtering algorithm Maximum 

Correntropy Kalman Filter (MCKF) [5] like the 

Kalman type has recently been introduced. It depends 

primarily on the criterion of correntropy [17], which is 

an alternative to the renowned measure of MMSE [3, 

6]. This filtering algorithm makes the traditional 

Kalman filter more effective and robust. Because state 

and covariance matrix prior and posterior estimates are 

the same as KF, this algorithm was best suited for 

systems influenced by noisy environments (Gaussian, 

non-Gaussian, and impulsive) [8, 11, 14, 21]. In the 

present paper, to address the problem of accuracy 

improvement in low latitude regions like India, a new 

method in the implementation of KF based on the 

correntropy criterion designated as CKF, is proposed. 

The work presented in this paper is aimed at 

strengthening the proposed GNSS/GPS based 

navigation system.  

The proposed algorithm CKF used in this paper is 

useful for navigation and surveying in urban canyons 

and dense forest areas where the satellite visibility is 

low. In this paper, the proposed CKF performance is 

evaluated with real-time pseudo-range GPS data and 

can be implemented straight away to carrier phase 

measurement-based critical GPS applications like 

surveying and farming. The iterative algorithm 

implemented for receiver position estimation can also 

solve various other optimization problems encountered 

in the control and automation industry. They are also 

useful for Geographic Information System (GIS) and 

accurate aerial mapping applications. 

Literature survey unveils that to increase demand 

for an accurate positioning system, optimal 

measurement strategies and precise navigation 

solutions are necessary. For critical GPS applications 

like Category I (CAT-I) aircraft landings, low variance 

in estimation is crucial besides the estimated position 

accuracy. Moreover, the number of onboard system 

parameters and dynamics needs to be analyzed while 

estimating the position. This section summarizes the 

prior and conventional work is done to consider the 

literature related to the research. 

3. Correntropy Notation 

Correntropy [17] is a nonlinear yardstick of 

resemblance between a couple of arbitrary factors A, B 

with joint probability function PA׀B(a׀b).  

correntropy is characterized by 

R(A|B) = E[kσ(A|B)] = ∫ kσ (a|b)cPA|B(a|b)  

Where E is the expectation operator, kσ(·,·) is the 

definite kernel of any continuous variable. 

The gaussian kernel (Jσ) [12] is used in our 

framework.  

Consequently, Equation (1) becomes 

kσ(a|b) = Jσ(e) = exp (−
e2

2σ2)  

Where ‘e’ is the error, which is defined as the contrast 

of the expected output to the actual output and ‘σ’ 

stands for the width of the kernel. 

The joint PDF of A and B is generally unknown in 

practice, and there are only a limited number of 

samples available. 

In such scenarios, a sample mean estimator can be 

used to estimate the correntropy:  

R̂(A|B) =
1

M
∑ Jσ

m
k=1 (e(k))  

(1) 

(2) 

(3) 
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(12) 

Where, e(k)=a(k)-b(k) with {𝑎(𝑘), 𝑏(𝑘)}𝑘=1
𝑀  being M 

samples drawn from PA׀B(a׀b) 

Now we have been expanding the Taylor series of 

the gaussian kernel 

R(A|B) = ∑
(−1)i

2iσ2ii!
 E[(A − B)2i]∞

i=0   

As shown, “the correntropy is a weighted sum of the 

random variable’s (A-B) even order moments. The 

kernel bandwidth is a weighting parameter for 2nd and 

higher-order moments.” The correntropy is dominated 

by 2nd order moments when the σ is much greater than 

the results dynamic range. Correntropy depends on the 

size of the kernel that needs to be chosen as per the 

application. Although the kernel size is measured as a 

percentage, its net impact varies due to the predicted 

value operation in the concept’s correntropy. It can be 

proved that correntropy approaches correlation for the 

kernel’s sizes, which is larger than recommended. The 

kernel size can regulate the usage of higher-order 

moment information for correlating; this is a beautiful 

and unique concept with proper selection; the 

outcomes for correntropy are equivalent to robust 

statistical approaches. Furthermore, due to the smooth 

dependency of correntropy in kernel size, the kernel 

size output’s sensitivity must be much smaller than the 

choice of thresholds. However, kernel size estimation 

methods must be deployed appropriately for practical 

applications. 

