
The International Arab Journal of Information Technology, Vol. 19, No. 2, March 2022 261

Multichannel Based IoT Malware Detection System

Using System Calls and Opcode Sequences

Shobana Manoharan

Department of Computer Science and

Engineering, Rajalakshmi Engineering

College, India

divyashobana.m@gmail.com

Poonkuzhali Sugumaran

Department of Computer Science and

Engineering, Rajalakshmi Engineering

College, India

poonkuzhali.s@rajalakshmi.edu.in

Kishore Kumar

AI Engineer, National Institute of Fashion

Technology, India

kishore.kumar@nift.ac.in

Abstract: The rapid development in the field of the Internet of things gives rise to many malicious attacks, since it holds many

smart objects whose lack of an efficient security framework. These kinds of security issues bring the entire halt-down situation

to all smart objects that are connected to the network. In this work, multichannel Convolutional Neural Network (CNN) is

proposed whereas each channel’s CNN works on each type of input parameter. This model has two channels connected in a

parallel manner, with one CNN taking an opcode sequence as input and the other CNN running with system calls. These

extracted system calls and opcode sequences of elf files were discriminated against using two more deep learning algorithms

along with multichannel CNN, namely Recurrent Neural Network (RNN) and CNN, and a few recent existing solutions. The

performance analysis of the aforementioned algorithms has been carried out and evaluated using accuracy, precision, recall,

F1-measure, and time. The experimental results show that multichannel CNN outperforms the remaining considered

techniques by achieving a high accuracy of 99.8% for classifying malicious samples from benign ones. The real-time Internet

of Things (IoT) malware samples were collected from the IoT honeyPot (IOTPOT), which emulates different CPU

architectures of IoT devices.

Keywords: System calls, IoT malwares, fog computing, RNN, CNN, multichannel CNN.

Received November 27, 2020; accepted July 29, 2021

https://doi.org/10.34028/iajit/19/2/13

1. Introduction

In recent decades, the term “Internet of things” has

been involved in the development of diverse

technologies like military, medical, automobile,

industrial, and even domestic purposes like smart

homes. This scenario increases the number of smart

objects over the network drastically [10]. Hence, this

sudden demand for smart objects at a high rate leaves

vendors to design smart objects without any efficient

security framework. Due to the lack of a heavyweight

security framework in the IoT environment, these

kinds of smart devices are easily targeted by attackers

[24]. Many recent malwares, such as Mirai [3], are

capable of launching high-speed floods of DDoS

attacks. In this regard, many researchers have started to

focus on this security issue for IoT with a few

traditional as well as emerging technologies like

Software-Defined Networking (SDN), fog [15], Game

theory, Cryptography [9], behaviour profiling [8] and

Artificial intelligence [1, 12, 18]. Since IoT is said to

be a resource constrained and heterogeneous platform,

there are some challenges that exist while designing a

security framework for IoT platforms. First, the

designed solution has to be a very light-weight

algorithm without consuming more power, time, or

processing speed. Secondly, the design framework

should be very flexible and reliable for all sorts of

diverse technologies connected to the IoT domain [17].
In general, the existing solutions for malware detection

can be broadly classified as signature-based methods

[2], behavior/anomaly-based detection [4], and

sandbox/honeypot-based analysis [20]. Among these

techniques, the signature-based approach [2] achieves

higher accuracy in detection rate, but it fails to detect

the new kinds of malicious attacks. It is clear that, for

the current scenario, the signature-based method is not

suitable to detect malware in the IoT environment. In

this regard, researchers have focused much work

towards anomaly/behavior-based methodology, and

this approach is coming into reality by incorporating

powerful ML [4, 5] and Deep Learning (DL)

algorithms [9]. When comparing the efficiency of

machine learning [4, 5] with deep learning techniques,

the latter achieves better performance, especially in the

field of malware/intrusion detection [18]. The efficacy

of any deep learning architecture is always determined

by the input features and its optimized hyper

parameters. The selection of input attributes in such a

way that they should be highly capable of reflecting

the behaviour of the incoming malware file. By this

way, the selection of the input features to disassemble

malware binaries can be broadly classified into static

[9] and dynamic malware analysis [14]. Static malware

analysis [9] is usually carried out by generating the

behaviour of the malware file without unpacking the

mailto:divyashobana.m@gmail.com
mailto:poonkuzhali.s@rajalakshmi.edu.in
mailto:kishore.kumar@nift.ac.in
https://doi.org/10.34028/iajit/19/2/13

262 The International Arab Journal of Information Technology, Vol. 19, No. 2, March 2022

binary malware executable. An example of static

analysis [9] is the cryptographic hash or unique

signature of the malware file to exhibit the property of

the particular file. Unlike static analysis, dynamic

analysis [14] tends to execute the suspicious samples in

an isolated environment to trace the malicious

activities or behaviour of the new variants of malware.

In order to prevent the host system from damage

launched by malware samples. Hence, it can be

concluded that dynamic analysis is always efficient for

detecting the occurrence of a new variant of malware

files when compared to static analysis [8]. Network

traffic, opcode sequences [1], Printable Strings

Information (PSI) graph, system calls [19, 24], binary

image, and Application Programmable Interface (API)

calls are the most common input attributes considered

for dynamic malware analysis.

