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Abstract: This paper presents an augmented method for image completion, particularly for images of human faces by 

leveraging on deep learning based inpainting techniques. Face completion generally tend to be a daunting task because of the 

relatively low uniformity of a face attributed to structures like eyes, nose, etc. Here, understanding the top level context is 

paramount for proper semantic completion. The method presented improves upon existing inpainting techniques that reduce 

context difference by locating the closest encoding of the damaged image in the latent space of a pre-trained deep generator. 

However, these existing methods fail to consider key facial structures (eyes, nose, jawline, etc.,) and their respective location 

to each other. This paper mitigates this by introducing a face landmark detector and a corresponding landmark loss. This 

landmark loss is added to the construction loss between the damaged and generated image and the adversarial loss of the 

generative model. The model was trained with the celeb A dataset, tools like pyamg, pillow and the OpenCV library was used 

for image manipulation and facial landmark detection. There are three main weighted parameters that balance the effect of the 

three loss functions in this paper, namely context loss, landmark loss and prior loss. Experimental results demonstrate that the 

added landmark loss attributes to better understanding of top-level context and hence the model can generate more visually 

appealing in painted images than the existing model.The model obtained average Structural Similarity Index (SSIM) and Peak 

Signal-to-Noise Ratio (PNSR) scores of 0.851 and 33.448 for different orientations of the face and 0.896 and 31.473, 

respectively, for various types masks. 
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1. Introduction 

Image completion is the process of taking any 

damaged or corrupted image and filling up the missing 

spaces with relevant information. Often times the 

completion task demands that the missing region 

synthesized by an algorithm is semantically accurate. 

Semantic inpainting of corrupted regions thus require a 

high-level understanding of the surrounding regions 

[21]. Several algorithms [3, 6] try to fill up missing 

regions by performing patch matching with known 

regions of the images; but these solutions are only 

limited to a low-level understanding of the entire 

image [15]. Understanding the top level context of the 

human face is quite difficult given the immense 

variation that any face has due to structures like eyes, 

nose, lips, etc. The methods like PatchMatch [3] and 

the total variation approaches [1] are strictly 

constrained to the input images for inferring the 

missing region which makes it completely unsuitable 

for inpainting the human faces where instances like 

deducing the patch of a missing nose from the patch 

containing the eye is quite impossible. A more robust 

approach for such techniques could be to rely on 

external databases [7] or looking up from the internet 

 
[27]. such databases may help the algorithm to identify 

the similar looking patches but they fail to maintain 

proper relevance of the patch with the given 

(corrupted) images.  

Our research is about generating obscured parts in 

images to give the most realistic result. Synthetic data 

production is something that is well within our grasp. 

Hence, the paper relies on cutting edge technologies 

like Deep Learning to do a significantly better on the 

immensely challenging task of filling up the corrupted 

region of a masked image by most semantically 

accurate data. 

Unsupervised deep learning parametric models can 

learn the feature representation of a given dataset, and 

once learnt, it can be utilized or inference tasks. The 

inference is done based on the information and it had 

learnt from the surrounding regions of the corrupted 

places. Due to the recent development of powerful 

deep generative models like the Deep Convolutional 

Generative Adversarial Network (DCGAN) [23], it is 

now possible to regenerate large portions of missing 

regions faithfully. One of the most recent contributions 

is made on deep learning-based image inpainting by 

Yeh et al. [28]. In that model, the algorithm tries to 

find the closest match of the masked image in the 
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latent space of a deep generative model like the 

DCGAN.  

Our proposed model is closest to the work done 

with semantic image inpainting, however in contrast, 

our model utilizes a face landmark detector, proposed 

by Kazemi and Sullivan [11], to identify the locations 

of key facial structures like eyes, noses, lips and the 

jawline to ensurea more comprehensive understanding 

of high-level features rather than just pixel values. We 

therefore introduced a landmark loss that measures the 

distance between facial points on the input and the 

inpainted image. The main contribution of our work is 

the usage of a pretrained DCGAN [28] for determining 

the large corrupted portions of the image. A face 

landmark detector aids in sharpening the generated 

images which is much more semantically accurate with 

its surrounding. Thus, our proposed architecture 

outperformed state of the art semantic model in 

circumstances where the face was obscured in various 

angels as well as when a random mask was applied in 

different positions.  