3.1. Kalman Filter 

KF offers a useful tool for dealing with linear system 

state estimation, an efficient estimator under linear and 

Gaussian assumptions. This filter mainly consists of 

three factors: predicting, observing, and estimating [9, 

20]. Considering a linear system described with the 

resulting equations of state and measurement: 

a(t) = Z(t − 1)a(t − 1) + x(t − 1) 

b(t) = S(t)a(t) + y(t)     

E[x(t − 1)xT(t − 1)] = X(t − 1)

E[y(t)yT(t)] = Y(t)
}  

Kalman Filter has, in general, two steps: Predict and 

Update. 

 Predict: 

The predicted mean and covariance matrix are given 

by  

â(t|t − 1) = Z(t − 1)â(t − 1|t − 1)  

Q(t|t − 1) =  Z(t − 1)Q(t − 1|t − 1)ZT(t − 1) + X(t − 1) 

 Update: 

The gain of the KF is computed as 

T(t) = Q(t|t − 1)ST(t)(S(t)Q(t|t − 1)ST(t) + Y(t) )−1 

It is observed that the posterior state is the prior state 

coupled with innovation weighted by the KF gain, 

â(t|t) = â(t|t − 1) + T(t) (b(t) − S(t)â(t|t − 1))   

Further, the posterior covariance is updated 

recursively: 

Q(t|t) = (I − T(t)S(t)) Q(t|t − 1) (IT(t)S(t))
T

+ T(t)Y(t)TT(t) 

4. Correntropy Kalman Filter 

Conventional KF deteriorates performance in non-

Gaussian noises [10, 17], particularly for the system is 

distributed by impulsive noises. As discussed above, 

KF is formed on the MMSE criterion [6], which is the 

leading cause of the problem. It collects only second-

order error statistics and becomes susceptible to large 

outliers. Using the correntropy criterion, CKF is 

derived to solve it. This filter works best in non-

Gaussian environments [3] as correntropy has second 

and higher-order error moments. The CKF algorithm’s 

computational flow chart is presented in Figure 1. 

 

Figure 1. Computational flow chart of correntropy kalman filter. 
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(20) 

[
â(t|t − 1)

b(t)
] = [

I
S(t)

] a(t) + r(t) 

Where, I is identity matrix, and r (𝑡) is 

r(t) = [
−(a(t) − â(t|t − 1))

y(t)
] 

With, 

E[r(t)rT(t)] = [
Q(t|t − 1) 0

0 Y(t)
] 

= [
Vp(t|t − 1)Vp

T(t|t − 1) 0

0 Vr(t)Vr
T(t)

] 

=  V(t)VT(t) 

Where, 𝑉(𝑡) is determined by cholesky factorization of 

𝐸[𝑟(𝑡)𝑟𝑇(𝑡)]. 

Multiplication of both sides of Equation (13) by 

𝑉−1(𝑡),  

C(t) = U(t)a(t) + e(t)  

Where,  

C(t) = V−1(t) [
â(t|t − 1)

b(t)
], 

U(t) = V−1(t) [
I

S(t)
] , e(t) = V−1(t)r(t), 

Since 𝐸[𝑒(𝑡)𝑒𝑇(𝑡)] = 𝐼 

Here, 𝑒(𝑡) is a white residual error. 

Now, the following cost function based on 

correntropy is proposed: 

GN (a(t)) =
1

N
∑ Jσ (ck(t) − uk(t)a(t))N

k=1  

Where 𝑐𝑘(𝑡) is the kth element of 𝐶(𝑡), 𝑢𝑘(𝑡) is the kth 

row of 𝑈(𝑡), and N=i+j is the dimension of 𝐶(𝑡). 
Under correntropy criterion, optimal estimate for 

𝑎(𝑡) is given by 

â(t) = argmaxa(t)GN (a(t)) = argmaxa(t) ∑ Jσ (ek (t))N
k=1      

Where 𝑒𝑘(𝑡) is the kth element of 𝑒(𝑡): 

ek(t) = ck(t) − uk(t)a(t) 

It allows the optimal solution by solving 

∂GN(a(t))