 Out of these attributes, system calls [19, 23] and

opcode sequences [1] were considered as effective

attributes to extract the behaviour of malicious and

benign samples, so these attributes were used in this

work in the multichannel deep learning architecture.

However, each feature has its own merits and demerits

in detecting the new malware, so here we used two

aforementioned significant features in a parallel

manner to improve detection rate in either way. Two

DL algorithms have been incorporated for malware

detection to achieve high performance [4, 11, 19, 22],

but this approach has a high computational workload.

So, in this proposed work, this issue has been

addressed by designing two DL in a parallel manner by

overlapping a few of the common neural layers

(preprocessing layer). The main motivation for this

work is to provide a reliable and flexible malware

detection system for IoT-based environments or

smart/IoT objects. The proposed work is based on the

deployment of a malware detection system at the fog

layer, which is present in the IoT architecture. The

proposed solution should be able to detect the

unknown variant of a new malware sample, unlike the

signature-based malware detection technique [2].

The overall contribution of this work is summarized

as given below is

1. To generate the system call and opcode sequences

of both normal and IoT malicious files

2. To preprocess the extracted sequences using

vectorization and word embedding method

3. To do comparative analysis of above mentioned two

feature processing techniques

4. To classify the generated input attributes as malware

and benign separately using deep learning

techniques

5. To do performance analysis of proposed

multichannel Convolutional Neural Network (CNN)

against Multichannel Long Short-term Memory

(LSTM), CNN, Recurrent Neural Network (RNN)

and machine learning techniques using various

quality metrics.

The organization of the paper can be given as section 2

explains the literature survey relevant to the proposed

work and it is discussed in a detailed manner. Section 3

talks about the steps involved in the proposed model.

Section 4 explores the results of the proposed model

along with its experimental setup utilized for this work.

Finally, section 5 ends with the conclusion and future

enhancements.

2. Motivation of the Work

The main motive behind the work is the handling of a

greater number of features at the same time using a

single model. This type of model can be achieved by

implementing a multichannel architecture imposed on

top of deep learning algorithms. The restriction of

usage of a single feature as an input attribute of any

deep learning or machine learning technique results in

a well-trained model capable of detecting malware

whose behavior may be prone to that particular chosen

feature. The different behavior of malware invariants is

analyzed using different features of malware samples.

To achieve this, with the minimum computational

workload, a multichannel architecture has been chosen

to handle each input attribute in each channel. If the

format of the input attributes considered for

multichannel purposes belongs to the same data type,

then the data preprocessing step of these inputs can be

merged instead of a separate block for each channel.

For the IoT environment, the distributive nature of the

security solution has been chosen to provide reliable

services on-time rather than a centralized approach.

This kind of approach can be incorporated by

implementing a malware engine in fog nodes rather

than on the IoT devices themselves.

3. Related Works

This section describes the existing approaches which

are specifically designed to detect malware using

system calls as well as opcode sequences.

Kolosnjaji et al. [16] proposed a model that

combines two major deep learning architectures,

namely CNN and RNN, into a single deep neural

network. This approach is tested against traditional

machine learning techniques such as Support Vector

Machine as well as the Hidden Markov Model to prove

its efficiency. The combined model works well for

system call sequences as an input attribute. Hou et al

[12] designed a deep learning security model for

android malware by using system call sequences. In

this work, the author has generated a system call graph

from the extracted system calls of the android malware

samples. These graphs are then passed as input

attributes to the stacked auto encoders for training.

Xiao et al. [23] implemented a deep learning model for

android malware using system call sequences. The

Multichannel Based IoT Malware Detection System Using System Calls ... 263

author deployed two LSTM networks, one for training

normal system call sequences and another one for

training malicious system call sequences. Mishra et al.

[19] presented a deep learning-based security model

for cloud platforms. The author has utilised system

calls for malware analysis and implemented two stage

classification using CNN and Bi-directional

LSTM. Kim et al. [18] proposed a deep learning model

for android malware detection using similarity

calculation. The author has extracted several kinds of

features from the malware samples. Out of those

features, the most prominent feature will be selected

based on similarity calculation and those features are

further classified using a deep neural network. Khater

et al. [15] proposed a security framework for the IoT

environment using fog computing. The author utilised

two recent system call datasets such as Australian

Defence Force Academy Linux Dataset (ADFA-LD)

and ADFA-WD, then the designed model was

implemented on the Raspberry Pi as fog nodes. This

model uses single-layer perceptrons to classify

malicious system calls from normal ones.

Apart from the above discussed existing techniques,

some more existing solutions are as follows: which

relies on Linux malware detection techniques based on

the system call approach.

An et al. [4] proposed a security framework for

home routers in order to protect them from Distributed

Denial of Service (DDoS) attacks. Here, the author

utilised three machine learning techniques for

classification, namely Principal Component Analysis

(PCA), one-class SVM, and Nave Bayes.

Breitenbacher et al. [6] designed HADES-IoT, a

security framework for IoT devices. It works on the

basis of whitelisting legitimate IoT devices based on

the system calls collected from real-time IoT malware.

