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Abstract: The rapid development in the field of the Internet of things gives rise to many malicious attacks, since it holds many 

smart objects whose lack of an efficient security framework. These kinds of security issues bring the entire halt-down situation 

to all smart objects that are connected to the network. In this work, multichannel Convolutional Neural Network (CNN) is 

proposed whereas each channel’s CNN works on each type of input parameter. This model has two channels connected in a 

parallel manner, with one CNN taking an opcode sequence as input and the other CNN running with system calls. These 

extracted system calls and opcode sequences of elf files were discriminated against using two more deep learning algorithms 

along with multichannel CNN, namely Recurrent Neural Network (RNN) and CNN, and a few recent existing solutions. The 

performance analysis of the aforementioned algorithms has been carried out and evaluated using accuracy, precision, recall, 

F1-measure, and time. The experimental results show that multichannel CNN outperforms the remaining considered 

techniques by achieving a high accuracy of 99.8% for classifying malicious samples from benign ones. The real-time Internet 

of Things (IoT) malware samples were collected from the IoT honeyPot (IOTPOT), which emulates different CPU 

architectures of IoT devices. 
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1. Introduction 

In recent decades, the term “Internet of things” has 

been involved in the development of diverse 

technologies like military, medical, automobile, 

industrial, and even domestic purposes like smart 

homes. This scenario increases the number of smart 

objects over the network drastically [10]. Hence, this 

sudden demand for smart objects at a high rate leaves 

vendors to design smart objects without any efficient 

security framework. Due to the lack of a heavyweight 

security framework in the IoT environment, these 

kinds of smart devices are easily targeted by attackers 

[24]. Many recent malwares, such as Mirai [3], are 

capable of launching high-speed floods of DDoS 

attacks. In this regard, many researchers have started to 

focus on this security issue for IoT with a few 

traditional as well as emerging technologies like 

Software-Defined Networking (SDN), fog [15], Game 

theory, Cryptography [9], behaviour profiling [8] and 

Artificial intelligence [1, 12, 18]. Since IoT is said to 

be a resource constrained and heterogeneous platform, 

there are some challenges that exist while designing a 

security framework for IoT platforms. First, the 

designed solution has to be a very light-weight 

algorithm without consuming more power, time, or 

processing speed. Secondly, the design framework 

should be very flexible and reliable for all sorts of 

diverse technologies connected to the IoT domain [17]. 
In general, the existing solutions for malware detection 

can be broadly classified as signature-based methods 

[2], behavior/anomaly-based detection [4], and 

sandbox/honeypot-based analysis [20]. Among these 

techniques, the signature-based approach [2] achieves 

higher accuracy in detection rate, but it fails to detect 

the new kinds of malicious attacks. It is clear that, for 

the current scenario, the signature-based method is not 

suitable to detect malware in the IoT environment. In 

this regard, researchers have focused much work 

towards anomaly/behavior-based methodology, and 

this approach is coming into reality by incorporating 

powerful ML [4, 5] and Deep Learning (DL) 

algorithms [9]. When comparing the efficiency of 

machine learning [4, 5] with deep learning techniques, 

the latter achieves better performance, especially in the 

field of malware/intrusion detection [18]. The efficacy 

of any deep learning architecture is always determined 

by the input features and its optimized hyper 

parameters. The selection of input attributes in such a 

way that they should be highly capable of reflecting 

the behaviour of the incoming malware file. By this 

way, the selection of the input features to disassemble 

malware binaries can be broadly classified into static 

[9] and dynamic malware analysis [14]. Static malware 

analysis [9] is usually carried out by generating the 

behaviour of the malware file without unpacking the 
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binary malware executable. An example of static 

analysis [9] is the cryptographic hash or unique 

signature of the malware file to exhibit the property of 

the particular file. Unlike static analysis, dynamic 

analysis [14] tends to execute the suspicious samples in 

an isolated environment to trace the malicious 

activities or behaviour of the new variants of malware. 

In order to prevent the host system from damage 

launched by malware samples. Hence, it can be 

concluded that dynamic analysis is always efficient for 

detecting the occurrence of a new variant of malware 

files when compared to static analysis [8]. Network 

traffic, opcode sequences [1], Printable Strings 

Information (PSI) graph, system calls [19, 24], binary 

image, and Application Programmable Interface (API) 

calls are the most common input attributes considered 

for dynamic malware analysis.  