∂a(t)
= ∑ [Jσ(ek(t))uk

T(t)(ck(t) − uk(t)a(t))] = 0N
k=1  

It quickly follows 

a(t) = (∑ [N
k=1 Jσ(ek(t))uk

T(t)uk(t)])
−1

× (∑ [N
k=1 Jσ(ek(t))uk

T(t)ck(t)]) 

Since 𝑒𝑘(𝑡) = 𝑐𝑘(𝑡) − 𝑢𝑘(𝑡)𝑎(𝑡) 

In addition, the optimal solution of Equation (20) is 

a fixed point equation 𝑎(𝑡) [2] and can be rephrased as 

a(t) = f (a(t))  

With 

f (a(t)) = (∑[

N

k=1

Jσ(ck(t) − uk(t)a(t))uk
T(t)uk(t)])

−1

 

× (∑[

N

k=1

Jσ(ck(t) − uk(t)a(t))uk
T(t)ck(t)]) 

We can easily obtain a fixed point iterative algorithm 

as 

â(t)h+1 = f (â(t)
h

) 

Where �̂�(𝑡)ℎ represents the required solution at the 

fixed point iteration ‘h’. 

The equation of the fixed point i.e., Equation (20) 

can be also expressed as 

a(t) = (UT(t)H(t)U(t))
−1

UT(t)H(t)C(t)   

Where, H(t) = [
Ha(t) 0

0 Hb(t)
] 

With, 

Ha(t) = diag (Jσ (e1(t)) , … … … Jσ (ei(t))) 

Hb(t) = diag (Jσ (ei+1(t)) , … … … Jσ (ei+j(t))) 

Equation (23) can be further rewritten as per the 

following: 

a(t) = â(t|t − 1) + T̅(t) (b(t) − S(t)â(t|t − 1)) 

Where, 

{

T̅(t) = Q̅(t|t − 1)ST(t)(S(t)Q̅(t|t − 1)ST(t) + Y̅(t))
−1

Q̅(t|t − 1) = Vp(t|t − 1)Ha
−1(t)Vp

T(t|t − 1)

Y̅(t) = Vr(t)Hb
−1(t)Vr

T(t)

  

4.1. Steps in Computing Correntropy Kalman 

Filter 

Equation (24) is a fixed-point type for 𝑎(𝑡) as �̅�(𝑡)is 

dependent on �̅�(𝑡|𝑡 − 1) and �̅�(𝑡), which are related 

to 𝑎(𝑡) via 𝐻𝑎(𝑡) and 𝐻𝑏(𝑡). Hence further, the 

optimal solution of Equation (24) also depends on the 

prior estimate  �̂�(𝑡|𝑡 − 1), which can be computed by 

Equation (8) utilizing the latest estimate 

 �̂�(𝑡 − 1|𝑡 − 1). From the above assumptions, the 

proposed CKF algorithm can be summed up as 

follows:  

 Step 1: Assume that 𝑡 = 1; Pick the right kernel 

bandwidth σ and a positive small number ε; 

Set an initial estimate and an initial covariance matrix 

as �̂�(0|0), Q(0|0) respectively;  

 Step 2: Equations (8) and (9) are used to obtain 

â(t|t − 1) and 𝑄(𝑡|𝑡 − 1) and use the factorization 

of Cholesky to get the 𝑉𝑝(𝑡|𝑡 − 1); 

 Step 3: Assume that h=1 and  �̂�(𝑡|𝑡)
ℎ

= �̂�(𝑡|𝑡 − 1), 

where �̂�(𝑡|𝑡)
ℎ

 represents the estimated state at the 

fixed-point iteration h; 

 Step 4: Use Equations (26)-(32) to calculate �̂�(𝑡|𝑡)
h
 

â(t|t)
h

=  â(t|t − 1) + T̅(t)(b(t) − S(t)â(t|t − 1))                    

With T̅(t) = 

Q̅(t|t − 1)ST(t)(S(t)Q̅(t|t − 1)ST(t) + Y̅(t)) −1 

(13) 

(14) 

(15) 

(16) 

(18) 

(17) 

(19) 

(21) 

(23) 

(22) 

(24) 

(25) 

(26) 

(27) 
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(34) 

Q̅(t|t − 1) = Vp(t|t − 1)H̅a
−1(t)Vp

T(t|t − 1)  

Y̅(t) = Vr(t)H̅b
−1(t)Vr

T(t) 

H̅a(t) = diag (Jσ (e̅1(t)) , … … … Jσ (e̅i(t))) 

H̅b(t) = diag (Jσ (e̅i+1(t)) , … … … Jσ (e̅i+j(t))) 

e̅k(t) = ck(t) − uk(t)â(t|t)
h−1

 

 Step 5: The estimation of the current step and the 

last step is compared.  For Equation (33) to be valid, 

set â(t|t) = â(t|t)
h
 and proceed to step (6). 