The author proves that this work is a lightweight model

for IoT devices because it can be deployed on any type

of IoT device. Abbas and Srikanthan [2] presented a

signature-based malware detection method specifically

for IoT devices. The aforementioned signatures were

retrieved from the system calls of the Linux based

malware. These signatures are combined in such a way

that malware that belongs to the same family will have

a single signature. An et al [5] suggested a malware

detection system for the Amazon Alexa Echo using

system calls from IoT malware. The extracted system

calls were classified as benign and malicious using one

class support vector machine. Furthermore, the

performance of the classifier is evaluated and analysed

using the Cumulative Sum control chart (CUSUM)

test. Haddad et al. [11] proposed a malware detection

system for the IoT platform using RNN-LSTM by

extracting the opcode sequences of Advanced RISC

Machine (ARM)-based IoT malware. The author

incorporates three different LSTM models for

classification purposes. Darabian et al. [7] suggested a

security model capture, especially for polymorphic

malware, exists in the IoT domain. Here the author has

made use of the maximal opcode sequence as the input

parameter to distinguish between malicious and benign

samples, and the sequence classification was carried

out using K nearest neighbors, support vector

machines, multilayer perceptron, AdaBoost, decision

tree, and random forest classifier. Azmoodeh et al. [1]

proposed malware detection for Internet-based Battle

Things (IoBT) using opcode sequences. The author

transforms extracted sequences into vector space and

then they are further classified into benign and

malicious sequences correspondingly using deep

eigenspace learning. Additionally, some of the recent

work in IoT has been analysed and compared with the

proposed methodology. Zielonka et al. [25] analyse the

trend existing in the growth of smart home technology.

This analysis extends in terms of various parameters

such as energy management, security in databases, and

quality of life. Iwendi et al. [13] proposed a

watermarking-based approach to counter cyberattacks.

It is done by imposing two watermarks on a single

piece of software, and this technique is so called

“keysplitwatermark”.

At the end of this survey, it reveals that most of the

existing model is not evaluated using real time IoT

malware samples. Moreover, RNN is not used much in

the existing work to detect IoT malware. Since RNN is

well known for handling natural language processing

issues, it is assumed to be suitable for classifying

malicious system call sequences from normal system

calls. In our previous work [21], RNN was proved to

be efficient in detecting the system calls of malicious

files residing on IoT devices and that model was

further improved and compared with equivalent deep

learning and machine learning techniques. From a

security point of view, many existing security solutions

for smart homes are based on Blockchain technology

[25]. However, blockchain is vulnerable to a few major

security attacks, including the eclipse attack, the

consensus mechanism, and code vulnerabilities. In

watermark-based security solutions [13], the

watermark present in the software can be removed by

modifying the carrier data (software) like compression

or resizing. So, this approach cannot be applied to

protecting IoT devices from cyberattacks. But deep

learning-based solutions are free from these kinds of

attacks. Jon et al. [14] suggested a cloud-based

malware detection framework using CNN. The

implementation of a malware engine on a cloud

platform connected to IoT devices increases the

latency and communication bandwidth. These above

highlighted issues discussed in each existing solution

strengthen the ideology of the proposed work. Since

the cloud node has been replaced by a fog node, which

is nearer to many IoT devices in the proposed solution,

this approach has proven more effective in providing

the services. Moreover, in some of the existing

systems, the dynamic features have been converted to

264 The International Arab Journal of Information Technology, Vol. 19, No. 2, March 2022

images and they are used as inputs. The storage space

of an image is always higher than the other datatypes

like strings or numeric, hence those approaches are not

suitable for the IoT domain. Hence, in this approach,

rather than using a single feature, two of the most

significant features, like system calls and opcode

sequence, were used in parallel architecture. This style

of implementation enhances the detection rate of new

variants of malware which pose different malicious

behaviour patterns.

4. Proposed Methodology

This section explains the layers of the system

architecture and its operation in a detailed manner.

Figure1 illustrates the overview of the communication

between the fog nodes and the IoT devices which are

connected to it. In Figure 2, the deep learning-based

security model which is installed in the fog node is

demonstrated in a layered manner.

Figure 1. Overview of system architecture.

Figure 2. Deep learning based security model.

4.1. Dataset Generation Layer

This dataset comprises different types of system calls

extracted from both normal and malware samples

residing on IoT devices. Since the majority of the IoT

devices are built using the Linux operating system, the

benign samples were collected from system files

residing in the path/bin,/usr/bin, and/sbin folders of the

Ubuntu operating system. Meanwhile, the real-time

IoT malware samples were extracted from Internet of

things Honeypot (IoTPoT) [21]. IoTPoT is a honeypot

specially designed to capture telnet-based attacks on

IoT devices. This honeypot emulated nine different

Central Processing Unit (CPU) architectures such as

ARM, Microprocessor without Interlocked Pipelined

Stages (MIPS), Power PC (PPC), Little endian MIPS

(MIPSEL), Scalable Processor Architecture (SPARC),

MIPS64, SH4 and X86. Therefore, tracing system calls

from samples belonging to diverse architectures gives

enough knowledge of the designed model to detect

unknown incoming malware.

Table 1. System call refinement.

Type
Number of Samples

Training Testing

Malware 3072 1317

Benign 2800 1200

Table 2. Sample distribution for model.

System call Refined System call

execve(“./malware_10”, [“./malware_10”], [/* 23

vars */])=0
Execve

uname({sysname=”Linux”, nodename=”264egular-

VirtualBox”, ...}) = 0
Uname

brk(0x634f4240)=0x634f4240 Brk

arch_prctl(ARCH_SET_FS, 0x634f3900)= 0 arch_prctl

set_tid_address(0x634f3bd0)=6658 set_tid_address

set_robust_list(0x634f3be0, 24)=0 set_robust_list

These normal and benign files were executed using

preinstalled software, the so-called strace tool in

Ubuntu, which is installed in an isolated environment.