Rest of the paper is organized as follows. Section 2 

includes background study. Proposed model is 

presented in section 3. Section 4 includes experimental 

setup and result analysis. Finally, concludes the paper 

in section 5. 

2. Background Study 

Image inpainting comprises of texture inpainting and 

semantic inpainting. This paper primarily focuses on 

the facial image inpainting that strictly maintains the 

semantic as well as the structure. To achieve that this 

proposed model has used the deep generative model 

along with a landmark detector. The following sub-

section introduce the technologies behind the proposed 

architecture. 

2.1. Deep Generative Models 

Generative Adversarial Networks (GANs) are state of 

the art deep learning techniques for training parametric 

models. Deep learning architecture deploying this 

technique has shown immense success at synthesizing 

images that are both high quality and visually 

appealing [7, 22]. At the core of this framework are a 

pair of neural networks. A generator- G, and a 

discriminator- D. The generator has the objective of 

mapping a random vector z, which can be sampled 

from a prior distribution Pz, to the image space. On the 

other hand the D has the objective of finding out the 

likelihood of the generated image being from the 

image dataset. Hence, G aims to generate realistic 

images, while D takes in the role of an adversary, 

always trying to discriminate between the image 

generated from G and the real image that originated 

from the dataset’s distribution Pdata. The G and D 

networks can be trained with their combined objective 

function as presented in the following Equation (1). 

min⏟  
𝐺

max⏟    
𝐷

𝑉(𝐺, 𝐷) = 𝔼ℎ~𝑝𝑑𝑎𝑡𝑎(ℎ)[log(𝐷(ℎ))] +

𝔼𝑧~𝑝𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧)))] 

ANs have become extremely popular for fulfilling the 

image inpainting task that is semantically coherent 

since it understands the context of the image. Further, 

GANs produce sharper images compare to other 

models like Variational Auto Encoder (VAEs). In the 

proposed model we have used a DCGAN. The 

DCGAN architecture gains it ability to generate 

images from the Generative Adversarial training 

method in conjunction with the Convolutional Neural 

Network (CNN) architecture. A significant 

improvement to this effort came with the development 

of the Laplacian Pyramid of GAN (LAPGAN) [21] 

which worked on an iteratively upscaling low 

resolution generated images.  

The authors of the DCGAN architecture made three 

significant modifications to the architecture. First, all 

convolutional net [6, 8] which gets rid of maxpooling 

and strided convolutions and gives the network the 

capability to learn its own spatial down sampling. It 

allows a DCGAN to learn its own spatial up sampling 

and discriminator [10]. It replaces the deterministic 

spatial pooling functions (such as maxpooling) with 

strided convolutions, allowing the network to learn its 

own spatial down sampling. In the proposed model, 

DCGAN is used as a generator. Second change is in 

the decision to get rid of fully connected layers 

presented over the convolutional features. It is 

important because the global mean pooling can yield 

greater stability for the model but also can reduce the 

speed of convergence of the network. In the GANs, 

first layer is a fully connected layer that takes in the 

random noise, applies matrix multiplication and 

reshapes the data into a four dimensional tenor from 

this point onwards the convolution part begins. In the 

discriminator side, the final convolution layer is 

flattened and then put through as a single sigmoid 

output. Third changes are the use of Batch 

Normalization [28] which makes the learning more 

stable due to normalizing the input with zero mean and 

unit variance, before being fed to every node in the 

neural network.  

2.2. Facial Landmark Detector 

The model of landmark detection used in this paper 

was proposed by Kazemi and Sullivan [11] and earlier 

it was used in the multiple layers of regressors. To 

understand how it works let’s consider xi ℝ2, which 

will be the x, y coordinates of the ith landmark point in 

a given input image I. The vector S = (xT
1, xT

2, . . . 

xT
p,)T ℝ2p , where T is a transpose, marks all the p 

facial landmark points in the image I. 

ℒ(�⃗�, �̂⃗�) = ∑ 𝑤𝑙𝐸𝑙  
𝐿
𝑙=0

 

�̂�(𝑡+1) = �̂�𝑡 + 𝑟𝑡(𝐼, �̂�
(𝑡)) 

(1) 

(2) 

(3) 
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Furthermore, Ŝ(t)represents the current estimate of S. 