 Out of these attributes, system calls [19, 23] and 

opcode sequences [1] were considered as effective 

attributes to extract the behaviour of malicious and 

benign samples, so these attributes were used in this 

work in the multichannel deep learning architecture. 

However, each feature has its own merits and demerits 

in detecting the new malware, so here we used two 

aforementioned significant features in a parallel 

manner to improve detection rate in either way. Two 

DL algorithms have been incorporated for malware 

detection to achieve high performance [4, 11, 19, 22], 

but this approach has a high computational workload. 

So, in this proposed work, this issue has been 

addressed by designing two DL in a parallel manner by 

overlapping a few of the common neural layers 

(preprocessing layer). The main motivation for this 

work is to provide a reliable and flexible malware 

detection system for IoT-based environments or 

smart/IoT objects. The proposed work is based on the 

deployment of a malware detection system at the fog 

layer, which is present in the IoT architecture. The 

proposed solution should be able to detect the 

unknown variant of a new malware sample, unlike the 

signature-based malware detection technique [2]. 

The overall contribution of this work is summarized 

as given below is 

1. To generate the system call and opcode sequences 

of both normal and IoT malicious files 

2. To preprocess the extracted sequences using 

vectorization and word embedding method 

3. To do comparative analysis of above mentioned two 

feature processing techniques 

4. To classify the generated input attributes as malware 

and benign separately using deep learning 

techniques 

5. To do performance analysis of proposed 

multichannel Convolutional Neural Network (CNN) 

against Multichannel Long Short-term Memory 

(LSTM), CNN, Recurrent Neural Network (RNN) 

and machine learning techniques using various 

quality metrics. 

The organization of the paper can be given as section 2 

explains the literature survey relevant to the proposed 

work and it is discussed in a detailed manner. Section 3 

talks about the steps involved in the proposed model. 

Section 4 explores the results of the proposed model 

along with its experimental setup utilized for this work. 

Finally, section 5 ends with the conclusion and future 

enhancements. 

2. Motivation of the Work 

The main motive behind the work is the handling of a 

greater number of features at the same time using a 

single model. This type of model can be achieved by 

implementing a multichannel architecture imposed on 

top of deep learning algorithms. The restriction of 

usage of a single feature as an input attribute of any 

deep learning or machine learning technique results in 

a well-trained model capable of detecting malware 

whose behavior may be prone to that particular chosen 

feature. The different behavior of malware invariants is 

analyzed using different features of malware samples. 

To achieve this, with the minimum computational 

workload, a multichannel architecture has been chosen 

to handle each input attribute in each channel. If the 

format of the input attributes considered for 

multichannel purposes belongs to the same data type, 

then the data preprocessing step of these inputs can be 

merged instead of a separate block for each channel. 

For the IoT environment, the distributive nature of the 

security solution has been chosen to provide reliable 

services on-time rather than a centralized approach. 

This kind of approach can be incorporated by 

implementing a malware engine in fog nodes rather 

than on the IoT devices themselves. 

3. Related Works 

This section describes the existing approaches which 

are specifically designed to detect malware using 

system calls as well as opcode sequences. 

Kolosnjaji et al. [16] proposed a model that 

combines two major deep learning architectures, 

namely CNN and RNN, into a single deep neural 

network. This approach is tested against traditional 

machine learning techniques such as Support Vector 

Machine as well as the Hidden Markov Model to prove 

its efficiency. The combined model works well for 

system call sequences as an input attribute. Hou et al 

[12] designed a deep learning security model for 

android malware by using system call sequences. In 

this work, the author has generated a system call graph 

from the extracted system calls of the android malware 

samples. These graphs are then passed as input 

attributes to the stacked auto encoders for training. 

Xiao et al. [23] implemented a deep learning model for 

android malware using system call sequences. The 
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author deployed two LSTM networks, one for training 

normal system call sequences and another one for 

training malicious system call sequences. Mishra et al. 