In the same way, the objdump command is used to

extract opcode sequences from the elf samples. After

executing each file, a set of system calls and opcode

sequences were returned along with their parameters

and return value. In the process of system call

refinement, the parameters and their return value were

truncated and it is shown in Table 1. Likewise, the

opcode sequences are also processed in the same

manner. The sample distribution for both system calls

and opcodes is illustrated in Table 2.

4.2. Data Preprocessing Layer

The data preprocessing layer include two kinds of

approaches such as:

1) N-gram and vectorization.

2) Word embedding and it is explained below.

4.2.1. N-Gram and Vectorization

The N-gram technique is widely applied for text

processing. Since system calls are in textual format, the

N-gram technique is used in this stage. In this work, an

n-gram is used to extract an efficient number of

features to predict the next occurrence of a word.

Another technique is vectorization, which is used to

Multichannel Based IoT Malware Detection System Using System Calls ... 265

allocate weight to each word based on its occurrence.

In this work, Term Frequency-Inverse Document

Frequency (TF-IDF) is applied, which is used to

allocate more weight to the high occurrence of a word

in a document whereas lower weight is allocated to the

particular low occurrence word. Here the value of ‘n’

is used in the n-gram technique varies from 1 to 5. The

weight of the frequency used in the TF-IDF is 10.

After performing these two transformations, the inputs

are fed into the neural network (CNN and RNN) in the

form of a sparse matrix.

4.3. Word Embedding

Word embedding encodes each word as a feature

vector, so it conquers more information from very few

text sequences. Tokenization is performed as the first

step of word embedding to remove unwanted words or

special characters to improve the performance of the

model and here words are considered as tokens by

mapping each word to an integer. Since each sentence

has a different list of words, the pad-sequence()

function is used to equate the length of all the vector

sizes. Using an embedding layer of keras in Python,

these calculated integers are mapped to dense vectors.

The parameters used in the embedding layers are input-

dim (size of the vocabulary), output-dim (size of the

dense vector), and input-length (length of the

sequence).

4.4. Classification Layer

In the classification layer, four deep learning

architectures have been used, viz., Multichannel CNN,

Multichannel LSTM, CNN, and RNN. The purpose of

classification is to distinguish the processed system

call sequence as either malicious or benign samples

respectively. Usually, the deep learning architecture

requires a high computational workload and a large

number of training samples. Since this work is

specially designed for IoT devices, which are said to be

resource-constrained devices, a lightweight deep

learning architecture is used here with a minimum

number of hidden layers which is trained with a

considerably small amount of dataset sample.

4.5. Fog Node and IoT Devices

The term fog is meant to be replaced by cloud. In IoT

applications, the cloud component is used to provide

required services to the edge devices (IoT devices).

To reduce the communication latency, fog is

introduced which acts as an intermediate between

cloud and edge devices. So, in this work, in order to

reduce the computational workload for IoT devices,

the main deep learning security framework is

deployed in a fog node. In an IoT device, a

lightweight scanning agent is installed which is used

to detect incoming files as malware. If it is completely

normal, then no action is performed. In the other case,

if any suspicious file is detected, then it will be

directed to the fog node for further scanning using

deep learning techniques. If any new malware is

detected inside the fog node, then the particular rule

will be updated in the scanning agent which is

installed on the IoT device.

5. Algorithm

This section explains about the algorithm used for the

classification task in a detailed manner.

5.1. Recurrent Neural Network

A recurrent neural network, as the name implies, is a

type of neural network that uses the previous output as

a present input in a recursive manner. This nature of

RNN is made suitable for the problem of prediction.

The most prominent feature of RNN is the hidden

state, which helps to store the information for each

sequence. The values for the parameters that predict

the sequence have the same value for performing the

same task at all the hidden layers.

5.2. Convolutional Neural Network

CNN is one of the deep learning techniques that is

quite familiar for dealing with image analytics. Most

recently, CNN has been used extensively for text

processing and sentiment analysis. It is also known for

the regularized type of multilayer perceptron that

prevents overfitting, and this model resembles the

biological neurons of the human brain. Obviously, like

other deep learning techniques, CNN also has one

input and output layer along with multiple hidden

layers. The hidden layer in the CNN is connected

based on the operation convolve, otherwise known as

the dot operation.

5.3. Multichannel CNN

Multichannel CNN is a special variant of a

convolutional neural network consists of more than

one convolutional neural network connected in a

parallel manner. The architecture of this model has two

CNN connected immediately after their flatten layer

using the concatenate layer. In this model, the first

channel CNN is based on the system call sequence as

an input attribute whereas the second CNN works on

the opcode sequence. This model discriminates the

malicious sample using two variants of input features

that increases the probability of detection rate. There is

a chance of predicting the malicious sample based on

any one of two different input features (system calls

and opcode). The input parameters of these attributes

computed for each layer are illustrated in Table 3.

266 The International Arab Journal of Information Technology, Vol. 19, No. 2, March 2022

Table 3. Parameters involved in multichannel CNN model.

