
80 The International Arab Journal of Information Technology, Vol. 1, No. 1, January 2004

Timing Attack Prospect for RSA Cryptanalysts

Using Genetic Algorithm Technique
Hamza Ali and Mikdam Al-Salami

Computer Science Department, Zarka Private University, Jordan

Abstract: This paper presents an approach to cryptanalysis of RSA cryptosystem based on the application of genetic
algorithm. The search utilizes the idea of timing attack as computation time information may leak due to different modular
operations throughout the RSA encoding. This approach suggests a speed up process, aiming at reducing the required number
of plaintext-ciphertext samples needed for a successful timing attack. The proposed notion of timing attack outlined in this
work with its preliminary implementation, have given encouraging results on RSA cryptosystem samples. Further work carried
on to implement the idea of genetic algorithm technique to practical RSA system has demonstrated encouraging results.

Keywords: Cryptography, cryptanalysis, genetic algorithms, timing attacks, RSA, key search.

Received February 16, 2003; accepted June 26, 2003

1. Introduction
Any exhaustive key search attack, such as “Brute
Force” would be an efficient tool for a finite key space
problem. Also, simple random key search might be
effective. However, as the key space increases, neither
Brute Force search nor random search would be
practical nor acceptable, but other means may be
sought.

Cryptanalysts look for any specific information that
when analyzed, might lead to data compromise or
secret key disclosure. Cryptosystem can be viewed as
either a mathematical objects, or as a concrete
implementation of that mathematical object.
Cryptanalysis has been directed against mathematical
objects (i.e. differential and linear cryptanalysis),
regardless of the implementation considerations. Most
of such attacks have a theoretical consideration and
may not work against cryptosystem in practice.
Another kind of cryptanalysis targets specific
implementation details. Timing attack [4] based on
time measurement with respect to particular
implementation of cryptosystem. Cryptographic
algorithms often perform computation in non-constant
time, if such operation involves secret parameters,
these timing variations can leak some information.
With enough knowledge of the implementation at
hand, statistical analysis could even lead to the total
recovery of these secret parameters [1].

A number of possible applications of timing attack
against various cryptographic algorithms were
introduced. The amount of time required to perform
private key operations against Deffie -Helman, RSA,
DSS were outlined by Kocher [5, 10, 11], the timing
attack against Rijndael (i.e. AES system) by Koeune
and Quisquater [6], simple and differential power

consumption analysis by Kocher et al. [5]. And a
practical implementation of timing attack of
CASCADE smart card against RSA algorithm
presented by Dhem et al. [2]. This implementation has
shown an efficient performance in key disclosure,
where error detection technique was introduced, to
guide the attack and to reduce the number of messages
samples that were required to activate the attack. On
the other hand, exploiting regularities in the cipher
system or the language have led to the implementation
of genetic algorithms in cryptosystems, see for
example Spillman et al. [12] and Metthews [9] for
breaking simple substitution ciphers and classic
cryptographic systems (substitution and transposition),
respectively.

The present work introduces the idea of using
genetic algorithm to enhance the timing attack. This
idea is based on the concept of error detection to
distinguish the partial correct secret key from
completely wrong one. The principles of designing
fitness function along with other genetic operations are
reported here. In section 2, Genetic algorithms
technique is defined and reviewed with the aim of
using it in collaboration with the timing attack process
on RSA, and error detection is outlined in section 3.
The proposed principle for cryptanalysis attack is
formally defined and discussed in section 4 and finally
the paper is concluded in section 5.

2. Genetic Algorithms
The main feature of generic algorithms (GA’s) is their
ability to add direction to what seems to be random
search. This might produce powerful and efficient
search technique. These algorithms attempt to solve
complicated mathematical problems by simulation, to

Timing Attack Prospect for RSA Cryptanalysts Using Genetic Algorithm Technique 81

certain extent, the way in which biological genetic
processes operate, see Liepins and Hilliard [7, 8]. They
use the concept drawn from the theory of evolution to
“breed” progressively better solutions to problems with
very large solution space. Therefore, for a correct key
selection, the goal is to search through the key space
(each represented by some binary string) in order to
find the one that maximize the possibility of a correct
answer. A genetic algorithm begins with a randomly
selected population of function inputs represented by
strings (chromosomes), which are in the form of
guessed key strings. GA uses the current population of
strings to create a new population such that the string
in the new population, on average gives better fitting
results than those in the current population. This is
achieved by assessing the fitness of each attempt. The
more successful keys would then be used to create new
successive generations of fitter key combinations. This
process is repeated until an optimal key emerges, that
produces substantial decryption. GA follows three
processes cycle for transition from one population to
the next one in a similar way to that found in living
creatures. This cycle consists of selection, crossover,
and mutation, as shown in Figure 1 [12].