[19] presented a deep learning-based security model 

for cloud platforms. The author has utilised system 

calls for malware analysis and implemented two stage 

classification using CNN and Bi-directional 

LSTM. Kim et al. [18] proposed a deep learning model 

for android malware detection using similarity 

calculation. The author has extracted several kinds of 

features from the malware samples. Out of those 

features, the most prominent feature will be selected 

based on similarity calculation and those features are 

further classified using a deep neural network. Khater 

et al. [15] proposed a security framework for the IoT 

environment using fog computing. The author utilised 

two recent system call datasets such as Australian 

Defence Force Academy Linux Dataset (ADFA-LD) 

and ADFA-WD, then the designed model was 

implemented on the Raspberry Pi as fog nodes. This 

model uses single-layer perceptrons to classify 

malicious system calls from normal ones. 

Apart from the above discussed existing techniques, 

some more existing solutions are as follows: which 

relies on Linux malware detection techniques based on 

the system call approach. 

An et al. [4] proposed a security framework for 

home routers in order to protect them from Distributed 

Denial of Service (DDoS) attacks. Here, the author 

utilised three machine learning techniques for 

classification, namely Principal Component Analysis 

(PCA), one-class SVM, and Nave Bayes. 

Breitenbacher et al. [6] designed HADES-IoT, a 

security framework for IoT devices. It works on the 

basis of whitelisting legitimate IoT devices based on 

the system calls collected from real-time IoT malware. 

The author proves that this work is a lightweight model 

for IoT devices because it can be deployed on any type 

of IoT device. Abbas and Srikanthan [2] presented a 

signature-based malware detection method specifically 

for IoT devices. The aforementioned signatures were 

retrieved from the system calls of the Linux based 

malware. These signatures are combined in such a way 

that malware that belongs to the same family will have 

a single signature. An et al [5] suggested a malware 

detection system for the Amazon Alexa Echo using 

system calls from IoT malware. The extracted system 

calls were classified as benign and malicious using one 

class support vector machine. Furthermore, the 

performance of the classifier is evaluated and analysed 

using the Cumulative Sum control chart (CUSUM) 

test. Haddad et al. [11] proposed a malware detection 

system for the IoT platform using RNN-LSTM by 

extracting the opcode sequences of Advanced RISC 

Machine (ARM)-based IoT malware. The author 

incorporates three different LSTM models for 

classification purposes. Darabian et al. [7] suggested a 

security model capture, especially for polymorphic 

malware, exists in the IoT domain. Here the author has 

made use of the maximal opcode sequence as the input 

parameter to distinguish between malicious and benign 

samples, and the sequence classification was carried 

out using K nearest neighbors, support vector 

machines, multilayer perceptron, AdaBoost, decision 

tree, and random forest classifier. Azmoodeh et al. [1] 

proposed malware detection for Internet-based Battle 

Things (IoBT) using opcode sequences. The author 

transforms extracted sequences into vector space and 

then they are further classified into benign and 

malicious sequences correspondingly using deep 

eigenspace learning. Additionally, some of the recent 

work in IoT has been analysed and compared with the 

proposed methodology. Zielonka et al. [25] analyse the 

trend existing in the growth of smart home technology. 

This analysis extends in terms of various parameters 

such as energy management, security in databases, and 

quality of life. Iwendi et al. [13] proposed a 

watermarking-based approach to counter cyberattacks. 

It is done by imposing two watermarks on a single 

piece of software, and this technique is so called 

“keysplitwatermark”. 

At the end of this survey, it reveals that most of the 

existing model is not evaluated using real time IoT 

malware samples. Moreover, RNN is not used much in 

the existing work to detect IoT malware. Since RNN is 

well known for handling natural language processing 

issues, it is assumed to be suitable for classifying 

malicious system call sequences from normal system 

calls. In our previous work [21], RNN was proved to 

be efficient in detecting the system calls of malicious 

files residing on IoT devices and that model was 

further improved and compared with equivalent deep 

learning and machine learning techniques. From a 

security point of view, many existing security solutions 

for smart homes are based on Blockchain technology 

[25]. However, blockchain is vulnerable to a few major 

security attacks, including the eclipse attack, the 

consensus mechanism, and code vulnerabilities. In 

watermark-based security solutions [13], the 

watermark present in the software can be removed by 

modifying the carrier data (software) like compression 

or resizing. So, this approach cannot be applied to 

protecting IoT devices from cyberattacks. But deep 

learning-based solutions are free from these kinds of 

attacks. Jon et al. [14] suggested a cloud-based 

malware detection framework using CNN. The 

implementation of a malware engine on a cloud 

platform connected to IoT devices increases the 

latency and communication bandwidth. These above 

highlighted issues discussed in each existing solution 

strengthen the ideology of the proposed work. Since 

the cloud node has been replaced by a fog node, which 

is nearer to many IoT devices in the proposed solution, 

this approach has proven more effective in providing 

the services. Moreover, in some of the existing 

systems, the dynamic features have been converted to 
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images and they are used as inputs. The storage space 