Every regressor in the cascade can be represented by 

rt(...). The regressors will take in I and the current 

estimate Ŝ (t) and predict and update the vector, which 

will then be added to Ŝ (t) to get the improved estimate 

Ŝ (t+1). The predictions made by the regressor rt are 

dependent on attributes such as pixel intensity values 

of the input image I and it is indexed relative to Ŝ (t). A 

result of this process is the formation of geometric 

invariances that can give the assurance with the 

cascade progresses, the correct locations on the face 

are getting semantically indexed. The range of outputs 

expanded by the cascade is only guaranteed to be in a 

linear subspace of training data if the first estimate Ŝ (0) 

is a member of the same space. Thus, no further 

constraints on the predictions has to be applied. This 

means that the initial shape can be taken to be the 

mean shape centered around the training data. 

Furthermore, it can be scaled with the bounding box of 

any regular face detector. The regressors are trained 

according to the techniques in [17] which utilizes the 

gradient tree boosting algorithms [20] and calculates 

the loss as the sum of square. 

2.3. Back Propagation to Input 

The focal issue that back-propagation works with is the 

assessment of the impact of a parameter on a function 

whose calculation includes a few elementary steps. The 

chain rule is the answer to this issue; however back-

propagation exploits the specific type of the capacities 

utilized at each progression (or layer) to give an 

exquisite and local system [19]. In this section, we will 

discuss some past research that used ‘back propagation 

to input’ and from the equation used by them, we will 

derive our process of back propagating. In order to 

create another texture based on a given picture, [4] 

suggested that Gradient descent is utilized from a white 

noise image to discover another picture that 

coordinates the Gram-matrix portrayal of the first 

picture. By minimizing the mean-squared distance 

between the entries of the gram matrix of the original 

image and gram matrix of the generated image, the 

optimization is achieved. 

Let �⃗� and �⃗� ̂
 be the original image and the image that 

is generated, and Gl and Ĝl their respective Gram-

matrix representations in layer l. The contribution of 

layer l to the total loss is that where wl are weighting 

factors of the contribution of each layer to the total 

loss.  

𝐸𝑙 =
1

4𝑁𝑙
2𝑀𝑙

2∑ (𝐺𝑖𝑗
𝑙 − �̂�𝑖𝑗

𝑙 )2𝑖,𝑗    

The derivative of El with respect to the activations in 

layer l can be computed analytically, as shown in 

Equation (3).  

The gradients of El, and thus the gradient of L(�⃗�;�⃗� ̂
) 

as explained in Equation (4), with respect to the pixels 

�⃗� ̂
 can be promptly figured utilizing standard error 

back-propagation [18]. The gradient 𝜕𝐿
𝜕�⃗�
̂⁄  can be 

utilized as input for some numerical advancement 

procedure. Limited memory Broyden-Fletcher-

Goldfarb-Shanno (L-BFGS) [14] is utilized is our 

work, which appeared a sensible decision for the high-

dimensional enhancement issue at hand. The whole 

technique depends primarily on the standard forward-

backward pass that is utilized to prepare the 

convolutional network. In this manner, despite the 

expansive intricacy of the model, texture generation is 

possible in a sensible time utilizing GPUs and 

performance-enhanced toolboxes for training deep 

neural systems [10]. As suggested by [26], this 

segment will depict a system for picturing the class 

models, learnt by the picture characterization 

ConvNets. Given an educated grouping ConvNet and a 

class of intrigue, the perception technique comprises in 

numerically creating a picture [24], which is 

illustrative of the class as far as the ConvNet class 

scoring model. More formally, let Sc(I) be the score of 

the class c, processed by the arrangement layer of the 

ConvNet for a picture I. The L2-regularised image can 

be found in Equation (5), such that the score Sc is high 

with: 

argmax 𝑆𝑐(𝐼) − 𝜆‖𝐼‖2
2      

Where  is the regularization parameter. The back-

propagation is utilized to optimize the layer weights to 

identify the ConvNet training strategy. The thing that 

matters is that for our situation the optimization is 

performed as for the input, while the weights are 

settled to those discovered amid the training. The 

optimization as initialized with the zero picture (for our 

situation, the ConvNet was prepared on the zero-

focused picture information), and afterward included 

the preparation set mean picture to the outcome. It 

ought to be noticed that we utilized the (unformulated) 

class scores Sc, rather than the class posteriors, returned 

by the soft-max layer: P𝑐 =
exp𝑆𝑐

∑ exp𝑆𝑐𝑐
. The reason why it 

was done is because by minimizing the scores of 

different classes, the boost of the class posterior can be 

accomplished. In this manner, we improve Sc to 

guarantee that the optimization focuses just on the 

class being referred to c. 