Figure 1. The basic generic algorithm cycle.

The selection process determines which of string
(chromosome) in the current generation will be used to
breed the next generation. This is based on biased or
directed random selection strategy. The crossover
process determines the expected string of the next
generation, which will result into a pair of parents. The
final step is mutation that follows some mutation
probability, which is set at the start of the algorithm.
Some changes will take place, producing the
generations of strings. This cycle is repeated, creating
new generation of strings every round, until certain
criterion is reached.

3. Timing Attack and Error Detection
RSA cryptosystem uses exponentiation operations to
perform both encryption and decryption. An
exponentiation algorithm works by scanning the key
from left to right, as shown in Figure 2. The

computations are done through a sequence of square
and multiply operation in which key bits are involved.
Timing attack against this algorithm could be aimed at
either the square or the multiply operations. The result
of Dhem et al. [2] have shown that attacking the square
operation is more efficient than attacking the multiply
operation. For each bit of the secret key captured
message sample is categorized into four sets. At first,
the most significant bit is taken as 1, so both
multiplication and squaring operations will be
performed. Then, when the next most significant bit is
considered, it is required to determine whether an
additional reduction is necessary or not, depending on
its value being 1 or 0. If it is taken as 1, then
multiplication is performed and deciding if an
additional reduction is required or not followed by
squaring. Doing this process for every message, the
samples are divided into two subsets, M1 contains
messages that require reduction and M2 contains
messages that require no reduction. If this bit is
considered as 0, which means only square operation
will be done, the samples are divided into two subsets,
M3 and M4 based on the necessity of additional
reduction or not. Further details can be found in [2].

 x = m

 For i = n – 2 down to 0

 x = x2 //square

 If ki = 1 then

 x =x . m // multiply

 end for

 return x

Figure 2. Left and right exponentiation.

For each set, the measured mean time is computed

and compared to make a decision about the key bit to
be either 1 or 0. For error detection, the difference
between mean times of M1 and M2 sets and the
difference between mean times of M3 and M4 sets are
subtracted from each other in order to compute a
difference value as a figure of merit. This value should
be significant enough to give an indication that the bit
value is guessed correctly. The values of this figure of
merit will show a noticeable decrease if the
computation was done using wrong key bits. In this
work, this feature will be used to evaluate the
correctness of key.

4. The Principle of the Attack
Timing attack against RSA cryptosystem shows an
efficient performance in revealing the decryption key
[2]. However, the number of required sample messages

New chromosome Old chromosome

Mutation Selection

Crossover

Evaluation

82 The International Arab Journal of Information Technology, Vol. 1, No. 1, January 2004

is still rather large. In this work we tried a method that
aims at reducing the number of these samples in order
to increase the possibility of a successful attack. This
enhanced method is based on using genetic algorithm
to search the large key space and utilize the feature of
GA to produce and improve a set of possible keys
(population), for generation over generation. A single
key with a good feature (correct key bits) will survive
at the end of the search. The crucial idea enabled the
attack on RSA is the possibility of evaluating the
suggested keys (population individuals) and
distinguishing the wrong key from the partially correct
key. The evaluation process depends on the concept of
error detection. In the proposed system, the key
population is a set of chromosomes, each consists of a
sequence of bits represents an estimated key. The
length of each chromosome equals to the maximum
expected key length. The most important idea to
discuss here is the way of evaluating a given key in
order to assign different fitness values for each
individual key in the population. This will enable the
GA to evolve into good keys over a sequence of
generations. A good key refers to a key that has a large
number of correct bits or it may rather be completely
correct. In other words we should have a method to
evaluate the fitness (or correctness) of each key.

In the following, we demonstrate the way of
building a fitness function that uses error detection
technique to assign a fitness value for each individual
key. An efficient evaluation and crossover operation
will help to have a direct search through a huge search
space. Then a description of crossover operation is
presented in addition to other genetic operation related
to the process of producing new population from an
old one.

4.1. Key Evaluation
For the basic formal definition of fitness function, we
first define the following key, k, as follows:

 k = { k1, k2, k3, …, kn } (1)

Where k represents an individual key or chromosome,
which consists of n bits, each could be either 0 or 1.
And suppose we have:

 M = {M1, M2, M3, …, Ms } and
 T = {T1, T2, T3, …, Ts } (2)

Where M is a set of captured messages (plain text), and
T represents a sequence of time amount needed to
compute a signature of each of these message using
decryption key.