of an image is always higher than the other datatypes 

like strings or numeric, hence those approaches are not 

suitable for the IoT domain. Hence, in this approach, 

rather than using a single feature, two of the most 

significant features, like system calls and opcode 

sequence, were used in parallel architecture. This style 

of implementation enhances the detection rate of new 

variants of malware which pose different malicious 

behaviour patterns. 

4. Proposed Methodology 

This section explains the layers of the system 

architecture and its operation in a detailed manner. 

Figure1 illustrates the overview of the communication 

between the fog nodes and the IoT devices which are 

connected to it. In Figure 2, the deep learning-based 

security model which is installed in the fog node is 

demonstrated in a layered manner.  

 

Figure 1. Overview of system architecture. 

 

Figure 2. Deep learning based security model. 

4.1. Dataset Generation Layer 

This dataset comprises different types of system calls 

extracted from both normal and malware samples 

residing on IoT devices. Since the majority of the IoT 

devices are built using the Linux operating system, the 

benign samples were collected from system files 

residing in the path/bin,/usr/bin, and/sbin folders of the 

Ubuntu operating system. Meanwhile, the real-time 

IoT malware samples were extracted from Internet of 

things Honeypot (IoTPoT) [21]. IoTPoT is a honeypot 

specially designed to capture telnet-based attacks on 

IoT devices. This honeypot emulated nine different 

Central Processing Unit (CPU) architectures such as 

ARM, Microprocessor without Interlocked Pipelined 

Stages (MIPS), Power PC (PPC), Little endian MIPS 

(MIPSEL), Scalable Processor Architecture (SPARC), 

MIPS64, SH4 and X86. Therefore, tracing system calls 

from samples belonging to diverse architectures gives 

enough knowledge of the designed model to detect 

unknown incoming malware. 

Table 1. System call refinement. 

Type 
Number of Samples 

Training Testing 

Malware 3072 1317 

Benign 2800 1200 

Table 2. Sample distribution for model. 

System call Refined System call 

execve(“./malware_10”, [“./malware_10”], [/* 23 

vars */])=0 
Execve 

uname({sysname=”Linux”, nodename=”264egular-

VirtualBox”, ...}) = 0 
Uname 

brk(0x634f4240)=0x634f4240 Brk 

arch_prctl(ARCH_SET_FS, 0x634f3900)= 0 arch_prctl 

set_tid_address(0x634f3bd0)=6658 set_tid_address 

set_robust_list(0x634f3be0, 24)=0 set_robust_list 

These normal and benign files were executed using 

preinstalled software, the so-called strace tool in 

Ubuntu, which is installed in an isolated environment. 

In the same way, the objdump command is used to 

extract opcode sequences from the elf samples. After 

executing each file, a set of system calls and opcode 

sequences were returned along with their parameters 

and return value. In the process of system call 

refinement, the parameters and their return value were 

truncated and it is shown in Table 1. Likewise, the 

opcode sequences are also processed in the same 

manner. The sample distribution for both system calls 

and opcodes is illustrated in Table 2. 

4.2. Data Preprocessing Layer 

The data preprocessing layer include two kinds of 

approaches such as: 

1) N-gram and vectorization.  

2) Word embedding and it is explained below. 

4.2.1. N-Gram and Vectorization 

The N-gram technique is widely applied for text 

processing. Since system calls are in textual format, the 

N-gram technique is used in this stage. In this work, an 

n-gram is used to extract an efficient number of 

features to predict the next occurrence of a word. 

Another technique is vectorization, which is used to 
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allocate weight to each word based on its occurrence. 

In this work, Term Frequency-Inverse Document 

Frequency (TF-IDF) is applied, which is used to 

allocate more weight to the high occurrence of a word 

in a document whereas lower weight is allocated to the 

particular low occurrence word. Here the value of ‘n’ 

is used in the n-gram technique varies from 1 to 5. The 

weight of the frequency used in the TF-IDF is 10. 