𝜕𝐸𝑙

𝜕�̂�𝑖𝑗
𝑙 = {

1

𝑁𝑙
2𝑀𝑙

2 ((�̂�
𝑙)
𝑇
(𝐺𝑙 − �̂�𝑙))𝑗𝑖       𝑖𝑓 �̂�𝑖𝑗

𝑙 > 0 

0                                                𝑖𝑓 �̂�𝑖𝑗
𝑙 < 0

     

3. Proposed  Model 

This paper is keenly focused on designing a model that 

works specifically for the human faces and it can 

generate synthetic images for filling in holes/noise in 

the input image. As depicted in Figure 1, the proposed 

model includes the facial landmark detector 

considering three different loses over the state-of-art 

(4) 

(6) 

(5) 



356                                                             The International Arab Journal of Information Technology, Vol. 19, No. 3, May 2022 

 

model presented in [28]. This model utilizes a pre-

trained DCGAN [23] and the DCGAN architecture is 

trained using the Celeb A image dataset [16]. The 

dataset contains thousands human faces in different 

angles and lighting conditions. A trained DCGAN can 

sample random noise from a normal distribution, apply 

its newly learnt weights and biases to the noise data 

and convert the noise into an image. This in turn, gives 

the DCGAN the ability to sample anywhere from the 

normal distribution and generate completely new 

images of human faces (based on the images it had 

learnt from the dataset). This ability is crucial for the 

task at hand. Once a masked input image is given to 

the model as input, it calls the pre-trained DCGAN to 

randomly generate a batch of 64 images which has 

been sampled as ‘z’ from the normal distribution. The 

generated images are then applied with the same mask 

used for the input image. Initially, the generated 

images look nothing like the input image, thus 

incurring a high loss. The loss is calculated based on 

three parameters. First, the L1 distance between the 

masked input image and generated images. L1 Loss 

Function is used to minimize the error which is the 

sum of the all the absolute differences between the 

true value and the predicted value. Second, the 

distance of the 68 landmark facial points and third, the 

adversarial loss [5] from the discriminator of the 

DCGAN. The total loss calculated is then used to find 

the gradient in terms of the input noise z (random 

samplings form the normal distribution) that is feed to 

the generator of the DCGAN. This gradient is used to 

back-propagate to the latent input space and traverse 

across it. 

 
 

Figure 1. Block diagram of the proposed architecture. 

In order to inpaint significant portions of missing 

data both the generator and the discriminator will have 

to train with undamaged, normal data. The GAN based 

generator for the purpose is the aforementioned 

DCGAN. Once training is completed, the generator G 

of the DCGAN can draw points z from a uniform 

distribution Pz and synthesize images that looks similar 

to the samples from the dataset distribution Pdata. 

Although GANs are capable of generating new images, 

they alone are not enough for the inpainting task as the 

produced images are random and irrelevant to the 

corrupted image. According to the model in [27], it is 

known that given a G, which has an efficient 

representation of the data, must not have a 

representation of the foreign (corrupted) image in its 

encoded latent space representation Pdata .  

Thus, the goal should be to locate the encoding ẑ 

that has the highest similarity to the damaged image at 

hand, all the while maintaining a constraint to the 

latent space. As the algorithm traverses through the 

latent space, the search for the closest encoding gets 

optimized with each step of finding ẑ.  

Once ẑ is found, the generator G can be called upon 

to convert the encoding of the latent space to an image. 

Concretely, Yeh et al. [28] has formulated the 

procedure of locating ẑ as an optimization problem. 

Thus, the variable y represent the damaged image to 

recover and a binary mask which is the same size as 

the image and denoted by M is used to mark the 

missing parts. Using the notations, the nearest 

encoding ẑ can be represented as:  

�̂� = argmin{ℒ𝑐(𝑧|𝑦,𝑀) + ℒ𝑝(𝑧)} 

Where ℒc denotes the context loss which purposes is to 

constraint the generated image provided the input 

damaged image y and the mask M; ℒp denotes the prior 

loss that purposes to penalizes the images that does not 

look visually appealing. 

 

 

(7) 
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3.1. Weighted Context Loss 

Yeh et al. [28] used a context loss to frame such 

information by calculating a L2 norm between the 

generated image G(z) and the uncorrupted portion of 

the input image. 