Otherwise, h+1→h and go back to step (4). 

‖�̂�(t|t)
h

−�̂�(t|t)
h−1

‖

‖�̂�(t|t)
h−1

‖
≤ ε 

 Step 6: The posterior covariance matrix is updated 

by Equation (34), t + 1 → t, and go back to step (2). 

Q(t|t) = (I − T̅(t)S(t)) Q(t|t − 1)(I − T̅(t)S(t))T + T̅(t)Y(t)T̅T(t) 

The little positive value ε for the fixed point iteration 

provides a stop condition. A key parameter in CKF is 

the kernel bandwidth σ. A smaller bandwidth in the 

kernel usually improves the performance but makes the 

algorithm converge slower. In comparison, as σ gets 

bigger, the CKF will be progressively like the 

traditional KF algorithm. Equations (8), and (9), 

Equations (26)-(32), and (34) are primarily involved in 

the CKF algorithm. Remember that the diagonal 

matrices are 𝐻𝑎(𝑡) and 𝐻𝑏(𝑡), so it is straightforward 

to get their inverse matrices. 

5. Results and Discussion 

In this article for GPS Receiver position estimation, we 

proposed a new KF designated as CKF, which utilizes 

the correntropy criterion as the optimization criterion 

and applies a fixed-point iterative algorithm to update 

the posterior estimates. The GPS data required for 

testing the KF and CKF algorithms is collected from 

IISc, Bangalore (Lat/Lon: 13.021o North / 77.5o East) 

GPS receiver corresponding to 1st January 2018. The 

GPS receiver position is estimated using both 

algorithms (i.e., KF and CKF), and performance 

analysis is carried out. 

Table 1. Estimated receiver position and error in X- direction. 

Receiver true position in X- direction: 1337936.309m 

GPS 

Time(Hours) 

Receiver estimated position 

(meters) 

Error in position 

( meters) 

KF CKF KF CKF 

9.2881 1337902.04 1337912.09 34.27 24.22 

9.2964 1337902.04 1337912.67 34.27 23.64 

9.3047 1337901.69 1337912.66 34.62 23.65 

9.3131 1337902.81 1337912.66 33.50 23.65 

9.3214 1337902.81 1337913.04 33.50 23.27 

9.3297 1337903.19 1337913.92 33.12 22.39 

9.3381 1337903.19 1337913.99 33.12 22.32 

9.3464 1337903.71 1337913.55 32.60 22.76 

9.3547 1337904.10 1337913.87 32.21 22.44 

9.3631 1337904.10 1337912.78 32.21 23.53 

A few randomly selected epochs are displayed in 

the following tables since it is a vast data set. The 

estimated receiver position and the error in receiver 

position logged for ten epochs (collected for 30 sec 

each) in X, Y, Z directions are shown in Tables 1, 2, 

and 3. In contrast, the estimated receiver position is 

shown in Figure 2, and a logged error over 22 hours is 

shown in Figures 3 and 4, respectively. In addition to 

the above plots, the smoothened position error (mean 

position error) over an hour reported with the two 

algorithms (KF and CKF) is shown in Figures 5 and 6. 

Table 2. Estimated receiver position and error in Y-direction. 

Receiver true position in Y- direction: 6070317.116m 

GPS Time 

(Hours) 

Receiver estimated position 

(meters) 

Error in position  

( meters) 

KF CKF KF CKF 

9.2881 6070342.01 6070331.50 24.89 14.39 

9.2964 6070342.01 6070331.63 24.89 14.51 

9.3047 6070342.27 6070331.85 25.15 14.74 

9.3131 6070341.95 6070332.35 24.83 15.23 

9.3214 6070341.95 6070331.83 24.83 14.71 

9.3297 6070342.44 6070332.06 25.32 14.94 

9.3381 6070342.44 6070332.06 25.32 14.95 

9.3464 6070341.91 6070332.94 24.79 15.83 

9.3547 6070340.90 6070332.03 23.79 14.92 

9.3631 6070340.90 6070331.92 23.79 14.81 

Table 3. Estimated receiver position and error in Z-direction. 