After performing these two transformations, the inputs 

are fed into the neural network (CNN and RNN) in the 

form of a sparse matrix. 

4.3. Word Embedding 

Word embedding encodes each word as a feature 

vector, so it conquers more information from very few 

text sequences. Tokenization is performed as the first 

step of word embedding to remove unwanted words or 

special characters to improve the performance of the 

model and here words are considered as tokens by 

mapping each word to an integer. Since each sentence 

has a different list of words, the pad-sequence() 

function is used to equate the length of all the vector 

sizes. Using an embedding layer of keras in Python, 

these calculated integers are mapped to dense vectors. 

The parameters used in the embedding layers are input-

dim (size of the vocabulary), output-dim (size of the 

dense vector), and input-length (length of the 

sequence). 

4.4. Classification Layer 

In the classification layer, four deep learning 

architectures have been used, viz., Multichannel CNN, 

Multichannel LSTM, CNN, and RNN. The purpose of 

classification is to distinguish the processed system 

call sequence as either malicious or benign samples 

respectively. Usually, the deep learning architecture 

requires a high computational workload and a large 

number of training samples. Since this work is 

specially designed for IoT devices, which are said to be 

resource-constrained devices, a lightweight deep 

learning architecture is used here with a minimum 

number of hidden layers which is trained with a 

considerably small amount of dataset sample. 

4.5. Fog Node and IoT Devices 

The term fog is meant to be replaced by cloud. In IoT 

applications, the cloud component is used to provide 

required services to the edge devices (IoT devices). 

To reduce the communication latency, fog is 

introduced which acts as an intermediate between 

cloud and edge devices. So, in this work, in order to 

reduce the computational workload for IoT devices, 

the main deep learning security framework is 

deployed in a fog node. In an IoT device, a 

lightweight scanning agent is installed which is used 

to detect incoming files as malware. If it is completely 

normal, then no action is performed. In the other case, 

if any suspicious file is detected, then it will be 

directed to the fog node for further scanning using 

deep learning techniques. If any new malware is 

detected inside the fog node, then the particular rule 

will be updated in the scanning agent which is 

installed on the IoT device. 

5. Algorithm 

This section explains about the algorithm used for the 

classification task in a detailed manner. 

5.1. Recurrent Neural Network 

A recurrent neural network, as the name implies, is a 

type of neural network that uses the previous output as 

a present input in a recursive manner. This nature of 

RNN is made suitable for the problem of prediction. 

The most prominent feature of RNN is the hidden 

state, which helps to store the information for each 

sequence. The values for the parameters that predict 

the sequence have the same value for performing the 

same task at all the hidden layers. 

5.2. Convolutional Neural Network 

CNN is one of the deep learning techniques that is 

quite familiar for dealing with image analytics. Most 

recently, CNN has been used extensively for text 

processing and sentiment analysis. It is also known for 

the regularized type of multilayer perceptron that 

prevents overfitting, and this model resembles the 

biological neurons of the human brain. Obviously, like 

other deep learning techniques, CNN also has one 

input and output layer along with multiple hidden 

layers. The hidden layer in the CNN is connected 

based on the operation convolve, otherwise known as 

the dot operation. 

5.3. Multichannel CNN  

Multichannel CNN is a special variant of a 

convolutional neural network consists of more than 

one convolutional neural network connected in a 

parallel manner. The architecture of this model has two 

CNN connected immediately after their flatten layer 

using the concatenate layer. In this model, the first 

channel CNN is based on the system call sequence as 

an input attribute whereas the second CNN works on 

the opcode sequence. This model discriminates the 

malicious sample using two variants of input features 

that increases the probability of detection rate. There is 

a chance of predicting the malicious sample based on 

any one of two different input features (system calls 

and opcode). The input parameters of these attributes 

computed for each layer are illustrated in Table 3. 
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Table 3. Parameters involved in multichannel CNN model. 