L2 Loss Function is used to minimize the error 

which is the sum of the all the squared differences 

between the true value and the predicted value. This 

method however, is not very efficient as it treats every 

pixel equally. Pixels that are far away from the missing 

region should naturally be treated with lesser 

precedence compared to that of pixels which are closer 

to the missing region. As a result, the importance of an 

uncorrupted pixel is directly correlated with the 

number corrupted pixels surrounding it. This idea can 

be better articulated with the Equation (8).  

W𝑖 = {
∑

(1−𝑀𝑗)

|𝑁(𝑖)|
  𝑖𝑓 𝑗∈𝑁(𝑖) 𝑀𝑗 ≠ 0

0                        𝑖𝑓 𝑀𝑗 = 0
      

 Where i is the pixel index, Wi denotes the importance 
weight at pixel location i, N(i) refers to the set of 
neighbors of pixel i in a local window, and i, |N(i)| 
denotes the cardinality of N(i). Finally, the contextual 
loss ℒc in Equation (9) can be defined as a weighted 
L1-norm difference betweenthe recovered image and 
the uncorrupted portions. Here, ⊙ denotes element wise 

multiplication. 

ℒ𝑐(𝑧|𝑦,𝑀) = ‖𝑊⊙ (𝐺(𝑧) − 𝑦)‖1  

3.2. Land Mark Loss 

The landmark loss can be calculated because of the 

dlib landmark detector [12], which takes in an input 

image and finds the (x,y) coordinates of 68 points on 

the face. 

ℒ𝑑,𝑥(𝑥) = {
0,   |𝑥 − �̂�| ≤ 3

0.5,   |𝑥 − �̂�| > 3
 

ℒ𝑑,𝑦(𝑦) = {
0,   |𝑦 − �̂�| ≤ 3

0.5,   |𝑦 − �̂�| > 3
 

This detector as applied on normal images and masked 

images and it works well on both. For calculating loss, 

the (x, y) coordinates for the damaged image has to be 

obtained, this becomes the ground truth. Then the 

DCGAN is asked to generate a batch of 64 images. 

These images are then applied with the same mask and 

fed to the landmark detector in order to obtain their 

(x,y) coordinates. For every facial point of the generated 

image, if the absolute value distance of its x-

coordinate, surpasses the corresponding x-coordinate 

of the same facial point of the ground image by three 

points, the land mark loss Ld,y is increased by 0.5. This 

particular value was selected for measuring the loss on 

a distance of three because this particular parameter 

yielded the best results in the experimentation. 

Similarly, another 0.5 is added to Ld,y for the y-

coordinated for a distance greater than 3 in either 

direction. Finally, the total loss is added for all 68 

points for all 64 images in the batch and that yields the 

final landmark loss ℒ𝑑 for that batch. 

3.3. Prior Loss 

The prior loss refers to the punishment that is applied 

to the system based on high-level image feature 

representations instead of pixel wise differences. The 

prior loss can be measured from the pre-trained image 

classifier (the discriminator, D) and is used to ensure 

that the recovered image is highly close to the training 

set. In GANs, the discriminator, D, is trained to 

differentiate generated images from real images. 

Therefore, the prior loss is very similar to the GAN 

loss for training the discriminator D, i.e. 

ℒp(z) = λ log (1 − D(G(z)))   

Here,  is a parameter to balance between the two 

losses; z is updated to fool D and make the 

corresponding generated image more realistic. Without 
ℒp the mapping of y to z would have been highly 

difficult to achieve. 

The usage of prior loss, context loss and the 

landmark loss, made it possible to achieve a desirable 

mapping of the corrupted image from the latent space 

representation which is denoted by ẑ. After generating 

G(ẑ), the inpainting result can be easily obtained by 

overlaying the uncorrupted pixels from the input. 

Poisson Blending [22] to sharpen the final results is 

applied in [28] but it is not utilized in the proposed 

model. Thus, the final loss, L, is used in the presented 

model calculated presented in Equation (13). Figure 2 

illustrates who different types of loss work on a sample 

image. 

𝐿 = 𝜆1ℒ𝑐 + 𝜆2ℒ𝑑 + 𝜆3ℒ𝑝     
 

 

a) Sample image. 

 

b) Impainting with context loss (Lc) of 

2(a). 

 

c) Impainting with context and 

landmark loss (Lc,Ld) of 2(a). 