Receiver true position in Z- direction: 1427876.908m 

GPS Time 

(Hours) 

Receiver estimated position 

(meters) 

Error in position 

( meters) 

KF CKF KF CKF 

9.2881 1427881.32 1427879.37 4.42 2.46 

9.2964 1427881.32 1427879.66 4.42 2.75 

9.3047 1427880.19 1427878.85 3.28 1.94 

9.3131 1427880.04 1427878.55 3.14 1.64 

9.3214 1427880.04 1427879.42 3.14 2.51 

9.3297 1427879.80 1427878.73 2.90 1.82 

9.3381 1427879.80 1427878.96 2.90 2.05 

9.3464 1427879.54 1427878.34 2.63 1.43 

9.3547 1427880.77 1427879.43 3.86 2.52 

9.3631 1427880.77 1427878.24 3.86 1.33 

 

 
Figure 2. Estimated receiver position vs. time in X, Y, Z- direction using 

KF and CKF. 

 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 



GPS Receiver Position Augmentation Using Correntropy Kalman Filter in ...                                                                            77 

 
Figure 3. Correlation between time and position error in X, Y, Z-

direction using KF.  

 

Figure 4. Correlation between time and position error in X, Y, Z-

direction using CKF. 

 

Figure 5. Smoothed position error in X, Y, Z- direction using KF. 

 

Figure 6. Smoothed position error in X, Y, Z-direction using CKF. 

5.1. Statistical Error Analysis 

Table 4 gives information regarding the three error 

probability density functions (pdf) obtained by KF and 

CKF algorithms over IISc, Bangalore GPS receiver 

data.  

Table 4. Descriptive statistics of position error. 

Error 

Scenario 

X- direction 

(meters) 

Y- direction 

(meters) 

Z- direction 

(meters) 

KF CKF KF CKF KF CKF 

Mean 35.34 24.10 26.25 15.33 6.22 4.28 

Deviation 7.79 6.54 13.80 8.17 4.36 2.93 

Variance 60.64 42.79 190.32 66.72 18.97 8.59 

Minimum 16.66 8.19 0.05 0.34 0.01 0.00 

Maximum 94.51 54.64 69.75 38.51 72.33 18.71 

The error analysis parameters are displayed in the 

above table are calculated for the entire range of data. 

The performance of the proposed CKF algorithm is 

compared with that of the traditional KF algorithm. It 

is observed from the results that CKF outperforms the 

KF algorithm by providing high accuracy and low 

variance position estimation.  

The error in estimated position using the KF and 

CKF algorithms shown in Figures 3 and 4 are logged 

over a day (i.e., 22 hours) and are used in the 

generation of scatter plots. A horizontal scatter plot is a 

two-dimensional plot; hence only the horizontal 

position errors (X and Y) are used in its generation. In 

contrast, the horizontal and vertical position error 

scatter plot is a three-dimensional plot that uses the X, 

Y, Z position errors in its generation. Figure 7 and 

Figure 8 illustrates the comparison of horizontal scatter 

plot and horizontal and vertical error scatter plot with 

KF and CKF algorithms represented with Circular 

Error Probable (CEP) and SEP values. 

 

Figure 7. Horizontal position error scatter plot with CEP using KF 

and CKF. 

It is observed from Figures 7 and 8 that the CEP 

circle and SEP sphere of CKF are nearer to the origin, 

and the estimated receiver position comes closer to the 

actual receiver position at 50% of the time when 

compared to the KF algorithm. In addition to the above 

scatter plots, the accuracy metrics of the receiver 

position (2-D and 3-D) obtained are provided in Table 

5.  
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Figure 8. 3-dimensional position error scatter plot with SEP using KF and 
CKF. 

Table 5. Comparison of statistical accuracy measures. 