Layer Output Shape Parameters 

Input_19 (None,50) 0 

Input_20 (None,50) 0 

Embedding_19 (None,50,200) 11723800 

Embedding_20 (None,50,200) 11723800 

Conv1d_19 (None,48,32) 19232 

Conv1d_20 (None,48,32) 19232 

Dropout_19 (None,48,32) 0 

Dropout_20 (None,48,32) 0 

Max_pooling1d_19 (None,24,32) 0 

Max_pooling1d_20 (None,24,32) 0 

Flatten_19 (None,768) 0 

Flatten_20 (None,768) 0 

Concatenate_10 (None,1536) 0 

Dense_19 (None,10) 15370 

Dense_20 (None,1) 15370 

5.4. MultiChannel LSTM 

Like in multichannel CNN, here two LSTM models are 

connected in a parallel way, and these two connected 

models work on the basis of two different input 

features separately. LSTM is a special form of RNN 

and it is designed to overcome the problem of long-

term dependencies. Recently, it has been seeking 

attention towards text processing for better 

performance. Since the two input attributes considered 

in this work are text sequence, the LSTM technique is 

used here for comparative study. The input parameters 

of these attributes computed for each layer are 

illustrated in Table 4. In Table 5, the values used for 

the three deep learning techniques have been explored 

in an elaborate manner. 

Table 4. Parameters involved in multichannel LSTM model.  

Layer Output Shape Parameters 

Input_19 (None,50) 0 

Input_20 (None,50) 0 

Embedding_20 (None,50,250) 14654750 

Embedding_21 (None,50,250) 14654750 

Lstm_20 (None,64) 80640 

Lstm_21 (None,64) 80640 

Concatenate_10 (None,128) 0 

Dense_20 (None,10) 1290 

Dense_21 (None,1) 1290 

 Table 5. Hyperparameters values for deep learning model. 

HyperParameters 

Values 

RNN, CNN 

MultiChannel-CNN 

and Multichannel 

LSTM 

Epochs 3 

Hidden layers 1 
Channel1 -1 

Channel2 -1 

Activation function 

output layer-sigmoid function 

Hidden layer-Relu function 

 

Neurons 

4 neuron-input layer 

4 -1st hidden layer 

1-output layer 

10-hidden Layer 

1-output layer 

Filter Size=32 

Optimizer Adam 

Metrics 

Accuracy, Val-

Accuracy ,Loss, Val-

Loss 

Accuracy, Loss 

Loss Function Binary cross entropy 

6. Results and Discussion 

The generated system calls were extracted using the 

preinstalled tool called strace and another tool to 

extract opcode is objdump in Ubuntu 16.04 installed 

on the oracle Virtual Machine (VM) virtualbox version 

6.0.14 whereas the host computer is windows 8.1. The 

k-fold cross validation technique is implemented for 

multichannel CNN alone to prove its efficiency for a 

minimal number of data samples and here the value of 

‘k’ is 10. 

The deep learning techniques such as Multichannel 

LSTM, Multichannel CNN, Recurrent neural network, 

and Convolutional neural network were implemented 

on a Core i3 Laptop with a 2.30 GHz CPU and 4 GB 

RAM using the Python version 3.7 software 

environment. The performance analysis of the 

designed model is measured using the following 

performance monitors: 

 True Positive (TP) shows that the malicious system 

calls sequences are correctly predicted as malware. 

 True Negative (TN) shows that normal system calls 

sequences are correctly predicted as normal. 

 False Positive (FP) shows that normal system calls 

sequences is wrongly detected as an attack. 

 False Negative (FN) shows that the malicious 

system calls sequences is wrongly detected as 

normal. 

6.1. Accuracy 

Accuracy can be defined as the ratio between the 

number of correctly predicted sequences and the total 

number of samples, and it is calculated using Equation 

(1). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  

6.2. Precision 

Precision can be termed as the ability of the classifier 

to correctly label malware samples as attacks. Equation 

(2) is used to calculate the precision of the classifier. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  

6.3. Recall or Detection Rate 

“Recall or “detection rate” can be defined as the 

number of correctly detected malicious samples. 

Equation (3) is used to calculate the recall of the 

classifier. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  

6.4. F-Measure 

F-measure can be defined as the weighted harmonic 

mean of precision and recall. Equation (4) is used to 

calculate the F-measure of the classifier.  