 

d) Impainting with context, landmark, and 

prior loss (Lc,Ld, Lp) of 2(a). 

Figure 2. Inpainting on a sample image with context, prior and 

landmark loss. 

3.4. Training 

The entire operation of the model begins by taking in a 

normal image. Then a binary mask can be applied to it. 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 



358                                                             The International Arab Journal of Information Technology, Vol. 19, No. 3, May 2022 

 

The masks can be a centered box, left or right aligned 

or completely randomly generated.  
Once the image been processed, work begind with 

the DCGAN. The generative model, G, takes a random 

100 dimensional vector sampled from a uniform 

distribution and generates a 64x64x3 image. On the 

other side of the DCGAN generator is the 

discriminator model, D, which is in reverse order. The 

input layer of the generator is an image of dimension 

64x64x3, it is then followed by a number of 

convolution layers. In the layers the image dimension 

is reduced to half, and the channel size is doubled the 

size of the previous layer. The output layer has the 

softmax activation function. Then, the training of the 

DCGAN model is done according to [23] and 

optimizer is used presented in [13]. This model used   

=0.003 for all the testing purpose. Once the generator 

is trained, output a batch of 64 images is extracted. The 

entire batch of image is then masked with the same 

mask used for the ground truth image. 
Once masking is complete, the weighted context 

loss ℒc as per Equation (9) between the ground truth 

image and all the masked generated image in the batch 

is measured.  Then the 68 facial point coordinates for 

the ground image is first obtained with the landmark 

detector. This model then find the facial points for each 

image in the batch and with that calculate the landmark 

loss ℒd with Equations (10, 11).  

The prior loss, ℒp is calculated as Per Equation (12). 

Finally, all three losses are calculated and the total loss 

L is found according to Equation (13).  This loss can 

now be used to back propagate to the input latent 

dimension z for optimization ( as depicted in Figure 1). 

In the inpainting stage, ẑ in the latent space z has to be 

found using back-propagation. This model used Adam 

Optimizer for optimization and restricted z to [-1; 1] 

for all iterations, in order to achieve the best possible 

result. The model was ran for 1000 iterations using the 

tensor flow [2] framework on a NVDIA 1050Ti GPU 

enabled machine. 

4. Experimental Setup and Results Analysis 

The following sub sections present the details about the 

dataset used for validating the proposed model along 

with experimental results in various considerations. 

4.1. Datasets and Masks 

The proposed model is primarily evaluated on the 

CelebFaces Attributes Dataset (CelebA) [16]. This 

dataset is composed of 202,599 face images with 

coarse alignment. Some samples of images from the 

dataset are shown in Figure 3. 

For experimentation purpose, around 250 images 

from the dataset is sampled and applied with the 

masking for semantic hole-filling. All images used for 

training and hole-filling are initially cropped at the 

centre (focused primarily at the face) to 64x64 

(depicted in Figure 3). The images capture face at 

different angles, lightning condition and a wide range 

of skin tone. Once the images are processed, they are 

ready to be fed into the DCGAN model architecture. 

The DCGAN is trained and tested according to the 

instruction previously mentioned in this paper. This 

model has mostly been experimented with faces at 

different angles. Additionally, it is also tested with 

different types of masks, the main variant of the masks 

used is the central square mask. The mask applied on 

the testing images would cover as much as 25% of the 

face, yet the model is still capable of generating the 

missing parts of the face. 

 

Figure 3. The celeba dataset. 

4.2. Dataset for Face Parsing 

Although the primary dataset for the model is the 

CelebA dataset, it is not very effective for training the 

facial landmark detector that is used in this model. 

Instead, this model used a landmark detector that is 

trained on the iBUG 300-W dataset [24]. This dataset 

has numerous facial images and each face has 68 

segment labels that considers all major facial 

components like eyes, nose, lips, etc. Since this model 

used a pre-trained landmark detector directly from 

dlib’s library, it does not undergo any changes during 

the training and only does detection. 

4.3. Qualitative Comparisons 

The comparisons that follow, intend to showcase the 

inpainting ability of the proposed model.  

Since the primary focus of this model is to perform 

well in situations where the structural integrity of the 

face must be preserved, the images (Figure 4) used for 

testing depict faces that are oriented at an angle away 

from the central view. 

 
    a)  Original. b) Our 

model. 

c) Different 

regions. 

d) SSIM 

difference. 

e) Black 

mask. 

f) Overlaid. 