Layer Output Shape Parameters

Input_19 (None,50) 0

Input_20 (None,50) 0

Embedding_19 (None,50,200) 11723800

Embedding_20 (None,50,200) 11723800

Conv1d_19 (None,48,32) 19232

Conv1d_20 (None,48,32) 19232

Dropout_19 (None,48,32) 0

Dropout_20 (None,48,32) 0

Max_pooling1d_19 (None,24,32) 0

Max_pooling1d_20 (None,24,32) 0

Flatten_19 (None,768) 0

Flatten_20 (None,768) 0

Concatenate_10 (None,1536) 0

Dense_19 (None,10) 15370

Dense_20 (None,1) 15370

5.4. MultiChannel LSTM

Like in multichannel CNN, here two LSTM models are

connected in a parallel way, and these two connected

models work on the basis of two different input

features separately. LSTM is a special form of RNN

and it is designed to overcome the problem of long-

term dependencies. Recently, it has been seeking

attention towards text processing for better

performance. Since the two input attributes considered

in this work are text sequence, the LSTM technique is

used here for comparative study. The input parameters

of these attributes computed for each layer are

illustrated in Table 4. In Table 5, the values used for

the three deep learning techniques have been explored

in an elaborate manner.

Table 4. Parameters involved in multichannel LSTM model.

Layer Output Shape Parameters

Input_19 (None,50) 0

Input_20 (None,50) 0

Embedding_20 (None,50,250) 14654750

Embedding_21 (None,50,250) 14654750

Lstm_20 (None,64) 80640

Lstm_21 (None,64) 80640

Concatenate_10 (None,128) 0

Dense_20 (None,10) 1290

Dense_21 (None,1) 1290

 Table 5. Hyperparameters values for deep learning model.

HyperParameters

Values

RNN, CNN

MultiChannel-CNN

and Multichannel

LSTM

Epochs 3

Hidden layers 1
Channel1 -1

Channel2 -1

Activation function

output layer-sigmoid function

Hidden layer-Relu function

Neurons

4 neuron-input layer

4 -1st hidden layer

1-output layer

10-hidden Layer

1-output layer

Filter Size=32

Optimizer Adam

Metrics

Accuracy, Val-

Accuracy ,Loss, Val-

Loss

Accuracy, Loss

Loss Function Binary cross entropy

6. Results and Discussion

The generated system calls were extracted using the

preinstalled tool called strace and another tool to

extract opcode is objdump in Ubuntu 16.04 installed

on the oracle Virtual Machine (VM) virtualbox version

6.0.14 whereas the host computer is windows 8.1. The

k-fold cross validation technique is implemented for

multichannel CNN alone to prove its efficiency for a

minimal number of data samples and here the value of

‘k’ is 10.

The deep learning techniques such as Multichannel

LSTM, Multichannel CNN, Recurrent neural network,

and Convolutional neural network were implemented

on a Core i3 Laptop with a 2.30 GHz CPU and 4 GB

RAM using the Python version 3.7 software

environment. The performance analysis of the

designed model is measured using the following

performance monitors:

 True Positive (TP) shows that the malicious system

calls sequences are correctly predicted as malware.

 True Negative (TN) shows that normal system calls

sequences are correctly predicted as normal.

 False Positive (FP) shows that normal system calls

sequences is wrongly detected as an attack.

 False Negative (FN) shows that the malicious

system calls sequences is wrongly detected as

normal.

6.1. Accuracy

Accuracy can be defined as the ratio between the

number of correctly predicted sequences and the total

number of samples, and it is calculated using Equation

(1).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

6.2. Precision

Precision can be termed as the ability of the classifier

to correctly label malware samples as attacks. Equation

(2) is used to calculate the precision of the classifier.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃

6.3. Recall or Detection Rate

“Recall or “detection rate” can be defined as the

number of correctly detected malicious samples.

Equation (3) is used to calculate the recall of the

classifier.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁

6.4. F-Measure

F-measure can be defined as the weighted harmonic

mean of precision and recall. Equation (4) is used to

calculate the F-measure of the classifier.

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

(1)

(2)

(3)

(4)