For these sequences, we can define the measured
time parameter Tij, as follows:

T1j = {ri ∈ T kj=1 and Mi required reduction at bit j of
 the individual key k}

T2j = {ri ∈ T kj=1 and Mi required no reduction at bit j
 of the individual key k}
T3j = {ri ∈ T kj=0 and Mi required reduction at bit j of

the individual key k}
T4j = {ri ∈ T kj=0 and Mi required no reduction at bit j

of the individual key k} (3)

The function µ(Tij) is calculated as the average
computation time for the message samples. Also, we
can define the computation average time differences
as:

 D = {D1, D2, …, Dn} (4)

Where

 Di = µ(T1i) - µ(T2i)-µ(T3i)-µ(T4i) (5)

The error detection for the timing attack can be of the
form shown in Figure 3, where the computation
average time difference is plotted as a function of the
suggested key length (bits).

 Figure 3. Error detection for 512-bit key [3].

Finally, the fitness value for key, k can be computed

by the following formula:
 n

Fitness(k)={Σ Di*(n-i+1)}/{(n*(n+1))/2} (6)
 i=1

Each element in the sequence D represents a figure of
merit which is the difference between two differences
of mean times. These differences should have stable
and significant values if the computation was done
using correct key bits [2]. However, if the key contains
wrong bit(s), the elements of the sequence D that
correspond to the wrong bits in the key will apparently
have lower values as compared with that corresponds
to correct bits. In other words, the element Di gives a
sort of evaluation to the key bit ki. Di should maintain a
stable high value for i=1, 2, .., n if its corresponding
key bit is correct. To explain this in more details, let us
suppose we have a wrong bit ke at position e. this
implies that the average of D1, D2, .., De-1 must be
greater than the average values De, De+1, .., Dn. This
means that, the error bit position clearly effects the

C
om

pu
ta

tio
n

tim
e

di
ff

er
en

ce

Key length (bits)

Timing Attack Prospect for RSA Cryptanalysts Using Genetic Algorithm Technique 83

over all key evaluation. It is possible to use the value
µ(D) to give a good indication about the key fitness. In
equation (6) further improvement is applied. In this
improvement we give a weight value for each key bit
evaluation according to its position within the key (i.e.
according to it’s effect on the over all key evaluation).
If the error occurred at most significant bits of the key,
this will be resulting in completely wrong key, so that
the error in most significant bits must have higher
weight than the least significant bits. In equation (6),
D1 has the weight n, D2 has the weight n-1, and so on
until Dn which has the weight of 1.

4.2. Crossover and Other Operation

In order to have a good application of genetic
algorithm, the crossover operation should be able to
produce highly evaluated individual keys from good
evaluated ones, with high probability. In present work,
two individual keys are selected by using roulette
wheel selection method and subject to crossover. In
this process, a random swap point is generated. Swap
point is a number whose value between 1 and the
maximum length of individual key (number of bits).
Then, a swapping operation is done, in which the first
part of the first key (before the swap point) is swapped
with first part of second key. By this way new two
individual keys are created.

As the average of population fitness goes greater,
the position of swap point must be shifted toward the
least significant bits. The idea behind this is that the
growth of population fitness means that each
individual should has a considerable number of correct
bits. So, that shifting of swap point is to avoid
changing the correct part of individual key and also to
spread it among other keys.

Falling in local minimum is expected but this can be
detected by observing the population fitness or
individuals evaluation through a number of successive
populations. To cope with such situations, mutation
rate must be increased automatically. This will help to
create new features (new bits segments) that may get
the population through this local area search space. In
normal situation, we should have a small mutation
value, while the high mutation rate may result in
disfiguring the good individuals.

5. Practical Results
The proposed attack system was implemented by using
Visual C++ ver. 6.0 language on P III, 700 MHz PC
working under windows 2000 operating system.

Samples of messages were generated and all time
measurements were done by using VC++ program.
These messages were signed by number of keys of 64
bits length. Initial experiments have shown
encouraging results for key disclosure. Figure 4 shows
the average of population fitness over number of

generations. Current results have led to 96% correct
key disclosure by using only 1500 messages as
maximum and 100 individuals in population. These
results can be considered as a serious improvement
when compared with previously published results.