Figure 4. SSIM difference visualization with a cutting-

edge(mod.1).  
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   a)  Original. b) Our 

model. 

c) Different 

regions. 

d) SSIM 

difference 

e) Black     

mask. 

f) Overlaid. 

Figure 5. SSIM difference visualization with a cutting-

edge(mod.2). 

This feature is important for the testing purpose 

because such images test the model’s ablity to truly 

consider the structure of the face when inpainting, 

rather than mindlessly overlapping any image 

produced by the generator. A good measure for 

structural consistencey is the Structural Similarity 

Index (SSIM) [25] that finds the degradation of quality 

of an image after processing. The SSIM metric can be 

used to measure the difference between the original 

image and its inpainted version.  

To visualize this, please refer to (Figure 4), the first 

image on the top row, depicts a person whose face is 

oriented towards the right from the viewer’s 

perspective, labelled as Original. The next image, 

depicts the end result after the Original image has been 

masked and then inpainted by the proposed model. The 

difference value between the images is measured using 

SSIM [25]. This value is then thresholded using 

OpenCV, and then OpenCV rectangles are drawn 

around the regions of difference as depicted by the 

third image, labelled Different Regions. Within the 

OpenCV rectangles, countours of difference is 

calculated and drawn as demonstrated by the image 

labelled SSIM Difference. The white region signifies 

no differences, while the gray areas are drawn to 

demonstrate the contours of the differences identified. 

In order to visual the difference more distinctly, the 

contours are drawn over a black mask and then finally 

overliad on top of the original image as depicted by the 

image labelled Overlaid. The same process was 

repeated with the (inpanting) output from a state of the 

art model, Semantic Inpainting (SI) [28] (labelled 

Other Model) and depicted in the bottom row of 

images of (Figure 4). If the Overlaid image from the 

proposed model is compared to the Other Model, it can 

be observed that the inpainted image from the 

proposed model has less difference with the Original 

image. It is especially noticiable around the bridge of 

the nose and the upper lips, where the proposed model 

is better at mataining the structural consistence of 

facial landmarks such as the nose and lips, with respcet 

to the overall orientation of the face.  

The same analysis is repeated again, this time with 

an image where the face is oriented to the left from the 

perspective of the viewer (presented in Figure 5). 

Again, if the Overlaid image from the proposed model 

is compared to the Other Model, a similar trait can be 

observed.  

The inpainted image from the proposed model has 

less difference with the Original image, particularly 

around the bridge of the nose.  

 

Figure 6. Heat map comparison of model 1 depicted in (Figure 4). 

 

Figure 7. Heat map Comparison of a model (depicted in Figure 5). 

The inpainted image from the Other Model shows 

clear distinction around the nose and the lips from the 

Original Image. However, the Overlaid image from the 

proposed model seems to show a greater difference 

around the lips, athough visually the image produced 

by the proposed model seems to be far more accurate. 

This inconsistency may be atttributed to other variables 

such as luminance and contrast that are taken into 

account while measuring SSIM. Furthermore, the 

analysis above finds differences in a binary manner, 

drawing contours as long as there is a difference that 

exceeds the defined threshold, it fails to give a sense as 

to what degree does the twoimages iffer by. 

To alleviate this issue, a heat map of the images is 

drawn. A heatmap can provide a sense of scale for the 

diffence between the images using the color spectrum 

[29], where blue represents simlarity and red represents 

difference. If the images in (Figure 6) is observed, it 

can be noted that the image produced by the proposed 

model is generally more blue, wherease the image 

from the other model is generally more cyan. 

Futhermore, the inconsistency of the orientation of the 

nose with respect to the orientation of the face can be 

easily distinguished in the image produced by the 

Other Model. The difference is apparent around the 

nose and the lips, where the Other Model has patches 

of areas which are green or even red, signifying 

considerable difference. The image from the proposed 

model also has some patches of red, but these are 

around the teeth, which is not intended to be explicitly 

taken into consideration by the proposed model. 
Similarly, another heat map is also presented in 

(Figure 7) and it uses the same images that are 

analysed in (Figure 5). The heat map helps clear the 

disparity between visual observation and the SSIM 
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differnce that is observed before. If (Figure 6) is 

observed, it can be easily noted that the inpainted 

image from the Other model is significantly more 

different than the Original image. The heat map image 

from the Other Model displays green and yellow 

shades all around the inpainted region, with red 

patches along the nose and lips. The heat map for the 

proposed model on the other hand does show some 

difference with the Original image, however that 

difference is signigficantly lower as compared to the 

Other model. This further reinforces the notion that the 

proposed model is more effective at maintaining the 

orientation of facial landmarks with respect to the 

oreintation of the face. 