Multichannel Based IoT Malware Detection System Using System Calls ... 267

In Table 6, the comparative and performance analysis

has been demonstrated for multichannel LSTM,

multichannel CNN, CNN and RNN using the quality

metrics. There are two text processing techniques that

were employed for CNN and RNN. By comparing

those results, it can be inferred that in the case of the

system call dataset, both CNN and RNN achieve high

performance for n-gram than word embedding, but

their training and prediction time is quite higher than

the latter. For the opcode sequence dataset, CNN

performs well for the word embedding technique in all

aspects, but for RNN, processing time is higher for n-

gram than for word embedding. On the whole, it can be

concluded that the word embedding technique suits

faster processing better than the n-gram. While

analysing the results obtained from four deep learning

and four machine learning techniques, the proposed

method, Multichannel CNN and Multichannel LSTM,

outperforms the other techniques which are frequently

used for malware detection systems. Even though the

multichannel architecture works for two different sets

of datasets, its prediction and training time is not so

much higher than the remaining techniques. Since this

model is applied to tiny IoT devices, both time and

classification metrics should also be preferred. Among

two multichannel architectures, multichannel CNN

outperforms multichannel LSTM in terms of accuracy,

recall, F1-measure, and time. The Figures 3 and 6

shows that the precision-recall curve of the

multichannel CNN and Multichannel LSTM for 10-

fold cross validation respectively. Figure 4 shows the

area under the curve that achieves the highest precision

as well as recall value and it reaches the mean value of

AUCPR of approximately 0.994, where for

Multichannel LSTM the mean value of AUCPR

reaches only 0.990. Figures 4 and 5 show the receiver

operating curve for Multichannel CNN and

Multichannel LSTM, respectively, and this curve plots

between true positive rate and false positive rate. The

value of the RoC for all the 10-fold values lies between

0.99 and 1.00 and its mean value is around 0.99, as

shown in Figure 4. Likewise, in Figure 5, the ROC

curve for multichannel LSTM, the values lie between

0.998 and 1.00 and its mean value is 0.99

appropriately. Figure 7-a) and 7-b) and Figure 8-a) and

8-b) show the accuracy vs. validation accuracy and

loss vs. validation loss plots for the system call dataset

and opcode dataset, respectively. Figures 9-a) and 9-b)

and 10-a) and 9-b) show the RNN used for system calls

and the opcode dataset, respectively.

Figure 3. Precision-Recall Curve for Multichannel CNN.

Figure 4. ROC Curve for 10-fold Multichannel CNN.

Figure 5. Precision-recall curve for multichannel LSTM.

Figure 6. RoC curve for 10-fold multichannel LSTM.

P
re

ci
si

o
n

P

re
ci

si
o

n

268 The International Arab Journal of Information Technology, Vol. 19, No. 2, March 2022

a) Accuracy for training and testing phase.

b) Loss for training and testing phase.

Figure 7. CNN for opcode sequence (word embedding).

a) Accuracy during training and testing phase.

b) Loss during training and testing phase.

Figure 8. CNN for system call sequence (Word Embedding).

a) Plot between training and testing accuracy.

b) Plot between training and testing Loss.

Figure 9. RNN for opcode sequence (word embedding).

a) Plot between training and validation accuracy.

b) Plot between training and validation loss.

Figure 10. RNN for system call sequence (word embedding).

Table 6. Comparative analysis for multichannel CNN, CNN and RNN.

Attribute used Algorithm used Text processing techniques Accuracy(%) Precision Recall F1-measure Training Time(sec) Prediction time(sec)

System Call

CNN

n-gram 99.211 0.985 0.985 0.992 54.833 0.208

Word embedding 98.437 0.970 0.970 0.984 4.96 0.08

RNN

n-gram 99.214 0.985 0.985 0.992 19.654 0.131

Word embedding 99.218 0.984 0.984 0.992 5.124 0.574

SVM n-gram 99.218 1.000 0.984 0.992 4.022 1.723

NB n-gram 98.437 1.000 0.969 0.984 0.655 0.328

Random Forest n-gram 98.437 0.970 1.000 0.984 0.558 0.066

K-nn n-gram 98.437 0.984 0.984 0.984 1.23 36.04

opcode

CNN
n-gram 99.393 0.989 0.989 0.994 3428.09 39.097

Word embedding 99.393 0.989 0.989 0.994 156.239 0.113

RNN
n-gram 99.393 0.989 0.989 0.994 223.119 0.213

Word embedding 97.575 0.958 0.958 0.978 160.963 0.6

SVM n-gram 97.118 0.984 0.984 0.992 5.022 2.000

NB n-gram 97.532 0.943 0.969 0.984 2.751 2.228

Random Forest n-gram 98.537 0.954 0.969 0.984 0.558 2.134

K-nn n-gram 98.537 0.979 0.984 0.984 1.238 48.04

Both

Multichannel
CNN

Word Embedding

99.843 0.998 0.998 0.998 41.326 5.7716

Multichannel

LSTM
98.927 1.000 0.979 0989 42.664 5.8923

Training and validation accuacy Training and validation accuacy

Training and validation accuacy

Training and validation accuacy

Training and validation accuracy
Training and validation accuracy

Training and validation accuacy

Training and validation accuacy

Multichannel Based IoT Malware Detection System Using System Calls ... 269

Table 7. Comparative analysis of existing method with proposed methodology.

Author Dataset used Attributes used Techniques and its architecture used Performance metrics

Kolosnjaji et al. [16] Virus share & Matrieve System calls 2-layer CNN,RNN

Accuracy-89.4%

Precision-0.856

Recall-0.894

Hou et al. [12]
Comodo cloud Security

centre
System call graph 1-layer Autoencoder Accuracy-93.68%

Xiao et al. [23] Drebin project dataset System calls 4-layer LSTM
Accuracy:93.7%
Precision:0.913

Recall:0.966

Mishra et al. [19]
University of new

maxico(UNM) dataset
System calls CNN+LSTM Accuracy-96.67%

Khater et al. [15] ADFA-LD System calls 1-laer MLP

Accuracy-94%

Recall-0.95

F1-measure-0.92

HaddadPajouh et al. [11] Arm based malware Opcode sequence 3 different LSTM Accuracy-98.18%

Darabian et al. [7]
Virus total threat

intelligence platform
Opcode sequence Adaboost

Accuracy-99.52%

F1-measure-0.995

Azmood et al. [1] ARM based Malware Opcode sequence Deep eigen space learning

Accuracy-99.68%

Recall-0.983

Precision-0.985
F1-measure-0984

Proposed Model IoTPOT malwares
System call and

opcode sequence
Multichannel CNN(2, 1-layer CNN)

Accuracy-99.68%

Recall-0.984

Precision-0.988
F1-measure-0.986

In Table 7, the detailed comparative summary

between the existing and proposed solutions has been

demonstrated. Among these existing solutions, only

two of them [13, 23] are based on real IoT malware

samples. The maximum accuracy achieved by the

existing solution using system calls is 96.67%, whereas

the maximum accuracy using opcode sequences is

99.6%. The proposed work using both system calls as

well as opcode sequences is 99.68%. From these

observations, it can be concluded that the proposed

methodology outperforms the existing solutions.