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 

(1) 

(2) 

(3) 

(4) 
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In Table 6, the comparative and performance analysis 

has been demonstrated for multichannel LSTM, 

multichannel CNN, CNN and RNN using the quality 

metrics. There are two text processing techniques that 

were employed for CNN and RNN. By comparing 

those results, it can be inferred that in the case of the 

system call dataset, both CNN and RNN achieve high 

performance for n-gram than word embedding, but 

their training and prediction time is quite higher than 

the latter. For the opcode sequence dataset, CNN 

performs well for the word embedding technique in all 

aspects, but for RNN, processing time is higher for n-

gram than for word embedding. On the whole, it can be 

concluded that the word embedding technique suits 

faster processing better than the n-gram. While 

analysing the results obtained from four deep learning 

and four machine learning techniques, the proposed 

method, Multichannel CNN and Multichannel LSTM, 

outperforms the other techniques which are frequently 

used for malware detection systems. Even though the 

multichannel architecture works for two different sets 

of datasets, its prediction and training time is not so 

much higher than the remaining techniques. Since this 

model is applied to tiny IoT devices, both time and 

classification metrics should also be preferred. Among 

two multichannel architectures, multichannel CNN 

outperforms multichannel LSTM in terms of accuracy, 

recall, F1-measure, and time. The Figures 3 and 6 

shows that the precision-recall curve of the 

multichannel CNN and Multichannel LSTM for 10-

fold cross validation respectively. Figure 4 shows the 

area under the curve that achieves the highest precision 

as well as recall value and it reaches the mean value of 

AUCPR of approximately 0.994, where for 

Multichannel LSTM the mean value of AUCPR 

reaches only 0.990. Figures 4 and 5 show the receiver 

operating curve for Multichannel CNN and 

Multichannel LSTM, respectively, and this curve plots 

between true positive rate and false positive rate. The 

value of the RoC for all the 10-fold values lies between 

0.99 and 1.00 and its mean value is around 0.99, as 

shown in Figure 4. Likewise, in Figure 5, the ROC 

curve for multichannel LSTM, the values lie between 

0.998 and 1.00 and its mean value is 0.99 

appropriately. Figure 7-a) and 7-b) and Figure 8-a) and 

8-b) show the accuracy vs. validation accuracy and 

loss vs. validation loss plots for the system call dataset 

and opcode dataset, respectively. Figures 9-a) and 9-b) 

and 10-a) and 9-b) show the RNN used for system calls 

and the opcode dataset, respectively. 

 

Figure 3. Precision-Recall Curve for Multichannel CNN. 

 

Figure 4. ROC Curve for 10-fold Multichannel CNN. 

 

Figure 5. Precision-recall curve for multichannel LSTM. 

 

Figure 6. RoC curve for 10-fold multichannel LSTM. 
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a) Accuracy for training and testing phase. 

 

 
b) Loss for training and testing phase. 

Figure 7. CNN for opcode sequence (word embedding). 
 

 

a) Accuracy during training and testing phase. 

 

 

b) Loss during training and testing phase. 

Figure 8. CNN for system call sequence (Word Embedding). 

 

 
a) Plot between training and testing accuracy. 

 

 
b) Plot between training and testing Loss. 

Figure 9. RNN for opcode sequence (word embedding). 

 

 
a) Plot between training and validation accuracy. 

 

 
b) Plot between training and validation loss. 

Figure 10. RNN for system call sequence (word embedding). 

Table 6. Comparative analysis for multichannel CNN, CNN and RNN.  

Attribute used Algorithm used Text processing techniques Accuracy(%) Precision Recall F1-measure Training Time(sec) Prediction time(sec) 

System Call 

 

CNN 
 

n-gram 99.211 0.985 0.985 0.992 54.833 0.208 

Word embedding 98.437 0.970 0.970 0.984 4.96 0.08 

RNN 

 