4.4. Quantitative Comparisons 

This section of the paper will provide a more concrete 

measure for the differences in inpainting ability 

between the proposed model and the state-of-the-art 

model. This paper would like to clarify again that this 

model is not made to recreate the ground truth image, 

rather it tries to fill in the damaged place with the most 

similar possible content. To give a more concrete 

understanding of the performance of this model, this 

paper will be comparing it with the cutting-edge 

model, Semantic Inpainting (SI) [28]. The real images 

from the dataset are used as ground truth reference.  

Table 1. SSIM score for different orientation of face. 

Face Orientation SI (Lc+Lp) Ours (Lc+Ld+Lp) 

Centre 0.865 0.888 

Left 0.819 0.837 

Right 0.815 0.848 

Random 0.815 0.829 

Table 2. PSNR score for different orientation of face. 

Face Orientation SI (Lc+Lp) Ours (Lc+Ld+Lp) 

Centre 33.281 33.463 

Left 32.616 33.218 

Right 32.863 33.373 

Random 32.971 33.738 

 

Tables 1 and 2 provide the results on the CelebA 

dataset for two tests - PSNR and SSIM [25]. Compared 

to the model presented, the PSNR and SSIM values as 

depicted in Tables 1 and 2, of the latest models are 

generally similar or slightly better most cases. The 

main exception is for the random masks, where this 

model and SI seem to do much better. The prime 

reason behind our model doing better is the addition of 

a Landmark loss (Ld). We did an ablation study where 

we removed the landmark loss(Ld) from our proposed 

architecture and the results werenot as good as the ones 

presented in the Tables (1, 2, 3, and 4).  

Table 3. SSIM score for different type of masks. 

Mask Orientation SI (Lc+Lp) Ours (Lc+Ld+Lp) 

Centre 0.876 0.889 

Left 0.880 0.885 

Right 0.901 0.911 

Random 0.879 0.898 

Table 4. PSNR score for different type of masks. 

Mask Orientation SI (Lc+Lp) Ours (Lc+Ld+Lp) 

Centre 31.981 32.644 

Left 31.785 30.491 

Right 29.523 30.981 

Random 30.156 31.778 

Tables 3 and 4 show the results of proposed model 

for four different mask orientations considering the 

SSIM and PSNR. It has been observed that the 

proposed model exhibits better performance then state 

of art model with higher SSIM and PSNR for various 

considered scenarios. 

However, quantitative results do not represent well 

the real performance of the method especially when the 

ground truth image can be variable depending on the 

dataset. Similar observations can be noted in [9s], 

where better visual results corresponds to lower PSNR 

values. Nevertheless, for random holes, this method 

performed better in most cases both in PSNR and 

SSIM scoring. The presented method could outperform 

the state of art model because the undamaged pixels 

are spread more widely throughout the image, and 

PSNR is a much more meaningful scoring technique in 

this case. 

5. Conclusions 

This paper presents a deep generative network for 

structural and semantically coherent image inpainting. 

The system comprises of a pre-trained GAN, which 

has two neural networks, a generator and a 

discriminator, a parser network for landmark detection 

and adversarial loss for generative model. The 

proposed model is comparatively more effective at 

orchestrating semantically legitimate and realistic 

images for the key missing facial parts from arbitrary 

clamor. This strategy enhances existing inpainting 

methods that reduce context difference by finding the 

nearest encoding of the obscured picture in the latent 

space of a pre-trained GAN. Furthermore, it is 

reasoned that the additional landmark loss credits to 

better comprehension of best dimension setting and 

thus more outwardly engaging inpainted pictures. This 

system can be improved in the future by building a 

better parser network algorithm for more effective and 

faster landmark detection. Overall, our model scored 

consistently proved to score higher on the SSIM and 

Signal-to-Noise Ratio (PNSR) score metrics as 

opposed to the state of art model. An average SSIM 

and PNSR score of 0.851 and 33.448 was obtained 

while the face was at various angles, and a score of 

0.897 and 31.473 with various types of masks. 
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