7. Conclusions

Generally, IoT/smart devices face severe threats

because of so many loopholes exist in their design.

Since the IoT environment consists of elements that

belong to diverse communication protocols, traditional

malware detection techniques fail to detect attacks

launched over the IoT in a reliable way. The key

challenges of providing a solution to detect malicious

samples in IoT devices are limited hardware resources,

software capabilities, and speed. Hence, in this work,

fog-based malware detection has been implemented by

placing the malware engine in the fog nodes. The fog

node is not only a replacement for the cloud but also

very nearer to the edge devices in order to provide

various services with minimum latency and bandwidth.

In this work, the comparative analysis between deep

learning and machine learning techniques has been

carried out using various performance metrics. The

deep learning architecture is designed with a single

hidden layer and minimum number of epochs. Based

on the analysis, the performance of the classification

using multichannel CNN is higher than the

Multichannel RNN, CNN and RNN is measured in

terms of accuracy, precision, recall and F1-measure. In

this work, a lightweight malware detection is built with

the fog nodes to reduce the complexity of the IoT

devices with an accuracy of 99.8% and recall of 0.998.

This work can be further extended by adding more

channels with respect to new features utilised

additionally such that each channel works on each type

of feature vector to detect new variants of malware

samples. This solution relies on binary classification

and it can be enhanced by implementing the same

solution for multiclass classification.

References

[1] Azmoodeh A., Dehghantanha A., and Choo K.,

“Robust Malware Detection for Internet of

(Battlefield) Things Devices Using Deep

Eigenspace Learning” IEEE Transactions on

Sustainable Computing, vol. 4, no.1, pp. 88-95,

2018.

[2] Abbas M. and Srikanthan T., “Low-Complexity

Signature-Based Malware Detection for Iot

Devices,” in Proceedings of International

Conference on Applications and Techniques in

Information Security, Nanning, pp. 181-189,

2018.

[3] Antonakakis M., April T., Bailey M., Bernhard

M., Bursztein E., Cochran J., Durumeric Z.,

Halderman J., Invernizzi L., Kallitsis M., Kumar

D., Lever C., Ma Z., Mason J., Menscher D.,

Seaman C., Sullivan N., Thomas K., and Zhou

Y., “Understanding the Mirai Botnet,” in

Proceedings of the 26th USENIX Security

Symposium, pp. 1093-1110, 2017.

[4] An N., Duff A., Naik G., Faloutsos M., Weber S.,

and Mancoridis S., “Behavioral Anomaly

Detection of Malware on Home Routers”, in

Proceedings of 12th International Conference on

270 The International Arab Journal of Information Technology, Vol. 19, No. 2, March 2022

Malicious and Unwanted Software (MALWARE),

Fajardo, pp. 47-54, 2017.

[5] An N., Duff A., Noorani M., Weber S., and

Mancoridis S., “Malware Anomaly Detection on

Virtual Assistants,” in Proceedings of 13th

International Conference on Malicious and

Unwanted Software (MALWARE), Nantucket, pp.

124-131, 2018.

[6] Breitenbacher D., Homoliak I., Aung Y.,

Tippenhauer N., and Elovici Y., “HADES-Iot: A

Practical Host-Based Anomaly Detection System

for Iot Devices,” in Proceedings of the ACM Asia

Conference on Computer and Communications

Security, New York, pp. 479-484, 2019.

[7] Darabian H., Dehghantanha A., Hashemi S.,

Homayoun S., and Choo K., “An Opcod-Based

Technique for Polymorphic Internet of Things

Malware Detection” Concurrency and

Computation: Practice and Experience, vol. 32,

no. 6, pp. e5173, 2020.

[8] Devarajan R. and Rao P., “An Efficient Intrusion

Detection System By Using Behaviour Profiling

and Statistical Approach Model,” The

International Arab Journal of Information

Technology, vol. 18, no. 1, pp. 114-124, 2021.

[9] Fleshman W., Raff E., Zak R.., McLean M., and

Nicholas C., “Static Malware Detection and

Subterfuge: Quantifying the Robustness of

Machine Learning and Current Anti-Virus,” in

Proceedings of 13th International Conference on

Malicious and Unwanted Software

(MALWARE), Nantucket, pp. 1-10, 2018.

[10] Gerber A. and Romeo J., “Connecting all the

Things in The Internet of Things,” IBM

Corporation, pp. 1-10, 2017.

[11] HaddadPajouh H., Dehghantanha A., Khayami

R., and Choo K., “A Deep Recurrent Neural

Network Based Approach for Internet of Things

Malware Threat Hunting,” Future Generation

Computer Systems, vol. 85, pp. 88-96, 2018.

[12] Hou S., Saas A., Chen L., and Ye Y.,

“Deep4maldroid: A Deep Learning Framework

for Android Malware Detection Based on Linux

Kernel System Call Graph,” in Proceedings of

IEEE/WIC/ACM International Conference on

Web Intelligence Workshops (WIW), Omaha, pp.