Statistical 

Accuracy 

Measure 

(SAM) 

Probability 
KF 

(meters) 

CKF 

(meters) 

Improvement in 

accuracy with 

CKF (%) 

2
-D

 DRMS 65% 15.84 10.46 33.97 

2DRMS 95% 31.68 20.93 33.93 

CEP 50% 12.91 8.73 32.38 

3
-D

 

SEP 50% 13.23 9.00 31.97 

MRSE 61% 16.43 10.87 33.84 

SAS_90% 90% 21.61 14.69 32.02 

SAS_99% 99% 29.10 19.79 31.99 

It can be observed from Table 5 that 50% of the 

estimated horizontal position points (i.e., X, Y) by KF 

will be within 12.91m of the true position, and 50% of 

estimated 3-D position points will be within 13.23m. In 

contrast, it is 8.73m and 9.0m for CKF, respectively. 

However, the CEP and SEP values of CKF show their 

accuracy better than KF by 4m to 5m. The results show 

that the proposed method is robust to environmental 

factors and provides 34% accuracy improvement over 

KF.  

6. Conclusions 

A precise navigation algorithm is always essential to 

provide the user with an accurate position on or above 

the earth’s surface. Therefore, a new navigation 

algorithm is proposed in this paper, based on the 

correntropy criterion and the performance of the 

proposed CKF algorithm is analyzed, and it is found 

that the proposed CKF navigation algorithm provides 

the best position estimates when compared to the 

traditional KF algorithm. Similarly, the values of 

statistical position accuracy measures are also less for 

the CKF algorithm than the KF algorithm. For 

instance, the difference in CEP and SEP values 

between CKF and KF is 4.18m and 4.23m, 

respectively Hence, with due consideration of all 

correctable errors, it is concluded that the proposed 

CKF algorithm provides a significant improvement in 

position accuracy and helps achieve the accuracy 

requirement of GPS Aided GEO Augmented 

Navigation (GAGAN) users, CAT-1 aircraft landings, 

and other GPS based navigation applications over the 

low latitude regions. 

Table 6. Nomenclature. 

Parameter Illustration 

σ Kernel Bandwidth 

𝛆 Small Positive Number 

𝐚(t) State Vector 

𝐛(t) Measurement Vector 

𝐘 
Covariance Matrix Of 

Measurement Noise 

𝐗 
Covariance Matrix Of Process 

Noise 

𝐙 State Transition Matrix 

𝐒 Observation Matrix 

𝐐 Sate Error Covariance Matrix 

𝐕(t) Cholesky Factorized Matrix 

𝐓(t) Kalman Gain 

�̂�(t|t − 1) Prior Estimate 

�̂�(t − 1|t − 1) Latest Estimate 

�̂�(t|t)
h
 

Updated State Vector at Fixed 

Point Iteration h=1 

𝐐(t|t − 1) Prior Covariance Matrix 

𝐐(t|t) Posterior Covariance Matrix 

Distance Root 

Mean Square 

(DRMS) 
√var(X)2 + var(Y)2 

Twice Distance 

Root Mean Square 

(2DRMS) 
2* √var(X)2 + var(Y)2 

Circular Error 

Probable (CEP) 
0.62*var(Y) + 0.56 ∗ var(X) 

Spherical Error 
Probable (SEP) 

0.51*(var(X) + var(Y) + var(Z)) 

Mean Radial 

Spherical Error 

(MRSE) 
√var(X)2+var(Y)2 + var(Z)2 

90% Spherical 

Accuracy Standard 

(SAS) 

0.833(var(X) + var(Y) + var(Z)) 

99% Spherical 

Accuracy Standard 

(SAS) 

1.122(var(X) + var(Y) + var(Z)) 

 

The algorithm developed in this paper is validated 

using the data collected from geographic location IISc, 

Bangalore, India. Further, by collecting the GPS data 

from various geographic locations like northern, 

eastern, western, and southernmost parts, it can be 

tested and validated for India’s Space-Based 

Augmentation System (SBAS) implementation. The 

proposed algorithm can be tested during the actual 

flight trials of CAT-1 and Approach with Vertical 

(APV) guidance provided by the GAGAN system. It 

can also be tested for Ground-Based Augmentation 

System (GBAS) and Local Area Augmentation System 

(LAAS) that provide the CAT-2 and 3 aircraft landing 

requirements. 
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