Figure 4. Population fitness

6. Discussion and Conclusion
The threat against cryptosystem implementation using
timing attack is greatly increased when less message
samples are required. Besides not many details about
the system implementation are urgently required to be
known, except the knowledge that it uses modular
exponentiation process.

This process might fail in attacking systems having
some kind of blinding techniques, where some
operations are added, such as subtraction or
multiplication operations that upsets the Montgomery
algorithm for modular exponentiation. The timing
attack has also a weakness of not being able to work
against the Chinese Remainder Theorem for modular
exponentiation.

However, the timing attack suggested here is of
general nature in the sense that it may be used
efficiently for attacking other similar systems, that
implement modular multiplication and exponentiation
schemes, such as digital signature standard, DSS or
any variant of DSA. More investigation will be
pursued is required to implement this speed up error
searching technique on a practically existing system.

References
[1] Dhem J. F., “Design of an Efficient Public -

Kcryptographic Library for RISC-Based Smart
Cards,” PhD Thesis, Universite Catholique de
Louvain-UCL Crypto Group-Laboratoire de
Microelectronique (DICE), May 1998.

[2] Dhem J. F., Koeune F., Leroux P. A., Mestre P.,
Quisquater J. J., and Willems J. L., “A Practical
Implementation of Timing Attack,” Technical
Report Series, Universite Catholique de Louvain-
ULC Crypto Group, 1998.

0 20 40 60 80 100 120 140
Number of generations

 A
ve

ra
ge

 P
op

ul
at

io
n

fit
n

es
s

84 The International Arab Journal of Information Technology, Vol. 1, No. 1, January 2004

[3] Haches G., Koeume F., and Quisquater J. J.,

“Timing Attack: What Can be Achieved by a
Powerful Adversary,” Technical Report,
Universite Catholique de Louvain-UCL Crypto
Group, URL: http://www.dice.ucl.ac.be/crypto,
1999.

[4] Kocher P. C., “Timing Attacks on
Implementations of Diffie -Hellman, RSA, DSS,
and Other Systems,” in Koblitz N. (Ed),
Advances in Cryptology (CRYPTO’96), Santa
Barbara, California, Springer, vol. 1109 of LNCS,
pp. 104-113, 1996.

[5] Kocher P. C., Jaffe J., and Jun B., “Introduction
to Differential Power Analysis and Related
Attacks,” http://www.cryptography.com/ dpa/,
1998.

[6] Koeune F. and Quisquater J. J., “A Timing
Attack Against Rijndael,” Technical Report,
Universite Catholique de Louvain-UCL Crypto
Group, 1999.

[7] Kolodziejczyk J., “The Application of Genetic
Algorithm in Cryptoanalysis of Knapsack
Cipher,” http:// www.cryptography. com/ dpa…/,
1998.

[8] Liepins G. E. and Hillard M. R., “Genetic
Algorithms: Foundations and Applications,”
Annals of Operations Research, vol. 21, pp. 31-
58, 1989.

[9] Matthew R. J., “The Use of Genetic Algorithms
in Cryptanalysis,” Cryptologia , vol. 17, no. 2, pp.
187-201, 1993.

[10] Rivest R., Shamir A., and Adlemen L., “Method
for Obtaining Digital Signature and Public Key
Cryptosystem,” Communications of ACM, vol.
21, no. 2, pp. 120-126, 1978.

[11] Schneier B., “Applied Cryptography,” John
Wiley & Sons, 1996.

[12] Spillman R., Janssen M., Nelson B., and Kepner
M., “Use of a Genetic Algorithm in the
Cryptanalysis of Simple Substitution Cipher,”
Cryptologia , vol. 17, no.1, 1993.

Hamza Ali BSc in physics from
Basrah University 1968, MSc in
electronics from University of
London 1973 and PhD in computer
engineering from University of
London, 1977. Previously he
worked in Basrah University, Iraq,
Shatt Alarab University College,

Iraq, Aizu University, Japan, and currently associate
professor at the Computer Science Department, Zarka
Private University, Jordan. His research interest
includes computer data and networks security,
authentication and digital signature, recognition of
Arabic script and neural networks.

Mikdam Al-Salami obtained his
MSc and BSc in computer science
from Basrah University, Iraq, 1996
and 1999, respectively. Previously
he worked at Ar-Rafidain University
College, Iraq. Currently, he is a
lecturer at the Computer Science
Department, Zarka Private

University, Jordan. His research areas include
cryptography in computer systems, authentication and
management of data protection.