104-111, 2016.

[13] Iwendi C., Jalil Z., Javed A., Reddy T., Kaluri R.,

Srivastava G., and Jo O., “Keysplitwatermark:

Zero Watermarking Algorithm for Software

Protection Against Cyber-Attacks,” IEEE Access,

vol. 8, pp. 72650-72660, 2020.

[14] Jeon J., Park J., and Jeong Y., “Dynamic

Analysis for Iot Malware Detection with

Convolution Neural Network Model,” IEEE

Access, vol. 8, pp. 96899-96911, 2020.

[15] Khater B., Wahab A., Idris M., Hussain M., and

Ibrahim A., “A Lightweight Perceptron-Based

Intrusion Detection System for Fog Computing,”

Applied Sciences, vol. 9, no.1, pp. 178, 2019.

[16] Kolosnjaji B., Zarras A., Webster G., and Eckert

C.,“ Deep Learning for Classification of Malware

System Call Sequences” in Proceedings of

Australasian Joint Conference on Artificial

Intelligence, Hobart, pp. 137-149, 2016.

[17] Khan M. and Salah K., “Iot Security: Review,

Blockchain Solutions, and Open Challenges,”

Future Generation Computer Systems, vol. 82,

pp. 395-411, 2018.

[18] Kim T., Kang B., Rho M., Sezer S., and Im E.,

“A Multimodal Deep Learning Method for

Android Malware Detection using Various

Features,” IEEE Transactions on Information

Forensics and Security, vol. 14, no. 3, pp. 773-

788, 2018.

[19] Mishra P., Khurana K., Gupta S., and Sharma M.,

“VMAnalyzer: Malware Semantic Analysis using

Integrated CNN and Bi-Directional LSTM for

Detecting VM-level Attacks in Cloud” in

Proceedings of 12th International Conference on

Contemporary Computing, Noida, pp. 1-6, 2019.

[20] Pa Y., Suzuki S., Yoshioka K., Matsumoto T.,

Kasama T., and Rossow C., “Iotpot: A Novel

Honeypot for Revealing Current Iot Threat,”

Journal of Information Processing, vol. 24, pp.

522-533, 2016.

[21] Shobana M. and Poonkuzhali S., “A Novel

Approach to Detect Iot Malware By System Calls

Using Deep Learning Techniques,” in

Proceedings of International Conference on

Innovative Trends in Information Technology,
Kottayam, pp. 1-5, 2020.

[22] Vinayakumar R., Alazab M., Soman K.,

Poornachandran P., Al-Nemrat A and

Venkatraman S., “Deep Learning Approach for

Intelligent Intrusion Detection System” IEEE

Access, vol. 7, pp. 41525-41550, 2019.

[23] Xiao X., Zhang S., Mercaldo F., Hu G., and

Sangaiah A., “Android Malware Detection Based

on System Call Sequences and LSTM”

Multimedia Tools and Applications, vol. 78, pp.

3979-3999, 2019.

[24] Yang Y., Wu L., Yin G., Li L., and Zhao H., “A

Survey on Security and Privacy Issues in the

Internet-of-Things,” IEEE Internet of Things

Journal, vol. 4, no. 5, pp. 1250-1258, 2017.

[25] Zielonka A., Woźniak M., Garg S., Kaddoum G.,

Piran M., and Muhammad G., “Smart Homes:

How Much Will They Support Us? A Research

On Recent Trends And Advances,” IEEE Access,

vol. 9, pp. 26388-26419, 2021.

Multichannel Based IoT Malware Detection System Using System Calls ... 271

 Shobana Manoharan is a research

scholar at the department of

computer science and Engineering

at Rajalakshmi Engineering college.

Her research interest includes

network security, IoT, outlier

mining, Artificial intelligence, NLP.

She has published 10 technical papers in international

journals and conference. Life time membership in

IAENG, SDIWC, SEEE.

Poonkuzhali Sugumaran Professor

in the Department of Computer

Science and Engineering and Head

of Centre for Assistive Devices and

Technologies has been with

Rajalakshmi Engineering College

since August 2000. Her area of

specialization is Web Mining, Outlier mining,

Information Retrieval, Knowledge Management, Big

Data Analytics and E-Learning. Authored 6 texts

books and published more than 75 papers in various

reputed conferences and in international journals.

Received 6 Best Paper Awards for the oral paper

presentation. Received International Paper Presenter

Award from Computer Society of India She is doing

consultancy work for Sentinel Radiologist Solutions

and Skill Council for Person with Disability.

Kishore Kumar Artificial

Intelligence (AI) Engineer, VisioNxt

a Mega Project under R&D Division

of Ministry of Textiles. He

completed Doctoral Studies (PhD)

in the Department of Computer

Science and Engineering, Indian

Institute of Technology Kharagpur, West Bengal. His

area of specialization is Computer Vision, Speech

Processing, Web Service Security, Web Mining,

Information Retrieval. Published more than 10 papers

in various reputed conferences and in international

journals. Received one Best Paper Awards for the oral

paper presentation. Received Grants from Tamil Nadu

State Council for Science and Technology for

presenting papers in the International conference for

oral presentation. He is a reviewer for the Neural

Processing Letters journal.