n-gram 99.214 0.985 0.985 0.992 19.654 0.131 

Word embedding 99.218 0.984 0.984 0.992 5.124 0.574 

SVM n-gram 99.218 1.000 0.984 0.992 4.022 1.723 

NB n-gram 98.437 1.000 0.969 0.984 0.655 0.328 

Random Forest n-gram 98.437 0.970 1.000 0.984 0.558 0.066 

K-nn n-gram 98.437 0.984 0.984 0.984 1.23 36.04 

opcode 

CNN 
n-gram 99.393 0.989 0.989 0.994 3428.09 39.097 

Word embedding 99.393 0.989 0.989 0.994 156.239 0.113 

RNN 
n-gram 99.393 0.989 0.989 0.994 223.119 0.213 

Word embedding 97.575 0.958 0.958 0.978 160.963 0.6 

SVM n-gram 97.118 0.984 0.984 0.992 5.022 2.000 

NB n-gram 97.532 0.943 0.969 0.984 2.751 2.228 

Random Forest n-gram 98.537 0.954 0.969 0.984 0.558 2.134 

K-nn n-gram 98.537 0.979 0.984 0.984 1.238 48.04 

Both 

Multichannel 
CNN 

Word Embedding 

99.843 0.998 0.998 0.998 41.326 5.7716 

Multichannel 

LSTM 
98.927 1.000 0.979 0989 42.664 5.8923 

Training and validation accuacy Training and validation accuacy 

Training and validation accuacy 

Training and validation accuacy 

Training and validation accuracy 
Training and validation accuracy 

Training and validation accuacy 

Training and validation accuacy 
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Table 7. Comparative analysis of existing method with proposed methodology. 

Author Dataset used Attributes used Techniques and its architecture used Performance metrics 

Kolosnjaji et al. [16] Virus share & Matrieve System calls 2-layer CNN,RNN 

Accuracy-89.4% 

Precision-0.856 

Recall-0.894 

Hou et al. [12] 
Comodo cloud Security 

centre 
System call graph 1-layer Autoencoder Accuracy-93.68% 

Xiao et al. [23] Drebin project dataset System calls 4-layer LSTM 
Accuracy:93.7% 
Precision:0.913 

Recall:0.966 

Mishra et al. [19] 
University of new 

maxico(UNM) dataset 
System calls CNN+LSTM Accuracy-96.67% 

Khater et al. [15] ADFA-LD System calls 1-laer MLP 

Accuracy-94% 

Recall-0.95 

F1-measure-0.92 

HaddadPajouh et al. [11] Arm based malware Opcode sequence 3 different LSTM Accuracy-98.18% 

Darabian et al. [7] 
Virus total threat 

intelligence platform 
Opcode sequence Adaboost 

Accuracy-99.52% 

F1-measure-0.995 

Azmood et al. [1] ARM based Malware Opcode sequence Deep eigen space learning 

Accuracy-99.68% 

Recall-0.983 

Precision-0.985 
F1-measure-0984 

Proposed Model IoTPOT malwares 
System call and 

opcode sequence 
Multichannel CNN(2, 1-layer CNN) 

Accuracy-99.68% 

Recall-0.984 

Precision-0.988 
F1-measure-0.986 

 

In Table 7, the detailed comparative summary 

between the existing and proposed solutions has been 

demonstrated. Among these existing solutions, only 

two of them [13, 23] are based on real IoT malware 

samples. The maximum accuracy achieved by the 

existing solution using system calls is 96.67%, whereas 

the maximum accuracy using opcode sequences is 

99.6%. The proposed work using both system calls as 

well as opcode sequences is 99.68%. From these 

observations, it can be concluded that the proposed 

methodology outperforms the existing solutions. 

7. Conclusions 

Generally, IoT/smart devices face severe threats 

because of so many loopholes exist in their design. 

Since the IoT environment consists of elements that 

belong to diverse communication protocols, traditional 

malware detection techniques fail to detect attacks 

launched over the IoT in a reliable way. The key 

challenges of providing a solution to detect malicious 

samples in IoT devices are limited hardware resources, 

software capabilities, and speed. Hence, in this work, 

fog-based malware detection has been implemented by 

placing the malware engine in the fog nodes. The fog 

node is not only a replacement for the cloud but also 

very nearer to the edge devices in order to provide 

various services with minimum latency and bandwidth. 

In this work, the comparative analysis between deep 

learning and machine learning techniques has been 

carried out using various performance metrics. The 

deep learning architecture is designed with a single 

hidden layer and minimum number of epochs. Based 

on the analysis, the performance of the classification 

using multichannel CNN is higher than the 

Multichannel RNN, CNN and RNN is measured in 

terms of accuracy, precision, recall and F1-measure. In 

this work, a lightweight malware detection is built with 

the fog nodes to reduce the complexity of the IoT 

devices with an accuracy of 99.8% and recall of 0.998. 

This work can be further extended by adding more 

channels with respect to new features utilised 

additionally such that each channel works on each type 

of feature vector to detect new variants of malware 

samples. This solution relies on binary classification 

and it can be enhanced by implementing the same 

solution for multiclass classification. 
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